SOME EXTENSIONS OF SUFFICIENT CONDITIONS FOR UNIVALENCE OF AN INTEGRAL OPERATOR ON THE CLASSES $\mathcal{T}_j, \mathcal{T}_{j,\mu}$ and $\mathcal{S}_j(p)$

SERAP BULUT

ABSTRACT. In this paper, we consider the subclasses $\mathcal{T}_j, \mathcal{T}_{j,\mu}$ and $\mathcal{S}_j(p)$ (j = 2, 3, ...), and generalize univalence conditions for integral operator $F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}$ of the analytic function f belonging to the classes $\mathcal{T}_2, \mathcal{T}_{2,\mu}$ and $\mathcal{S}(p)$.

2000 Mathematics Subject Classification: 30C45.

Keywords and phrases: Analytic functions, Univalent functions, Integral operator, Schwarz lemma.

1. INTRODUCTION

Let \mathcal{A} be the class of all functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk

$$\mathbb{U} := \left\{ z \in \mathbb{C} : |z| < 1 \right\}.$$

Consider

$$\mathcal{S} = \{ f \in \mathcal{A} : fareunivalent functions in \mathbb{U} \}.$$

Let \mathcal{A}_j be the subclass of \mathcal{A} consisting of functions f given by

$$f(z) = z + \sum_{k=j+1}^{\infty} a_k z^k \qquad (j \in \mathbb{N}_1^* := \mathbb{N} \setminus \{0, 1\} = \{2, 3, \ldots\}).$$
(1)

Let \mathcal{T} be the univalent subclass of \mathcal{A} consisting of functions f which satisfy

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| < 1 \qquad (z \in \mathbb{U}).$$

Let \mathcal{T}_j be the subclass of \mathcal{T} for which $f^{(k)}(0) = 0$ (k = 2, 3, ..., j). Let $\mathcal{T}_{j,\mu}$ be the subclass of \mathcal{T}_j consisting of functions f of the form (1) which satisfy

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| < \mu \qquad (z \in \mathbb{U})$$

$$\tag{2}$$

for some μ (0 < $\mu \leq 1$), and let us denote $\mathcal{T}_{j,1} \equiv \mathcal{T}_j$.

For some real p with 0 , we define the subclass <math>S(p) of A consisting of all functions f which satisfy

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le p \qquad (z \in \mathbb{U}).$$
(3)

In [7], Singh has shown that if $f \in \mathcal{S}(p)$, then f satisfies

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| \le p |z|^2 \qquad (z \in \mathbb{U}).$$
(4)

Let $S_j(p)$ be the subclass of \mathcal{A} consisting of functions $f \in \mathcal{A}_j$ which satisfy (3) and

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| \le p \, |z|^j \qquad (z \in \mathbb{U}, \ j \in \mathbb{N}_1^*),\tag{5}$$

and let us denote by $\mathcal{S}_2(p) \equiv \mathcal{S}(p)$.

The subclasses $\mathcal{T}_j, \mathcal{T}_{j,\mu}$ and $\mathcal{S}_j(p)$ are introduced by Seenivasagan [5].

The following results will be required in our investigation.

General Schwarz Lemma. [3] Let the function f be regular in the disk $\mathbb{U}_R = \{z \in \mathbb{C} : |z| < R\}$, with |f(z)| < M for fixed M. If f has one zero with multiplicity order bigger than m for z = 0, then

$$|f(z)| \le \frac{M}{R^m} |z|^m \quad (z \in \mathbb{U}_R).$$

The equality can hold only if $f(z) = e^{i\theta} (M/R^m) z^m$, where θ is constant.

Theorem A. [4] Let $\alpha \in \mathbb{C}$, $\operatorname{Re}(\alpha) > 0$ and $f \in \mathcal{A}$. If f satisfies

$$\frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)}\left|\frac{zf''(z)}{f'(z)}\right| \le 1 \qquad (z \in \mathbb{U}),$$

then, for any complex number β with $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$, the integral operator

$$F_{\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} f'(t) dt \right\}^{\frac{1}{\beta}}$$
(6)

is in the class \mathcal{S} .

Theorem B. [1] Let $f_i \in \mathcal{T}_2$ and

$$f_i(z) = z + \sum_{k=3}^{\infty} a_k^i z^k \tag{7}$$

for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$. If $|f_i(z)| \leq 1 \ (z \in \mathbb{U}), then$

$$F_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}} \in \mathcal{S},$$
(8)

where $\alpha, \beta \in \mathbb{C}$, $\operatorname{Re}(\alpha) \geq \frac{3n}{|\alpha|}$, and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Theorem C. [1] Let f_i defined by (7) be in the class $\mathcal{T}_{2,\mu}$ for $\forall i = \overline{1,n}, n \in \mathbb{N}^* := \mathbb{N} \setminus \{0\}$. If

$$|f_i(z)| \le 1 \ (z \in \mathbb{U}),$$

then, for $\beta \in \mathbb{C}$, the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class S, where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{(\mu+2)n}{|\alpha|}$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Theorem D. [1] Let f_i defined by (7) be in the class S(p) for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$. If

$$|f_i(z)| \le 1 \ (z \in \mathbb{U}),$$

then, for $\beta \in \mathbb{C}$, the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class S, where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{(p+2)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Breaz and Owa [2] gave the extensions of Theorems B, C and D as follows.

Theorem B'. [2] Let f_i defined by (7) be in the class \mathcal{T}_2 for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then, for $\beta \in \mathbb{C}$, the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class S, where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{(2M+1)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Theorem C'. [2] Let f_i defined by (7) be in the class $\mathcal{T}_{2,\mu}$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then, for $\beta \in \mathbb{C}$, the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class S, where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{\left((\mu+1)M+1\right)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Theorem D'. [2] Let f_i defined by (7) be in the class S(p) for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then, for $\beta \in \mathbb{C}$, the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class S, where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{((p+1)M+1)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \ge \operatorname{Re}(\alpha)$.

In [6], Seenivasagan and Breaz considered the integral operator

$$F_{\alpha_1,\alpha_2,\dots,\alpha_n,\beta}(z) = \left\{\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt\right\}^{\frac{1}{\beta}} \tag{9}$$

for $f_i \in \mathcal{A}_2$ (i = 1, 2, ..., n) and $\alpha_1, \alpha_2, ..., \alpha_n, \beta \in \mathbb{C}$.

For $\alpha_1 = \alpha_2 = \ldots = \alpha_n = \alpha$, $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ becomes the integral operator $F_{\alpha,\beta}$ defined in (8).

Seenivasagan and Breaz [6] gave the extensions Theorems C' and D' as follows.

Theorem C''. [6] Let $M \ge 1$, $f_i \in \mathcal{T}_{2,\mu_i}$ defined by (7), $\alpha_i, \beta \in \mathbb{C}$, $\operatorname{Re}(\beta) \ge \gamma$ and

$$\gamma := \sum_{i=1}^{n} \frac{(1+\mu_i)M+1}{|\alpha_i|} \quad (0 < \mu_i \le 1, \text{for all } i = 1, 2, \dots, n, n \in \mathbb{N}^*).$$

 $I\!f$

$$|f_i(z)| \le M \quad (z \in \mathbb{U}, \quad i = 1, 2, \dots, n),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in S.

Theorem D''. [6] Let $M \ge 1$, $f_i \in \mathcal{S}(p)$ defined by (7), $\alpha_i, \beta \in \mathbb{C}$, $\operatorname{Re}(\beta) \ge \gamma_1$ and

$$\gamma_1 := \sum_{i=1}^n \frac{(1+p)M+1}{|\alpha_i|} \quad (for \ alli = 1, 2, \dots, n, \ n \in \mathbb{N}^*).$$

If

 $|f_i(z)| \le M \quad (z \in \mathbb{U}, \quad i = 1, 2, \dots, n),$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in S.

In this paper, we obtain some generalizations of the results given by [1], [2], [5] and [6].

2. Main results

Theorem 1. Let f_i defined by

$$f_i(z) = z + \sum_{k=j+1}^{\infty} a_k^i z^k \tag{10}$$

be in the class \mathcal{T}_j for $\forall i = \overline{1, n}, n \in \mathbb{N}^*, j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M_i \ (M_i \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{2M_i + 1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. Define a function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt.$$

Then we obtain

$$h'(z) = \prod_{i=1}^{n} \left(\frac{f_i(z)}{z}\right)^{\frac{1}{\alpha_i}}$$

It is clear that h(0) = h'(0) - 1 = 0. Also, a simple computation yields

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right).$$
(11)

From (11), we get

$$\frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{1 - |z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left(\left| \frac{z^2 f_i'(z)}{(f_i(z))^2} \right| \left| \frac{f_i(z)}{z} \right| + 1 \right).$$
(12)

From the hypothesis, we have $|f_i(z)| \leq M_i$ $(i = \overline{1, n}; z \in \mathbb{U})$, then by the general Schwarz lemma, we obtain that

$$|f_i(z)| \le M_i |z| \quad (i = \overline{1, n}; z \in \mathbb{U}).$$

We apply this result in inequality (12), then we find

$$\frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left(\left| \frac{z^2 f_i'(z)}{(f_i(z))^2} \right| M_i + 1 \right) \\ \leq \frac{1-|z|^{2\operatorname{Re}(\alpha)}}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} \frac{1}{|\alpha_i|} \left(\left| \frac{z^2 f_i'(z)}{(f_i(z))^2} - 1 \right| M_i + M_i + 1 \right) \\ \leq \frac{1}{\operatorname{Re}(\alpha)} \sum_{i=1}^{n} \frac{2M_i + 1}{|\alpha_i|} \\ \leq 1$$

since $\operatorname{Re}(\alpha) \geq \sum_{i=1}^{n} \frac{2M_{i+1}}{|\alpha_i|}$. Applying Theorem A, we obtain that $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ is univalent.

Corollary 2. Let f_i defined by (10) be in the class \mathcal{T}_j for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{2M+1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Theorem 1, we consider $M_1 = M_2 = \cdots = M_n = M$.

Corollary 3. Let f_i defined by (10) be in the class \mathcal{T}_j for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

 $|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$

then the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class \mathcal{S} , where $\alpha,\beta\in\mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{(2M+1)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Corollary 2, we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$.

Corollary 4. If we set j = 2 in Corollary 3, then we have Theorem B'.

Corollary 5. If we set j = 2 and M = 1 in Corollary 3, then we have Theorem B.

The proofs of Theorems 6 and 13 below are much akin to that of Theorem 1, which we have detailed above fairly fully.

Theorem 6. Let f_i defined by (10) be in the class \mathcal{T}_{j,μ_i} for $\forall i = \overline{1,n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M_i \ (M_i \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(\mu_i + 1)M_i + 1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Corollary 7. Let f_i defined by (10) be in the class \mathcal{T}_{j,μ_i} for $\forall i = \overline{1,n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1; z \in \mathbb{U}),$$

1	7	9
Т	1	J

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(\mu_i + 1)M + 1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Theorem 6, we consider $M_1 = M_2 = \cdots = M_n = M$.

Corollary 8. Let f_i defined by (10) be in the class \mathcal{T}_{j,μ_i} for $\forall i = \overline{1,n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class \mathcal{S} , where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(\mu_i + 1)M + 1}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Corollary 7, we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$. This generalizes Theorem 1 in [5].

Corollary 9. Let f_i defined by (10) be in the class $\mathcal{T}_{j,\mu}$ for $\forall i = \overline{1,n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1; z \in \mathbb{U}),$$

then the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class \mathcal{S} , where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{\left((\mu+1)M+1\right)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Corollary 8, we consider $\mu_1 = \mu_2 = \cdots = \mu_n = \mu$.

Corollary 10. If we set j = 2 in Corollary 7, then we have Theorem C".

Corollary 11. If we set j = 2 in Corollary 9, then we have Theorem C'.

Corollary 12. If we set j = 2 and M = 1 in Corollary 9, then we have Theorem C.

Theorem 13. Let f_i defined by (10) be in the class $S_j(p_i)$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M_i \ (M_i \ge 1 \ ; \ z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(p_i+1)M_i+1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Corollary 14. Let f_i defined by (10) be in the class $S_j(p_i)$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(p_i+1)M+1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Theorem 13, we consider $M_1 = M_2 = \cdots = M_n = M$.

Corollary 15. Let f_i defined by (10) be in the class $S_j(p_i)$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class \mathcal{S} , where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(p_i+1)M+1}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Corollary 14, we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$.

Corollary 16. Let f_i defined by (10) be in the class $S_j(p)$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1 \, ; \, z \in \mathbb{U}),$$

then the integral operator $F_{\alpha_1,\alpha_2,\ldots,\alpha_n,\beta}$ defined by (9) is in the class \mathcal{S} , where $\alpha,\beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \sum_{i=1}^{n} \frac{(p+1)M+1}{|\alpha_i|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. In Corollary 14, we consider $p_1 = p_2 = \cdots = p_n = p$.

Corollary 17. Let f_i defined by (10) be in the class $S_j(p)$ for $\forall i = \overline{1, n}, n \in \mathbb{N}^*$, $j \in \mathbb{N}_1^*$. If

$$|f_i(z)| \le M \ (M \ge 1; z \in \mathbb{U}),$$

then the integral operator $F_{\alpha,\beta}$ defined by (8) is in the class \mathcal{S} , where $\alpha, \beta \in \mathbb{C}$,

$$\operatorname{Re}(\alpha) \ge \frac{\left((p+1)M+1\right)n}{|\alpha|},$$

and $\operatorname{Re}(\beta) \geq \operatorname{Re}(\alpha)$.

Proof. If we consider $p_1 = p_2 = \cdots = p_n = p$ in Corollary 15 or $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$ in Corollary 16, then we get desired result. This generalizes Theorem 2 in [5].

Corollary 18. If we set j = 2 in Corollary 16, then we have Theorem D".

Corollary 19. If we set j = 2 in Corollary 17, then we have Theorem D'.

Corollary 20. If we set j = 2 and M = 1 in Corollary 17, then we have Theorem D.

References

[1] D. Breaz and N. Breaz, The univalent conditions for an integral operator on the classes $\mathcal{S}(p)$ and \mathcal{T}_2 , J. Approx. Theory Appl. 1 (2005), 93-98.

[2] D. Breaz and S. Owa, Some extensions of univalent conditions for certain integral operator, Math. Inequal. Appl. 10 (2007), no. 2, 321-325.

[3] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

[4] N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.

[5] N. Seenivasagan, Sufficient conditions for univalence, Appl. Math. E-Notes 8 (2008), 30-35.

[6] N. Seenivasagan and D. Breaz, *Certain sufficient conditions for univalence*, Gen. Math. **15** (2007), no. 4, 7-15.

[7] V. Singh, On class of univalent functions, Internat. J. Math. Math. Sci. 23 (2000), 855-857.

Serap Bulut Civil Aviation College Arslanbey Campus 41285 İzmit - Kocaeli TURKEY e-mail: serap.bulut@kocaeli.edu.tr