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1. Introduction

Let A be the class of the functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S denote the
subclass of A consisting of all univalent functions f in U .

2. Preliminary results

We need the following theorems.

Theorem 2.1.[1].If f(z) = z + a2z
2 + . . . is analytic in U and

(
1− |z|2

) ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (2.1)

for all z ∈ U , then the function f(z) is univalent in U .
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Theorem 2.2.[4]. Let α be a complex number, Re α > 0 and f ∈ A. If

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (2.2)

for all z ∈ U , then the function

Fα(z) =
[
α

∫ z

0
uα−1f ′(u)du

] 1
α

(2.3)

is in the class S.

Theorem 2.3.[5]Let α be a complex number, Re α > 0 and f ∈ A. If

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1

for all z ∈ U , then for any complex number β, Re β ≥ Re α, the function

Fβ(z) =
[
β

∫ z

0
uβ−1f ′(u)du

] 1
β

(2.4)

is regular and univalent in U .
Theorem 2.4.(Schwarz)[2].Let f(z) the function regular in the disk

UR = {z ∈ C : |z| < R}

with |f(z)| < M , M fixed. If f(z) has in z = 0 one zero with multiply ≥ m, then

|f(z)| ≤ M

Rm
|z|m, z ∈ UR (2.5)

the equality (in the inequality (2.5) for z 6= 0) can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.
Theorem 2.5.[3]If the function g(z) is regular in U and |g(z)| < 1 in U , then

for all ξ ∈ U and z ∈ U the following inequalities hold:∣∣∣∣∣ g(ξ)− g(z)
1− g(z)g(ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z

1− zξ

∣∣∣∣ (2.6)
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and

|g′(z)| ≤ 1− |g(z)|2

1− |z|2
(2.7)

the equalities hold only in the case g(z) = E(z+u)
1+uz , where |E| = 1 and |u| < 1.

Remark.[3]For z = 0, from inequality (2.6) we have∣∣∣∣∣ g(ξ)− g(0)
1− g(0)g(ξ)

∣∣∣∣∣ < |ξ| (2.8)

and, hence

|g(ξ)| ≤ |ξ|+ |g(0)|
1 + |g(0)||ξ|

(2.9)

Considering g(0) = a and ξ = z,

|g(z)| ≤ |z|+ |a|
1 + |a||z|

(2.10)

for all z ∈ U .

3. Main results

Theorem 3.1.Let the function f ∈ A. If∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 3
√

3
2

(3.1)

for all z ∈ U , then the function f is in the class S.

Proof. We consider the function g(z) = zf ′′(z)
f ′(z) , z ∈ U . We have g(0) = 0 and

from (3.1) by Theorem 2.4 (Schwarz) we obtain∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 3
√

3
2
|z| (3.2)

for all z ∈ U . From (3.2) we get

(1− |z|2)
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 3
√

3
2

(1− |z|2)|z| (3.3)

for all z ∈ U .
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Because
max
|z|<1

[(1− |z|2)|z|] =
2

3
√

3
,

from (3.3) we obtain

(1− |z|2)
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (3.4)

for all z ∈ U and by Theorem 2.1 we obtain that f is in the class S.

Theorem 3.2.Let α be a complex number, Re α > 0 and the function f ∈ A. If∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
(3.5)

for all z ∈ U , then the function

Fα(z) =
[
α

∫ z

0
uα−1f ′(u)du

] 1
α

(3.6)

is regular and univalent in U .

Proof. Let’s consider the function p(z) = zf ′′(z)
f ′(z) , z ∈ U . We have p(0) = 0 and

from (3.5) by Theorem 2.4 (Schwarz) we get∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
|z| (3.7)

for all z ∈ U . From (3.7) we obtain

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
· 1− |z|2Re α

Re α
|z| (3.8)

for all z ∈ U .
Since

max
|z|<1

(
1− |z|2Re α

Re α
|z|

)
=

2

(2Re α+ 1)
2Re α+1

Re α

from (3.8) we have

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (3.9)
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for all z ∈ U and by Theorem 2.2 we obtain that the function Fα(z) is regular and
univalent in U .

Remark 3.3.From Theorem 3.2 for α = 1 we obtain Theorem 3.1.

Theorem 3.4.Let α be a complex number, Re α > 0 and the function f ∈ A. If∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
(3.10)

for all z ∈ U , then for any complex number β, Re β ≥ Re α, the function

Fβ(z) =
[
β

∫ z

0
uβ−1f ′(u)du

] 1
β

(3.11)

is regular and univalent in U .
Proof. We consider the function ψ : (0,∞) → R, ψ(x) = 1−a2x

x , 0 < a < 1. The
function ψ(x) is the function decreasing for x ∈ (0, 1). If x1 = Re α ≤ x2 = Re β
and a = |z|, z ∈ U then

1− |z|2Re β

Re β
≤ 1− |z|2Re α

Re α
(3.12)

for all z ∈ U . From (3.12) we obtain

1− |z|2Re β

Re β

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ (3.13)

for all z ∈ U .
From (3.10) and Theorem 2.4 (Schwarz) we get∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
|z|, z ∈ U (3.14)

and, hence, we have

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ (2Re α+ 1)
2Re α+1

Re α

2
· 1− |z|2Re α

Re α
|z| (3.15)

for all z ∈ U .
Because

max
|z|<1

1− |z|2Re α

Re α
|z| = 2

(2Re α+ 1)
2Re α+1

Re α

(3.16)

by (3.15) and (3.13) we obtain
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1− |z|2Re β

Re β

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (3.17)

for all z ∈ U .
From (3.17) and Theorem 2.2 we obtain that the function Fβ(z) is regular and

univalent in U .

Theorem 3.5.Let α, β complex numbers Re β ≥ Re α > 0, the function f ∈
A, f(z) = z + a2z

2 + . . . If ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ < 1 (3.18)

for all z ∈ U and

max
|z|<1

[
1− |z|2Re α

Re α
|z| |z|+ 2|a2|

1 + 2|a2||z|

]
≤ 1 (3.19)

then the function Fβ(z) define by (2.4) is regular and univalent in U .

Proof. Let’s consider the regular function p(z) = f ′′(z)
f ′(z) , z ∈ U . We have |p(0)| =

2|a2| and from (3.18) we obtain |p(z)| < 1 for all z ∈ U .
By Remark 2.6 we obtain ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤ |z|+ 2|a2|
1 + 2|a2||z|

(3.20)

for all z ∈ U . From (3.20) we get

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1− |z|2Re α

Re α
|z| |z|+ 2|a2|

1 + 2|a2||z|
(3.21)

for all z ∈ U .
We consider the function Q : [0, 1] → R

Q(x) =
1− x2Re α

Re α
x
x+ 2|a2|
1 + 2|a2|x

; x = |z|.

Because Q
(

1
2

)
> 0 it results that

max
x∈(0,1)

Q(x) > 0.

Using this result and from (3.21) we conclude

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ max
|z|<1

[
1− |z|2Re α

Re α
|z| |z|+ 2|a2|

1 + 2|a2||z|

]
(3.22)
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and hence, by (3.19) we obtain

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (3.23)

for all z ∈ U . From (3.23) and by Theorem 2.3 we obtain that the function Fβ(z) is
in the class S.
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