ON SOME ISOMETRIC SPACES OF C_{0}^{F}, C^{F} AND ℓ_{∞}^{F}

Hemen Dutta

Abstract

In this article we introduce and investigate the notion of $\Delta_{(r)}$-null, $\Delta_{(r)}$-convergent and $\Delta_{(r)}$-bounded sequences of fuzzy numbers which generalize the notion of null, convergent and bounded sequence of fuzzy numbers.

2000 Mathematics Subject Classification: 40A05, 40D25.

1. Introduction

The concept of fuzzy sets and fuzzy set operations was first introduced by Zadeh [5] and subsequently several authors have studied various aspects of the theory and applications of fuzzy sets. Bounded and convergent sequences of fuzzy numbers were introduced by Matloka [2] where it was shown that every convergent sequence is bounded. Nanda [3] studied the spaces of bounded and convergent sequence of fuzzy numbers and showed that they are complete metric spaces. Savaş [4] studied the space $m(\Delta)$, which we call the space of Δ-bounded sequence of fuzzy numbers and showed that this is a complete metric space.

Let w denote the space of all real or complex sequences. By c, c_{0} and ℓ_{∞}, we denote the Banach spaces of convergent, null and bounded sequences $x=\left(x_{k}\right)$, respectively normed by

$$
\|x\|=\sup _{k}\left|x_{k}\right|
$$

The notion of difference sequence space was introduced by Kizmaz [1], who studied the difference sequence spaces $\ell_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$.

Tripathy and Esi [6] generalized the above notion as follows:

Let r be a non-negative integer, then for $Z=c_{0}, c$ and ℓ_{∞}, we have

$$
Z\left(\Delta_{r}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{r} x_{k}\right) \in Z\right\}
$$

where $\Delta_{r} x=\left(\Delta_{r} x_{k}\right)=\left(x_{k}-x_{k+r}\right)$ and $\Delta_{0} x_{k}=x_{k}$ for all $k \in N$.
Let D denote the set of all closed bounded intervals $A=\left[A_{1}, A_{2}\right]$ on the real line R. For $A, B \in D$ define

$$
\begin{gathered}
A \leq B \text { iff } A_{1} \leq B_{1} \text { and } A_{2} \leq B_{2} \\
h(A, B)=\max \left(\left|A_{1}-B_{1},\left|A_{2}-B_{2}\right|\right)\right.
\end{gathered}
$$

Then (D, h) is a complete metric space. Also \leq is a partial order relation in D.
A fuzzy number is a fuzzy subset of the real line R which is bounded, convex and normal. Let $L(R)$ denote the set of all fuzzy numbers which are upper semi continuous and have compact support. In other words, if $X \in L(R)$ then for any $\alpha \in[0,1], X^{\alpha}$ is compact where

$$
X^{\alpha}=\left\{\begin{array}{c}
t: X(t) \geq \alpha, \text { if } \alpha \in(0,1] \\
t: X(t)>0, \text { if } \alpha=0
\end{array}\right.
$$

Define a map $d_{1}: L(R) \times L(R) \longrightarrow R$ by

$$
d_{1}(X, Y)=\sup _{0 \leq \alpha \leq 1} h\left(X^{\alpha}, Y^{\alpha}\right)
$$

It is straightforward to see that d_{1} is a metric on $L(R)$. Infact $\left(L(R), d_{1}\right)$ is a complete metric space.

For $X, Y \in L(R)$ define

$$
X \leq Y \text { iff } X^{\alpha} \leq Y^{\alpha} \text { for any } \alpha \in[0,1]
$$

A subset E of $L(R)$ is said to be bounded above if there exists a fuzzy number M, called an upper bound of E, such that $X \leq M$ for every $X \in E . M$ is called the least upper bound or supremum of E if M is an upper bound and M is the smallest of all upper bounds. A lower bound and the greatest lower bound or infimum are defined similarly. E is said to be bounded if it is both bounded above and bounded below.

We now state the following definitions (see $[2,3]$):
A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is a function X from the set N of all positive integers into $L(R)$. The fuzzy number X_{k} denotes the value of the function at $k \in N$ and is called the k-th term or general term of the sequence.

A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be convergent to the fuzzy number X_{0}, written as $\lim _{k} X_{k}=X_{0}$, if for every $\varepsilon>0$, there exists $n_{0} \in N$ such that

$$
d_{1}\left(X_{k}, X_{0}\right)<\varepsilon \text { for } k>n_{0}
$$

The set of convergent sequences is denoted by $c^{F} . X=\left(X_{K}\right)$ of fuzzy numbers is said to be a Cauchy sequence if for every $\varepsilon>0$, there exists $n_{0} \in N$ such that

$$
d_{1}\left(X_{k}, X_{l}\right)<\varepsilon \text { for } k, l>n_{0}
$$

A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be bounded if the set $\left\{X_{k}\right.$: $k \in N\}$ of fuzzy numbers is bounded and the set of bounded sequences is denoted by ℓ_{∞}^{F}.

Let r be a non-negative integer. Then we define the following new definitions:
A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be $\Delta_{(r)}$-convergent to the fuzzy number X_{0}, written as $\lim _{k} \Delta_{(r)} X_{k}=X_{0}$, if for every $\varepsilon>0$, there exists $n_{0} \in N$ such that

$$
d_{1}\left(\Delta_{(r)} X_{k}, X_{0}\right)<\varepsilon \text { for } k>n_{0}
$$

where $\left(\Delta_{(r)} X_{k}\right)=\left(X_{k}-X_{k-r}\right)$ and $\Delta_{(0)} X_{k}=X_{k}$ for all $k \in N$.
In this expansion it is important to note that we take $X_{k-r}=\overline{0}$, for non-positive values of $k-r$.

Let $c^{F}\left(\Delta_{(r)}\right)$ denote the set of all $\Delta_{(r)}$-convergent sequences of fuzzy numbers.
In particular if $X_{0}=\overline{0}$, in the above definition, we say $X=\left(X_{k}\right)$ to be $\Delta_{(r)}$-null sequence of fuzzy numbers and we denote the set of all $\Delta_{(r)}$-null sequences of fuzzy numbers by $c_{0}^{F}\left(\Delta_{(r)}\right)$.

A sequence $X=\left(X_{k}\right)$ of fuzzy numbers is said to be $\Delta_{(r)}$-bounded if the set $\left\{\Delta_{(r)} X_{k}: k \in N\right\}$ of fuzzy numbers is bounded.

Let $\ell_{\infty}^{F}\left(\Delta_{(r)}\right)$ denote the set of all $\Delta_{(r)}$-bounded sequences of fuzzy numbers.
Similarly we can define the sets $c_{0}^{F}\left(\Delta_{r}\right), c^{F}\left(\Delta_{r}\right)$ and $\ell_{\infty}^{F}\left(\Delta_{r}\right)$ of Δ_{r}-null, $\Delta_{r^{-}}$ convergent and Δ_{r}-bounded sequences of fuzzy numbers, where $\left(\Delta_{r} X_{k}\right)=\left(X_{k}-\right.$ X_{k+r}) and $\Delta_{0} X_{k}=X_{k}$ for all $k \in N$.

It is obvious that for any sequence $X=\left(X_{k}\right), X \in Z\left(\Delta_{r}\right)$ if and only if $X \in$ $Z\left(\Delta_{(r)}\right)$, for $Z=c_{0}^{F}, c^{F}$ and ℓ_{∞}^{F}. One may find it interesting to see the differences between the difference operator Δ_{r} and the new difference operator $\Delta_{(r)}$ through the Theorem 1 and Theorem 2 of next section.

Taking $r=0$, in the above definitions of spaces we get the spaces c_{0}^{F}, c^{F} and ℓ_{∞}^{F}.

2.Main Results

In this section we investigate the main results of this article.
Theorem 1. $c_{0}^{F}\left(\Delta_{(r)}\right), c^{F}\left(\Delta_{(r)}\right)$ and $\ell_{\infty}^{F}\left(\Delta_{(r)}\right)$ are complete metric spaces with the metric d defined by

$$
\begin{equation*}
d(X, Y)=\sup _{k} d_{1}\left(\Delta_{(r)} X_{k}, \Delta_{(r)} Y_{k}\right) \tag{1}
\end{equation*}
$$

Proof. We give the proof only for the space $c^{F}\left(\Delta_{(r)}\right)$ and for the other spaces it will follow on applying similar arguments. It is easy to see that d is a metric on $c^{F}\left(\Delta_{(r)}\right)$. To prove completeness, let $\left(X^{i}\right)$ be a Cauchy sequence in $c^{F}\left(\Delta_{(r)}\right)$, where $X^{i}=\left(X_{k}^{i}\right)=\left(X_{1}^{i}, X_{2}^{i}, \ldots\right)$ for each $i \in N$. Then for a given $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
d\left(X^{i}, X^{j}\right)<\varepsilon \text { for all } i, j \geq n_{0} .
$$

Then using (1), we have

$$
\sup _{k} d_{1}\left(\Delta_{(r)} X_{k}^{i}, \Delta_{(r)} X_{k}^{j}\right)<\varepsilon \text { for all } i, j \geq n_{0} .
$$

It follows that

$$
d_{1}\left(\Delta_{(r)} X_{k}^{i}, \Delta_{(r)} X_{k}^{j}\right)<\varepsilon \text { for all } i, j \geq n_{0} \text { and } k \in N .
$$

This implies that $\left(\Delta_{(r)} X_{k}^{i}\right)$ is a Cauchy sequence in $L(R)$ for all $k \geq 1$. But $L(R)$ is complete and so $\left(\Delta_{(r)} X_{k}^{i}\right)$ is convergent in $L(R)$ for all $k \geq 1$.
Let $\lim _{i \rightarrow \infty} \Delta_{(r)} X_{k}^{i}=Z_{k}$, say for each $k \geq 1$. Considering $k=1,2, \ldots, r, \ldots$, we can easily conclude that $\lim _{i \rightarrow \infty} X_{k}^{i}=X_{k}$, exists for each $k \geq 1$.
Now one can find that

$$
\lim _{j \rightarrow \infty} d_{1}\left(\Delta_{(r)} X_{k}^{i}, \Delta_{(r)} X_{k}^{j}\right)<\varepsilon \text { for all } i \geq n_{0} \text { and } k \in N .
$$

Hence

$$
d_{1}\left(\Delta_{(r)} X_{k}^{i}, \Delta_{(r)} X_{k}\right)<\varepsilon \text { for all } i \geq n_{0} \text { and } k \in N .
$$

This implies that

$$
\begin{aligned}
& \qquad d\left(X^{i}, X\right)<\varepsilon \text { for all } i \geq n_{0} . \\
& \text { i.e., } X^{i} \rightarrow X \text { as } i \rightarrow \infty \text {, where } X=\left(X_{k}\right) .
\end{aligned}
$$

Now we can easily show that $X=\left(X_{k}\right) \in c^{F}\left(\Delta_{(r)}\right)$.
This completes the proof.

Theorem 2. $c_{0}^{F}\left(\Delta_{r}\right), c^{F}\left(\Delta_{r}\right)$ and $\ell_{\infty}^{F}\left(\Delta_{r}\right)$ are complete metric spaces with the metric d^{\prime} defined by

$$
d^{\prime}(X, Y)=\sum_{k=1}^{r} d_{1}\left(X_{k}, Y_{k}\right)+\sup _{k} d_{1}\left(\Delta_{r} X_{k}, \Delta_{r} Y_{k}\right)
$$

Proof. Proof is similar to that of above Theorem.

Remark. It is obvious that the matrices d and d^{\prime} are equivalent.
Theorem 3. (i) The metric spaces $c_{0}^{F}\left(\Delta_{(r)}\right), c^{F}\left(\Delta_{(r)}\right)$ and $\ell_{\infty}^{F}\left(\Delta_{(r)}\right)$ are isometric with the metric spaces c_{0}^{F}, c^{F} and ℓ_{∞}^{F}.
(ii) The metric spaces $c_{0}^{F}\left(\Delta_{r}\right), c^{F}\left(\Delta_{r}\right)$ and $\ell_{\infty}^{F}\left(\Delta_{r}\right)$ are isometric with the metric spaces c_{0}^{F}, c^{F} and ℓ_{∞}^{F}.

Proof. (i) Let us define a mapping f from $Z\left(\Delta_{(r)}\right)$ into Z, for $Z=c_{0}^{F}, c^{F}$ and ℓ_{∞}^{F} as follows:

$$
f X=\left(\Delta_{(r)} X_{k}\right), \text { for every } X \in Z\left(\Delta_{(r)}\right)
$$

Then clearly f is one-one, on-to and

$$
d(X, Y)=\rho(f(X), f(Y))
$$

where ρ is the metric on Z, which can be obtained from (1) by taking $r=0$.
This completes the proof.
(ii) Proof is similar to that of part (i) in view of above remark and the fact that for any sequence $X=\left(X_{k}\right), X \in Z\left(\Delta_{r}\right)$ if and only if $X \in Z\left(\Delta_{(r)}\right)$, for $Z=c_{0}^{F}, c^{F}$ and ℓ_{∞}^{F}.

References

[1] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24, 2, (1981), 168-176.
[2] M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28, (1986), 28-37.
[3] S. Nanda, On sequence of fuzzy numbers, Fuzzy Sets and System, 33, (1989), 28-37.
[4] E. Savaş, A note on sequence of fuzzy numbers, Inform. Sciences, 124, (2000), 297-300.
[5] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8, (1965), 338-353.
[6] B.C. Tripathy and A. Esi, A new type of difference sequence spaces, Int. Jour. Sci. and Tech., 1, 1, (2006), 11-14.

Hemen Dutta
Department of Mathematics
A.D.P. College

Nagaon-782002, Assam, India
email:hemen_dutta08@rediffmail.com

