CERTAIN COEFFICIENT INEQUALITIES FOR SAKAGUCHI TYPE FUNCTIONS AND APPLICATIONS TO FRACTIONAL DERIVATIVE OPERATOR

S. P. Goyal, Pranay Goswami

Abstract. In the present paper, sharp upper bounds of $\left|a_{3}-\mu a_{2}^{2}\right|$ for the functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ belonging to a new subclass of Sakaguchi type functions are obtained. Also, application of our results for subclass of functions defined by convolution with a normalized analytic function are given. In particular, Fekete-Szegö inequalities for certain classes of functions defined through fractional derivatives are obtained.

2000 Mathematics Subject Classification: 30C50; 30C45; 30C80.
Keywords: Sakaguchi functions, Analytic functions, Subordination, Fekete-Szegö inequality.

1. Introduction

Let \mathcal{A} be the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \Delta:=\{z \in C| | z \mid<1\}) \tag{1.1}
\end{equation*}
$$

and \mathcal{S} be the subclass of \mathcal{A} consisting of univalentfunctions. For two functions $f, g \in \mathcal{A}$, we say that the function $f(z)$ is subordinate to $g(z)$ in Δ and write $f \prec g$ or $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1(z \in \Delta)$, such that $f(z)=g(w(z)),(z \in \Delta)$. In particular, if the function g is univalent in Δ, the above subordination is equivalent to $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$.
Recently Owa et al. [7,8] introduced and studied a Sakaguchi type class $S^{*}(\alpha, t)$. A function $f(z) \in \mathcal{A}$ is said to be in the class $S^{*}(\alpha, t)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}\right\}>\alpha, \quad|t| \leq 1, t \neq 1 \tag{1.2}
\end{equation*}
$$

for some $\alpha \in[0,1)$ and for all $z \in \Delta$. For $\alpha=0$ and $t=-1$, we get the class the class $S^{*}(0,-1)$ studied be Sakaguchi [9]. A function $f(z) \in S^{*}(\alpha,-1)$ is called Sakaguchi function of order α.

In this paper, we define the following class $S^{*}(\phi, t)$, which is generalization of the class $S^{*}(\alpha, t)$.
Definition 1.1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$ be univalent starlike function with respect to ' 1 ' which maps the unit disk Δ onto a region in the right half plane which is symmetric with respect to the real axis, and let $B_{1}>0$. Then function $f \in \mathcal{A}$ is in the class $S^{*}(\phi, t)$ if

$$
\begin{equation*}
\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)} \prec \phi(z), \quad|t| \leq 1, t \neq 1 \tag{1.5}
\end{equation*}
$$

Again $\mathcal{T}(\phi, t)$ denote the subclass of \mathcal{A} consisting functions $f(z)$ such that $z f^{\prime}(z) \in$ $\mathcal{S}^{*}(\phi, t)$.
When $\phi(z)=(1+A z) /(1+B z),(-1 \leq B<A \leq 1)$, we denote the subclasses $S^{*}(\phi, t)$ and $T(\phi, t)$ by $\mathcal{S}^{*}[A, B, t]$ and $\mathcal{T}[A, B, t]$ respectively.
Obviously $S^{*}(\phi, 0) \equiv S^{*}(\phi)$. When $t=-1$, then $S^{*}(\phi,-1) \equiv S_{s}^{*}(\phi)$, which is a known class studied by Shanmugam et al. [10]. For $t=0$ and $\phi(z)=(1+A z) /(1+$ $B z), \quad(-1 \leq B<A \leq 1)$, the subclass $S^{*}(\phi, t)$ reduces to the class $S^{*}[A, B]$ studied by Janowski [3]. For $0 \leq \alpha<1$ let $S^{*}(\alpha, t):=S^{*}[1-2 \alpha,-1 ; t]$, which is a known class studied by Owa et al. [8]. Also, for $t=-1$ and $\phi(z)=\frac{1+(1-2 \alpha) z}{1-z}$, our class reduces to a known class $S(\alpha,-1)$ studied by Cho et al. ([1], see also [8]).

In the present paper, we obtain the Fekete-Szegö inequality for the functions in the subclass $S^{*}(\phi, t)$. We also give application of our results to certain functions defined through convolution (or Hadamard product) and in particular, we consider the class $S^{\lambda}(\phi, t)$ defined by fractional derivatives.

To prove our main results, we need the following lemma:
Lemma 1.2. ([4]) If $p(z)=1+c_{1} z+c_{2} z^{2} \ldots$ is an analytic function with positive real part in Δ, then

$$
\left|c_{2}-v c_{1}^{2}\right| \leq\left\{\begin{array}{lc}
-4 v+2 & \text { if } \quad v \leq 0 \\
2 & \text { if } \quad 0 \leq v \leq 1 \\
4 v-2 & \text { if } \quad v \geq 1
\end{array}\right.
$$

When $v<0$ or $v>1$, the equality holds if and only if $p(z)$ is $(1+z) /(1-z)$ or one of its rotations. If $0<v<1$, then the equality holds if and only if $p(z)$ is $\left(1+z^{2}\right) /\left(1-z^{2}\right)$ or one of its rotations. If $v=0$, the equality holds if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \lambda\right) \frac{1-z}{1+z} \quad(0 \leq \lambda \leq 1)
$$

or one of its rotations. If $v=1$, the equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $v=0$.

Also the above upper bound is sharp, and it can be improved as follows when $0<v<1$:

$$
\left|c_{2}-v c_{1}^{2}\right|+v\left|c_{1}\right|^{2} \leq 2 \quad(0<v \leq 1 / 2)
$$

and

$$
\left|c_{2}-v c_{1}^{2}\right|+(1-v)\left|c_{1}\right|^{2} \leq 2 \quad(1 / 2<v \leq 1)
$$

2. Main Results

Our main result is contained in the following Theorem :
Theorem 2.1. If $f(z)$ given by (1.1) belongs to $S^{*}(\phi, t)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{1}{(t+2)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\mu B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \quad \mu \leq \sigma_{1} \\
\frac{B_{1}}{(t+2)(1-t)} \\
-\frac{1}{(t+2)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\mu B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \quad \mu \geq \sigma_{2}
\end{array}\right.
$$

where

$$
\sigma_{1}:=\frac{(1-t)}{B_{1}(2+t)}\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

and

$$
\sigma_{2}:=\frac{(1-t)}{B_{1}(2+t)}\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
$$

The result is sharp.
Proof. Let $f \in S^{*}(\phi, t)$. Then there exists a Schwarz function $w(z) \in \mathcal{A}$ such that

$$
\begin{equation*}
\frac{(1-t) z f^{\prime}(z)}{f(z)-f(z t)}=\phi(w(z)) \quad(z \in \Delta ; \quad|t| \leq 1, t \neq 1) \tag{2.1}
\end{equation*}
$$

If $p_{1}(z)$ is analytic and has positive real part in Δ and $p_{1}(0)=1$, then

$$
\begin{equation*}
p_{1}(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots . \quad(z \in \Delta) \tag{2.2}
\end{equation*}
$$

From (2.2), we obtain

$$
\begin{equation*}
w(z)=\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\ldots \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(z)=\frac{(1-t) z f^{\prime}(z)}{f(z)-f(t z)}=1+b_{1} z+b_{2} z^{2}+\ldots \quad(z \in \Delta) \tag{2.4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
b_{1}=(1-t) a_{2} \text { and } b_{2}=\left(t^{2}-1\right) a_{2}^{2}+\left(2-t-t^{2}\right) a_{3} \tag{2.5}
\end{equation*}
$$

Since $\phi(z)$ is univalent and $p \prec \phi$, therefore using (2.3), we obtain

$$
\begin{equation*}
p(z)=\phi(w(z))=1+\frac{B_{1} c_{1}}{2} z+\left\{\frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}\right\} z^{2}+\ldots \quad(z \in \Delta) \tag{2.6}
\end{equation*}
$$

Now from (2.4), (2.5) and (2.6), we have

$$
(1-t) a_{2}=\frac{B_{1} c_{1}}{2}, \quad \frac{1}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right) B_{1}+\frac{1}{4} c_{1}^{2} B_{2}=\left(t^{2}-1\right) a_{2}^{2}+\left(2-t-t^{2}\right) a_{3},|t| \leq 1, t \neq 1
$$

Therefore we have

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1}}{2(1-t)(t+2)}\left[c_{2}-v c_{1}^{2}\right] \tag{2.7}
\end{equation*}
$$

where

$$
v:=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}-B_{1}\left(\frac{1+t}{1-t}\right)+\mu B_{1}\left(\frac{2+t}{1-t}\right)\right]
$$

Our result now follows by an application of Lemma 1.2. To shows that these bounds are sharp, we define the functions $K_{\phi_{n}}(n=2,3 \ldots)$ by

$$
\frac{(1-t) z K_{\phi_{n}}^{\prime}(z)}{K_{\phi_{n}}(z)-K_{\phi_{n}}^{\prime}(t z)}=\phi\left(z^{n-1}\right), \quad K_{\phi_{n}}(0)=0=\left[K_{\phi_{n}}\right]^{\prime}(0)-1
$$

and the function F^{λ} and $G^{\lambda}(0 \leq \lambda \leq 1)$ by

$$
\frac{(1-t) z F_{\lambda}^{\prime}(z)}{F_{\lambda}(z)-F_{\lambda}(t z)}=\phi\left(\frac{z(z+\lambda)}{1+\lambda z}\right), \quad F_{\lambda}(0)=0=\left[F_{\lambda}\right]^{\prime}(0)-1
$$

and

$$
\frac{(1-t) z G_{\lambda}^{\prime}(z)}{G_{\lambda}(z)-G_{\lambda}(t z)}=\phi\left(\frac{-z(z+\lambda)}{1+\lambda z}\right), \quad G_{\lambda}(0)=0=\left[G_{\lambda}\right]^{\prime}(0)-1
$$

Obviously the functions $K_{\phi_{n}}, F_{\lambda}, G_{\lambda} \in S^{*}(\phi, t)$. Also we write $K_{\phi}:=K_{\phi_{2}}$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then equality holds if and only if f is K_{ϕ} or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, the equality hods if and only if f is $K_{\phi_{3}}$ or one of its rotations. $\mu=\sigma_{1}$ then equality holds if and only if f is F_{λ} or one of its rotations. $\mu=\sigma_{2}$ then equality holds if and only if f is G_{λ} or one of its rotations.

If $\sigma_{1} \leq \mu \leq \sigma_{2}$, in view of Lemma 1.2, Theorem 2.1 can be improved.
Theorem 2.2. Let $f(z)$ given by (1.1) belongs to $S^{*}(\phi, t)$. and σ_{3} be given by

$$
\sigma_{3}:=\frac{1}{B_{1}}\left(\frac{1-t}{2+t}\right)\left[\frac{B_{2}}{B_{1}}-B_{1}\left(\frac{1+t}{1-t}\right)\right] .
$$

If $\sigma_{1}<\mu \leq \sigma_{3}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{1}{B_{1}^{2}}\left[\left(B_{1}-B_{2}\right)\left(\frac{1-t}{2+t}\right)-B_{1}^{2}\left(\frac{1+t}{2+t}\right)+\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(1-t)(t+2)} .
$$

If $\sigma_{3}<\mu \leq \sigma_{2}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{1}{B_{1}^{2}}\left[\left(B_{1}+B_{2}\right)\left(\frac{1-t}{2+t}\right)+B_{1}^{2}\left(\frac{1+t}{2+t}\right)+\mu B_{1}^{2}\right]\left|a_{2}\right|^{2} \leq \frac{B_{1}}{(1-t)(t+2)}
$$

Example 2.3. Let $-1 \leq B<A \leq 1$. If $f(z) \in \mathcal{A}$ belongs to $S^{*}[A, B ; t]$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{r}
\frac{B-A}{(2+t)(1-t)}\left[B-(A-B)\left(\frac{1+t}{1-t}\right)+\mu(A-B)\left(\frac{2+t}{1-t}\right)\right] \text { if } \quad \mu \leq \sigma_{1}^{*}, \\
\text { if } \sigma_{1}^{*} \leq \mu \leq \sigma_{2}^{*}, \\
\frac{A-B}{(2+t)(1-t)}\left[B-(A-B)\left(\frac{1+t}{1-t}\right)+\mu(A-B)\left(\frac{2+t}{1-t}\right)\right] \text { if } \quad \mu \leq \sigma_{2}^{*},
\end{array}\right.
$$

where

$$
\sigma_{1}^{*}=\frac{(1-t)}{(2+t)}\left[-\frac{1+B}{(A-B)}+\left(\frac{1+t}{1-t}\right)\right],
$$

and

$$
\sigma_{2}^{*}=\frac{(1-t)}{(2+t)}\left[\frac{1-B}{(A-B)}+\left(\frac{1+t}{1-t}\right)\right] .
$$

In particular, if $f \in S(\alpha, t)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{r}
\frac{2(1-\alpha)}{(2+t)(1-t)}\left[1+2(1-\alpha)\left(\frac{1+t}{1-t}\right)-2 \mu(1-\alpha)\left(\frac{2+t}{1-t}\right)\right] \text { if } \mu \leq \sigma_{1}^{* *}, \\
\frac{2(1-\alpha)}{(2+t)(1-\alpha)}\left[(1-2 \alpha)-\alpha\left(\frac{1+t}{1-t}\right)-\mu \alpha\left(\frac{2+t}{1-t}\right)\right] \text { if } \quad \mu \geq \sigma_{1}^{* *} \leq \mu \leq \sigma_{2}^{* *}, \\
2 \frac{1-\alpha}{(t+2)(1-t)}[(1-2)
\end{array}\right.
$$

where

$$
\sigma_{1}^{* *}=-\left(\frac{1+t}{2+t}\right)
$$

and

$$
\sigma_{2}^{* *}=\frac{(1-t)}{(2+t)}\left[\frac{1}{(1-\alpha)}-\left(\frac{1+t}{1-t}\right)\right]
$$

The results are sharp.

3. Applications to functions defined by fractional derivatives

For two analytic functions $f(z)=z+\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=0}^{\infty} g_{n} z^{n}$, their convolution (or Hadamard product) is defined to be the function $(f * g)(z)=z+$ $\sum_{n=0}^{\infty} a_{n} g_{n} z^{n}$. For a fixed $g \in \mathcal{A}$, let $S^{g}(\phi, t)$ be the class of functions $f \in \mathcal{A}$ for which $(f * g) \in S^{*}(\phi, t)$.
Definition 3.1. Let $f(z)$ be analytic in a simply connected region of the z-plane containing origin. The fractional derivative of f of order λ is defined by

$$
\begin{equation*}
{ }_{0} D_{z}^{\lambda} f(z):=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z}(z-\zeta)^{-\lambda} f(\zeta) d \zeta \quad(0 \leq \lambda<1), \tag{3.1}
\end{equation*}
$$

where the multiplicity of $(z-\zeta)^{-\lambda}$ is removed by requiring that $\log (z-\zeta)$ is real for $(z-\zeta)>0$

Using definition 3.1, Owa and Srivastava (see [5],[6]; see also [11], [12]) introduced a fractional derivative operator $\Omega^{\lambda}: \mathcal{A} \longrightarrow \mathcal{A}$ defined by

$$
\left(\Omega^{\lambda} f\right)(z)=\Gamma(2-\lambda) z^{\lambda}{ }_{0} D_{z}^{\lambda} f(z), \quad(\lambda \neq 2,3,4, \ldots)
$$

The class $S^{\lambda}(\phi, t)$ consists of the functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in S^{*}(\phi, t)$. The class $S^{\lambda}(\phi, t)$ is a special case of the class $S^{g}(\phi, t)$ when

$$
g(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n} \quad(z \in \Delta) .
$$

Now applying Theorem 2.1 for the function $(f * g)(z)=z+g_{2} a_{2} z^{2}+g_{3} a_{3} z^{3}+\ldots$, we get following theorem after an obvious change of the parameter μ :
Theorem 3.2 Let $g(z)=z+\sum_{n=2}^{\infty} g_{n} z^{n}\left(g_{n}>0\right)$. If $f(z)$ is given by (1.1) belongs to $S^{g}(\phi, t)$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{1}{g_{3}(2+t)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\mu \frac{g_{3}}{g_{2}^{2}} B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \mu \leq \eta_{1}, \\
\frac{B_{1}}{g_{3}(2+t)(1-t)}\left[i_{1}\right. \\
-\frac{1}{g_{3}(2+t)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\mu \frac{g_{3}}{g_{2}^{2}} B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \mu \geq \eta_{2}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \eta_{1}:=\frac{g_{2}^{2}}{g_{3} B_{1}}\left(\frac{1-t}{2+t}\right)\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right] \\
& \eta_{2}:=\frac{g_{2}^{2}}{g_{3} B_{1}}\left(\frac{1-t}{2+t}\right)\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right]
\end{aligned}
$$

The result is sharp.
Since

$$
\Omega^{\lambda} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n}
$$

We have

$$
\begin{equation*}
g_{2}:=\frac{\Gamma(3) \Gamma(2-\lambda)}{\Gamma(3-\lambda)}=\frac{2}{2-\lambda} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{3}:=\frac{\Gamma(4) \Gamma(2-\lambda)}{\Gamma(4-\lambda)}=\frac{6}{(2-\lambda)(3-\lambda)} \tag{3.3}
\end{equation*}
$$

For g_{2}, g_{3} given by (3.2) and (3.3) respectively, Theorem 3.2 reduces to the following Theorem 3.3. Let $\lambda<2$. If $f(z)$ given by (1.1) belongs to $S^{\lambda}(\phi, t)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{(2-\lambda)(3-\lambda)}{6(2+t)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{2} \mu\left(\frac{3-\lambda}{2-\lambda}\right) B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \mu \leq \eta_{1}^{*} \\
\frac{(2-\lambda)(3-\lambda)}{6(2+t)(1-t)} B_{1} \\
-\frac{(2-\lambda)(3-\lambda)}{6(2+t)(1-t)}\left[B_{2}+B_{1}^{2}\left(\frac{1+t}{1-t}\right)-\frac{3}{2} \mu\left(\frac{3-\lambda}{2-\lambda}\right) B_{1}^{2}\left(\frac{2+t}{1-t}\right)\right] \quad \text { if } \mu \geq \eta_{1}^{*} \leq \mu \leq \eta_{2}^{*}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \eta_{1}:=\frac{(3-\lambda)}{(2-\lambda) B_{1}}\left(\frac{1-t}{2+t}\right)\left[-1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right] \\
& \eta_{2}:=\frac{(3-\lambda)}{(2-\lambda) B_{1}}\left(\frac{1-t}{2+t}\right)\left[1+\frac{B_{2}}{B_{1}}+B_{1}\left(\frac{1+t}{1-t}\right)\right] .
\end{aligned}
$$

The result is sharp.
Remark. For $t=-1$ in aforementioned Theorems 2.1, 2.2, 3.2, 3.3 and example 2.3, we arrive at the results obtained recently by Shanmugham et al. [10].

References

[1] N. E. Cho, O. S. Kwon and S. Owa, Certain subclasses of Sakaguchi functions, SEA Bull. Math., 17 (1993), 121-126.
[2] A. W. Goodman, Uniformaly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] W. Janowski, Some extremal problems for certain families of analytic functions, Bull. Acad. Plolon. Sci. Ser. Sci. Math. Astronomy, 21 (1973), 17-25.
[4] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in : Proceedings of Conference of Complex Analysis, Z. Li., F. Ren, L Yang, and S. Zhang (Eds.), Intenational Press (1994), 157-169.
[5] S. Owa, On distortion theorems I, Kyunpook Math. J., 18 (1) (1978), 53-59.
[6] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypegeometric functions, Canad. J. Math., 39 (5) (1987), 1057-1077.
[7] S. Owa, T. Sekine, and R. Yamakawa, Notes on Sakaguchi type functions, RIMS Kokyuroku, 1414 (2005), 76-82.
[8] S. Owa, T. Sekine, and R. Yamakawa, On Sakaguchi type functions, Appl. Math. Comput., 187 (2007), 356-361.
[9] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75.
[10] T. N. Shanmugham, C. Ramachandran, and V. Ravichandran, Fekete - Szegö problem for a subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc. 43 (3) (2006), 589-598.
[11] H. M. Srivastava and S. Owa, An application of fractional derivative, Math. Japon., 29 (3) (1984), 383-389.
[12] H. M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus and Their Applications, Halsted Press/ John Wiley and Sons, Chichester / New York, 1989.
S. P. Goyal

Department of Mathematics
University of Rajasthan
Jaipur (INDIA) - 302055
email:somprg@gmail.com

Pranay Goswami
Department of Mathematics
Amity University Rajasthan
Jaipur (INDIA) - 302002
email:pranaygoswami83@gmail.com

