UNIVALENCE CRITERIA

VIRGIL PESCAR

ABSTRACT. In this paper we derive some criteria for univalence of analytic functions and of an integral operator in the open unit disk.

2000 Mathematics Subject Classification: 30C45.

Key Words and Phrases: Univalence, Integral Operator.

1. INTRODUCTION

Let \mathcal{A} be the class of the functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let S denote the subclass of \mathcal{A} consisting of all univalent functions f in \mathcal{U} .

2. Preliminary results

We need the following theorems.

Theorem 2.1.[1]. If $f(z) = z + a_2 z^2 + ...$ is analytic in \mathcal{U} and

$$(1-|z|^2)\left|\frac{zf''(z)}{f'(z)}\right| \le 1$$
 (2.1)

for all $z \in \mathcal{U}$, then the function f(z) is univalent in \mathcal{U} .

189

Theorem 2.2.[4]. Let α be a complex number, $Re \alpha > 0$ and $f \in A$. If

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1$$
(2.2)

for all $z \in \mathcal{U}$, then the function

$$F_{\alpha}(z) = \left[\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du\right]^{\frac{1}{\alpha}}$$
(2.3)

is in the class \mathcal{S} .

Theorem 2.3.[5] Let α be a complex number, $Re \alpha > 0$ and $f \in A$. If

$$\frac{1-|z|^{2Re\;\alpha}}{Re\;\alpha} \left|\frac{zf''(z)}{f'(z)}\right| \leq 1$$

for all $z \in \mathcal{U}$, then for any complex number β , $Re \ \beta \ge Re \ \alpha$, the function

$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta-1} f'(u) du\right]^{\frac{1}{\beta}}$$
(2.4)

is regular and univalent in \mathcal{U} .

Theorem 2.4. (Schwarz)[2]. Let f(z) the function regular in the disk

$$\mathcal{U}_R = \{ z \in \mathbb{C} : |z| < R \}$$

with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \quad z \in \mathcal{U}_R \tag{2.5}$$

the equality (in the inequality (2.5) for $z \neq 0$) can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

Theorem 2.5.[3] If the function g(z) is regular in \mathcal{U} and |g(z)| < 1 in \mathcal{U} , then for all $\xi \in \mathcal{U}$ and $z \in \mathcal{U}$ the following inequalities hold:

$$\left|\frac{g(\xi) - g(z)}{1 - \overline{g(z)}g(\xi)}\right| \le \left|\frac{\xi - z}{1 - \overline{z}\xi}\right|$$
(2.6)

and

$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2} \tag{2.7}$$

the equalities hold only in the case $g(z) = \frac{\mathcal{E}(z+u)}{1+\overline{u}z}$, where $|\mathcal{E}| = 1$ and |u| < 1.

Remark.[3]For z = 0, from inequality (2.6) we have

$$\left|\frac{g(\xi) - g(0)}{1 - \overline{g(0)}g(\xi)}\right| < |\xi| \tag{2.8}$$

and, hence

$$|g(\xi)| \le \frac{|\xi| + |g(0)|}{1 + |g(0)||\xi|}$$
(2.9)

Considering g(0) = a and $\xi = z$,

$$|g(z)| \le \frac{|z| + |a|}{1 + |a||z|} \tag{2.10}$$

for all $z \in \mathcal{U}$.

3. Main results

Theorem 3.1. Let the function $f \in A$. If

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{3\sqrt{3}}{2} \tag{3.1}$$

for all $z \in \mathcal{U}$, then the function f is in the class S.

Proof. We consider the function $g(z) = \frac{zf''(z)}{f'(z)}, z \in \mathcal{U}$. We have g(0) = 0 and from (3.1) by Theorem 2.4 (Schwarz) we obtain

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{3\sqrt{3}}{2}|z| \tag{3.2}$$

for all $z \in \mathcal{U}$. From (3.2) we get

$$(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{3\sqrt{3}}{2} (1 - |z|^2)|z|$$
(3.3)

for all $z \in \mathcal{U}$.

191

Because

$$\max_{|z|<1}[(1-|z|^2)|z|] = \frac{2}{3\sqrt{3}},$$

from (3.3) we obtain

$$(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \tag{3.4}$$

for all $z \in \mathcal{U}$ and by Theorem 2.1 we obtain that f is in the class \mathcal{S} .

Theorem 3.2. Let α be a complex number, Re $\alpha > 0$ and the function $f \in A$. If

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2} \tag{3.5}$$

for all $z \in \mathcal{U}$, then the function

$$F_{\alpha}(z) = \left[\alpha \int_0^z u^{\alpha - 1} f'(u) du\right]^{\frac{1}{\alpha}}$$
(3.6)

is regular and univalent in \mathcal{U} .

Proof. Let's consider the function $p(z) = \frac{zf''(z)}{f'(z)}, z \in \mathcal{U}$. We have p(0) = 0 and from (3.5) by Theorem 2.4 (Schwarz) we get

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2}|z| \tag{3.7}$$

for all $z \in \mathcal{U}$. From (3.7) we obtain

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha}\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2} \cdot \frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha}|z| \tag{3.8}$$

for all $z \in \mathcal{U}$.

Since

$$\max_{|z|<1} \left(\frac{1-|z|^{2Re\;\alpha}}{Re\;\alpha}|z|\right) = \frac{2}{(2Re\;\alpha+1)^{\frac{2Re\;\alpha+1}{Re\;\alpha}}}$$

from (3.8) we have

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1$$
(3.9)

for all $z \in \mathcal{U}$ and by Theorem 2.2 we obtain that the function $F_{\alpha}(z)$ is regular and univalent in \mathcal{U} .

Remark 3.3. From Theorem 3.2 for $\alpha = 1$ we obtain Theorem 3.1.

Theorem 3.4. Let α be a complex number, $Re \alpha > 0$ and the function $f \in A$. If

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2} \tag{3.10}$$

for all $z \in \mathcal{U}$, then for any complex number β , $\operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the function

$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta-1} f'(u) du\right]^{\frac{1}{\beta}}$$
(3.11)

is regular and univalent in \mathcal{U} .

Proof. We consider the function $\psi: (0, \infty) \to \mathbb{R}$, $\psi(x) = \frac{1-a^{2x}}{x}$, 0 < a < 1. The function $\psi(x)$ is the function decreasing for $x \in (0, 1)$. If $x_1 = Re \ \alpha \leq x_2 = Re \ \beta$ and $a = |z|, z \in \mathcal{U}$ then

$$\frac{1-|z|^{2Re\ \beta}}{Re\ \beta} \le \frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha} \tag{3.12}$$

for all $z \in \mathcal{U}$. From (3.12) we obtain

$$\frac{1-|z|^{2Re\ \beta}}{Re\ \beta}\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha}\left|\frac{zf''(z)}{f'(z)}\right| \tag{3.13}$$

for all $z \in \mathcal{U}$.

From (3.10) and Theorem 2.4 (Schwarz) we get

$$\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2}|z|, \ z\in\mathcal{U}$$
(3.14)

and, hence, we have

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha}\left|\frac{zf''(z)}{f'(z)}\right| \le \frac{(2Re\ \alpha+1)^{\frac{2Re\ \alpha+1}{Re\ \alpha}}}{2} \cdot \frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha}|z| \tag{3.15}$$

for all $z \in \mathcal{U}$.

Because

$$\max_{|z|<1} \frac{1 - |z|^{2Re\ \alpha}}{Re\ \alpha} |z| = \frac{2}{(2Re\ \alpha + 1)^{\frac{2Re\ \alpha + 1}{Re\ \alpha}}}$$
(3.16)

by (3.15) and (3.13) we obtain

193

$$\frac{1-|z|^{2Re\ \beta}}{Re\ \beta}\left|\frac{zf''(z)}{f'(z)}\right| \le 1 \tag{3.17}$$

for all $z \in \mathcal{U}$.

From (3.17) and Theorem 2.2 we obtain that the function $F_{\beta}(z)$ is regular and univalent in \mathcal{U} .

Theorem 3.5. Let α, β complex numbers $Re \ \beta \ge Re \ \alpha > 0$, the function $f \in \mathcal{A}, f(z) = z + a_2 z^2 + \dots$ If

$$\left|\frac{f''(z)}{f'(z)}\right| < 1 \tag{3.18}$$

for all $z \in \mathcal{U}$ and

$$\max_{|z|<1} \left[\frac{1-|z|^{2Re\,\alpha}}{Re\,\alpha} |z| \frac{|z|+2|a_2|}{1+2|a_2||z|} \right] \le 1 \tag{3.19}$$

then the function $F_{\beta}(z)$ define by (2.4) is regular and univalent in \mathcal{U} .

Proof. Let's consider the regular function $p(z) = \frac{f''(z)}{f'(z)}$, $z \in \mathcal{U}$. We have $|p(0)| = 2|a_2|$ and from (3.18) we obtain |p(z)| < 1 for all $z \in \mathcal{U}$.

By Remark 2.6 we obtain

$$\left|\frac{f''(z)}{f'(z)}\right| \le \frac{|z|+2|a_2|}{1+2|a_2||z|} \tag{3.20}$$

for all $z \in \mathcal{U}$. From (3.20) we get

$$\frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} |z| \frac{|z| + 2|a_2|}{1 + 2|a_2||z|} \tag{3.21}$$

for all $z \in \mathcal{U}$.

We consider the function $Q: [0,1] \to \mathbb{R}$

$$Q(x) = \frac{1 - x^{2Re \alpha}}{Re \alpha} x \frac{x + 2|a_2|}{1 + 2|a_2|x}; \ x = |z|.$$

Because $Q\left(\frac{1}{2}\right) > 0$ it results that

$$\max_{x \in (0,1)} Q(x) > 0$$

Using this result and from (3.21) we conclude

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le \max_{|z| < 1} \left[\frac{1 - |z|^{2Re \alpha}}{Re \alpha} |z| \frac{|z| + 2|a_2|}{1 + 2|a_2||z|} \right]$$
(3.22)

and hence, by (3.19) we obtain

$$\frac{1-|z|^{2Re\ \alpha}}{Re\ \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1 \tag{3.23}$$

for all $z \in \mathcal{U}$. From (3.23) and by Theorem 2.3 we obtain that the function $F_{\beta}(z)$ is in the class \mathcal{S} .

References

[1] Becker, J., Löwnersche Differentialgleichung und quasikonform

fortsetzbare schlichte Functionen, J. Reine Angew. Math. 255 (1972), 23-43.

[2] Mayer, O., The Functions Theory of One Variable Complex, București, 1981.

[3] Nehari, Z., *Conformal Mapping*, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975).

[4] Pascu, N. N., On a univalence criterion II, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), 153-154.

[5] Pascu, N. N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Braşov, (1987), 43-48.

[6] Pescar, V., New Univalence Criteria, "Transilvania" University of Braşov, 2002.

[7] Pescar, V., Breaz, D. V., *The Univalence of Integral Operators*, Academic Publishing House, Sofia, 2008.

Virgil Pescar

Department of Mathematics "Transilvania" University of Braşov 500091 Braşov, Romania e-mail: *virgilpescar@unitbv.ro*