FINDING A MINIMUM DOMINATING SET BY TRANSFORMING DOMINATION OF VERTICES

Mahmoud Saoud, Jebran Jebran

Abstract. The dominating set decision problem is NP-hard, there is no formula for the domination number of a graph. In this paper, we will introduce the concept of transforming the domination from a vertex in a dominating set D of a graph G to a vertex in $V-D$, where G is a simple connected graph. And we'll give an algorithm using this transformation to obtain a minimum dominating set of a graph G, in particular, we'll illustrate the algorithm for the Cartesian product of two paths.

Keywords: Dominating set, domination number, transformation of domination of a vertex, redundant vertex of a dominating set, Cartesian product of two paths.

2000 Mathematics Subject Classification: 05C69 .

1. Introduction

A graph $G=(V, E)$ is a mathematical structure which consists of two sets V and E, where V is finite nonempty, and every element of E is an unordered pair $\{u, v\}$ of distinct elements of V, we simply write $u v$ instead of $\{u, v\}$. The elements of V are called vertices, while the elements of E are called edges. The order of G is the cardinality $|V|$ of its vertex-set, the size of G is the cardinality $|E|$ of its edge-set. Two vertices u and v of a graph G are said to be adjacent if $u v \in E$. For a vertex v of G, the neighborhood of v is the set of all vertices of G which are adjacent to v, the neighborhood of v is denoted by $N(v)$. The closed neighborhood of v is $\bar{N}(v)=N(v) \cup\{v\}$. If D is a set of vertices of G, then the neighborhood of D is $N(D)=\bigcup_{v \in D} N(v)$, and $\bar{N}(D)=\underset{v \in D}{\cup} \bar{N}(v)$, The degree of a vertex v is $d(v)=|N(v)|$. Let $G=(V, E)$ be a graph, a set $D \subseteq V$ is called a dominating set of G if every vertex in $V-D$ is adjacent to at least one vertex of D, i.e. if $\bar{N}(D)=V$. A dominating set D of G is said to be a minimum dominating set of G if $|D| \leq\left|D_{1}\right|$ for any dominating set D_{1} of G. A minimal dominating set in a graph G is a dominating set that contains no dominating set as a proper subset. The cardinality of a minimum dominating set of G is known as the domination number of G, and is denoted by $\delta(G)$.

2.TRANSFORMATION OF DOMINATION OF VERTICES

Definition 1. Let D be a dominating set of a graph $G=(V, E)$. We define the function C_{D}, which we call the weight function, as follows: $C_{D}: V \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers, $C_{D}(v)=|\widetilde{N}(v)|$, where $\tilde{N}(v)=\{w \in D: v w \in E$ or $w=v\}$, i.e. the weight of v is the number of vertices in D which dominates v.

Definition 2. Let D be a dominating set of a graph $G=(V, E)$, and let $v \in D$. Then we say that v has a moving domination if there exists a vertex $w \in N(v)-D$ such that $w u \in E$ for every vertex $u \in\left\{x \in N(v): C_{D}(x)=1\right\}$. Note that a vertex $v \in D$ does not have a moving domination if for any $w \in N(v)-D$, there exists at least one vertex in $N(v)$ whose weight is 1 , but is not adjacent to w. If the vertex v has a moving domination and hence there exists a vertex $w \in N(v)-D$ with $w u \in E$ for any vertex $u \in\left\{x \in N(v): C_{D}(x)=1\right\}$, note that the domination can be transformed from v to the vertex w in the sence that $(D-\{v\}) \cup\{w\}$ is also a dominating set of G.

Definition 3. Let D be a dominating set of a graph G. Then for any vertex $v \in D$, we define the region of movement of v to be the set $N_{1}(v)=\{w \in N(v)-D: w t \in E$ for every $t \in N(v)$ with $\left.C_{D}(t)=1\right\}$, i.e. a vertex w is in the region of movement of v if and only if the domination of v can be transformed to w.
Definition 4. Let D be a dominating set of a graph G. We say that a vertex $v \in D$ is a redundant vertex of D if $C_{D}(w) \geq 2$ for every vertex $w \in \bar{N}(v)$.

Definition 5. Let D be a dominating set of a graph G, and let v be a vertex in D which has a moving domination. We say that v is inefficient if transforming the domination from v to any vertex in the region of movement of v would not produce any redundant vertex.

3. An algorithm for finding a minimum dominating set of a graph G USING TRANSFORMATION OF DOMINATION OF VERTICES

1. Let $G=(V, E)$ be a graph of order greater than $1,|V|=l$.
2. Let $D=V$ be a dominating set of G. Then for any vertex $v \in D$ we have $C_{D}(v)=d(v)+1 \geq 2$.
3. Pick a vertex v_{1} of D, and delete from D all vertices $w, w \in N\left(v_{1}\right)$. Then, for $n<l$, pick a vertex $v_{n} \in D-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$ and delete from D all vertices w, $w \in N\left(v_{n}\right)-{\underset{i=1}{n-1} \bar{N}\left(v_{i}\right) .}^{n}$
4. If D contains a redundant vertex, then delete it. Repeat this process until D has no redundant vertex.
5. Transform domination from vertices of D which have moving domination to vertices in $V-D$ to obtain redundant vertices and go to step 4. If no redundant vertex can be obtained by transformation of domination of vertices of D, then we stop, and the obtained dominating set D satisfies:

For every $v \in D, \exists w \in \bar{N}(v)$ such that $C_{D}(w)=1$, this implies that D is a minimal dominating set.
Note. A dominating set D obtained by applying the previous algorithm satisfies :
(a) There is no vertex in D which has a moving domination,or
(b) D has vertices with moving domination but they are inefficient. We conjecture that a dominating set obtained by the previous algorithm is not only a minimal dominating set but also a minimum one.
Theorem. Let D be a dominating set of a graph $G=(V, E)$, which is obtained by the previous algorithm. Then D is a minimum dominating set of G if and only if there exists status of vertices of D satisfies: $\forall v \in D, \exists w \in V-D$ such that $N(w) \cap D=\{v\}$.
Proof. Suppose that D is a minimum dominating set of G. Then for any $v \in D$, the set $D-\{v\}$ is not a dominating set of G. Thus there exists $w \in V-D$ which is dominated only by v, i.e. $N(w) \cap D=\{v\}$.

Conversely, suppose that for any $v \in D$, there exists $w \in V-D$ such that $N(w) \cap D=\{v\}$. Then for any $v \in D$, the set $D-\{v\}$ is not a dominating set of G. Hence D is a minimum dominating set of G.

Example 1.

1. Let $G=(V, E)$ be the graph depicted in Figure $1,|V|=18$

Fig. 1
2. Let $D=V$.
3. pick a vertex $v_{1} \in D$, and Delete from D all vertices $w, w \in N\left(v_{1}\right)$, then, for $2<n<18$, pick a vertex $v_{n} \in D-\stackrel{n-1}{\cup}_{i=1}^{\cup}\left(v_{i}\right)$ and delete from D all vertices w,
$w \in N\left(v_{n}\right)-{ }_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$. We obtain the dominating set $D=\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}$, see Figure 1.
4. Transform the domination from the vertices: from v_{2} to the vertex a, and from v_{5} to the vertex b, and delete redundant vertex v_{6}. We obtain the dominating set $D=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ which has no redundant vertices, see Figure 2.

Fig. 2
5. The vertices v_{1} and v_{3} are the only vertices of D with moving domination, but they are inefficient. Therefore we stop, and we obtain the dominating set $D=\left\{v_{1}, v_{2}, \ldots, v_{5}\right\} . D$ is indeed a minimum dominating set and hence $\delta(G)=5$.

4.Applying the algorithm on the Cartesian product of two paths

For two vertices v_{0} and v_{n} of a graph $G=(V, E)$, a $v_{0}-v_{n}$ walk is an alternating sequence of vertices and edges $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{n}, v_{n}$ such that consecutive vertices and edges are incident. A path is a walk in which no vertex is repeated. A path with n vertices is denoted by P_{n}, it has $n-1$ edges. The length of P_{n} is $n-1$.

The Cartesian product $P_{n} \times P_{m}$ of two paths is the graph with vertex set $V=\{(i, j): 1 \leq i \leq n, 1 \leq j \leq m\}$ where $\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)$ is an edge of $P_{n} \times P_{m}$ if $\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|=1$.

4.1.Characterization of the vertex which has moving domination in the Cartesian product of two paths

Let $v \in D$, where D is a dominating set of the Cartesian product $P_{n} \times P_{m}$ of two paths, which has no redundant vertex.

Then a vertex $v \in D$ has a moving domination if and only if one of the following two cases occurs :

Case (1): For every vertex $w \in N(v)$, we have $C_{D}(w) \geq 2$.
In this case, since v is not a redundant vertex of D, we must have $N(v)-D \neq \phi$ and hence the domination of v can be transformed to any vertex in $N(v)-D$.
Case (2): There exists exactly one vertex $u \in N(v)$ such that $C_{D}(u)=1$. In this case, the domination of v can be transformed only to u.

This characterization of vertices of $P_{n} \times P_{m}$ which have moving domination will simplify applying step 5 of the algorithm .

Example 2.

Let (n, m) be the vertex in the $n-t h$ row and in the m-th column of the graph $G=P_{7} \times P_{10}$.

1. Let $G=P_{7} \times P_{10}$
2. Let $D=V,|V|=70$.
3. pick a vertex $v_{1}=(1,1)$ of D, and delete from D all vertices $w, w \in N\left(v_{1}\right)$, then, for $2 \leq n<70$, pick a vertex $v_{n} \in D-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$, and delete from D all vertices $w, w \in N\left(v_{n}\right)-\stackrel{n}{i=1}_{\cup_{1}}^{N}\left(v_{i}\right)$. We obtain the dominating set $D=\left\{v_{1}, v_{2}, \ldots, v_{22}\right\}$, see Figure 3.

Fig. 3
4. Since every vertex in D has weight $1, D$ has no redundant vertices.
5. Transform the domination from the vertex v_{5} to the vertex $(3,2)$, and delete from D the resulting redundant vertices v_{2} and v_{6}. then, transform the domination from v_{7} to the vertex (7,2), and delete from D the resulting redundant vertex v_{4}. Then, transform the domination from the vertices: from v_{12} to the vertex $(2,6)$, and from v_{15} to the vertex $(1,8)$, and from v_{20} to the vertex $(2,10)$, and from v_{21} to the vertex $(4,9)$, and delete from D the resulting redundant vertex v_{19}. This produces the new dominating set D illustrated in Figure 4.

Fig. 4

Note that the vertex v_{17} is the only vertex of D with moving domination, but it is inefficient. Therefore the set D indicated in Figure 4 (black circles) is a dominating set of $G=P_{7} \times P_{10}$. Note that D is a minimum dominating set and hence $\delta\left(P_{7} \times P_{10}\right)=18$.
Note: The domination number of the graph $P_{n} \times P_{m}$ when $\min \{n, m\} \leq 3$ can be computed by the simple formulas :
$\delta\left(P_{1} \times P_{n}\right)=\left[\frac{n}{3}\right\rceil$, for $n \geq 1$,
$\delta\left(P_{2} \times P_{n}\right)=\left[\frac{n+1}{2}\right\rceil$, for $n \geq 2$,
$\delta\left(P_{3} \times P_{n}\right)=\left\lfloor\frac{3 n}{4}\right\rfloor+1$, for $n \geq 3$,
where $\lceil x\rceil$ is the smallest integer greater than or equal to x, and $\lfloor x\rfloor$ is the largest integer less than or equal to x.

For the graph $P_{n} \times P_{m}$ where both $n, m \geq 4$, we apply the previous algorithm .
We have the impression that this algorithm can be applied for any graph of order greater than 1 to obtain a minimum domination set .

5.Conclusion

We believe that the concept of transformation of domination of vertices, which we introduce, plays an important role in finding a minimum dominating set from a given one .

References

[1] A. Bondy, J. Fonlupt, J.-Luc Fouguet, J. Claude Fournier, J.L.ramirez Al Fonsin, Graph theory in Paris,Birkhauser Verlag,Swizerland.(2007).
[2] J.A. Bondy, U.S.R. Murty, Graph theory, Springer.(2008)
[3] P. Dorbec, Empilement et recouvrement, institute Fourier, BP74, 100rue des maths, 38402 Saint Martin d'Heres.(2007)
[4] W. Imrich, N. Seifter, A survey on graphs with polynominal growth, Discret Mathematics, North-Holland. 95 (1991) 101-117
[5] Xu Baogen, E. J. Cokayne, T. W. Haynes, S. T. Hedetniemi, Z.Shangshao, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10.
[6] M. El-Zahar, C. M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.
[7] P. Flach, L. Volkmann, Estimations for the domination number of a graph, Discrete Math. 80 (1990) 145-151.
[8] W. Goddard, M. A. Henning, Domination in planar graphs with small diameter, J. Graph Theory. 40 (2002) 1-25.
[9] F. Haray, T. W. Haynes, Conditional graph theory IV : Dominating sets, Utilitas Math. 40 (1995) 179-192.
[10] T. W. Haynes, Domination in graphs : A brief overview, J. Combin. Math. Combin. Comput. 24 (1997) 225-237.
[11] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York. (1998)
[12] E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory. 14 (1990) 205-215.

Mahmoud Saoud
Department of Mathematics
Ecole Normale Supérieure
BP 92 Kouba; 16050 Alger, Algéria
email:saoud_m@yahoo.fr
Jebran Jebran
Department of Mathematics
University of Damascus, Faculty of Science
Damascus-Syria

