A RELATED FIXED POINT THEOREM IN N COMPLETE METRIC SPACES

Fayçal Merghadi, Abdelkrim Aliouche, Brian Fisher

Abstract. We prove a related fixed point theorem for n mappings in n complete metric spaces via implicit relations. Our result generalizes Theorem 1.1 of [1].

2000 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

Recently, A. Aliouche and B. Fisher [1] proved the following related fixed point theorem in two complete metric spaces.

Theorem 1.1 Let (X, d) and (Y, ρ) be complete metric spaces and let S, T be mappings of Y into X and of X into Y respectively, satisfying the inequalities

$$
\begin{aligned}
& f(\rho(T x, T S y), d(x, S y), \rho(y, T x), \rho(y, T S y)) \leq 0 \\
& g(d(S y, S T x), \rho(y, T x), d(x, S y), d(x, S T x)) \leq 0
\end{aligned}
$$

for all x in X and y in Y, where $f, g \in F$. Then $S T$ has a unique fixed point in X and $T S$ has a unique fixed point v in Y. Further, $T u=v$ and $S v=u$.

We denote by \mathbb{R}_{+}the set of non-negative reals and by Φ the set of all functions $\phi: \mathbb{R}_{+}^{4} \rightarrow \mathbb{R}$ such that
(i) ϕ is upper semi continuous in each coordinate variable,
(ii) if either $\phi(u, v, 0, u) \leq 0$ or $\phi(u, v, u, 0) \leq 0$ for all $u, v \in \mathbb{R}_{+}$, then there exists a real constant c, with $0 \leq c<1$, such that $u \leq c v$.

Example 1.2. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, t_{4}\right\}, 0 \leq c<1$.
Example 1.3. $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}^{2}-c_{1} \max \left\{t_{2}^{2}, t_{3}^{2}, t_{4}^{2}\right\}-c_{2} \max \left\{t_{1} t_{3}, t_{2} t_{4}\right\}-$ $c_{3} t_{3} t_{4}$, where $c_{1}, c_{2}, c_{3} \in \mathbb{R}_{+}$and $c_{1}+c_{2}<1$.

2. MAIN RESULTS

Theorem 2.1. Let $\left(X_{i}, d_{i}\right)$ be n complete metric spaces and let $\left\{A_{i}\right\}_{i=1}^{i=n}$ be n mappings such that $A_{i}: X_{i} \rightarrow X_{i+1}$ for $i=1, \ldots, n-1$ and $A_{n}: X_{n} \rightarrow X_{1}$, satisfying the inequalities

$$
\phi_{1}\left(\begin{array}{c}
d_{1}\left(A_{n} A_{n-1} \ldots A_{2} x_{2}, A_{n} A_{n-1} \ldots A_{1} x_{1}\right), \tag{2.1}\\
d_{2}\left(x_{2}, A_{1} A_{n} A_{n-1} \ldots A_{2} x_{2}\right), \\
d_{1}\left(x_{1}, A_{n} A_{n-1} \ldots A_{2} x_{2}\right), d_{1}\left(x_{1}, A_{n} A_{n-1} \ldots A_{1} x_{1}\right)
\end{array}\right) \leq 0
$$

for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, in general

$$
\phi_{i}\left(\begin{array}{c}
d_{i}\left(A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i+1} x_{i+1}, A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i} x_{i}\right), \tag{2.i}\\
d_{i+1}\left(x_{i+1}, A_{i} A_{i-1} . . A_{1} A_{n} A_{n-1} \ldots A_{i+1} x_{i+1}\right), \\
d_{i}\left(x_{i}, A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i+1} x_{i+1}\right), \\
d_{i}\left(x_{i}, A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i} x_{i}\right)
\end{array}\right) \leq 0
$$

for all $x_{i} \in X_{i}, x_{i+1} \in X_{i+1}$ and $i=2, \ldots, n-1$, and

$$
\phi_{n}\left(\begin{array}{c}
d_{n}\left(A_{n-1} A_{n-2} \ldots A_{1} x_{1}, A_{n-1} A_{n-2} \ldots A_{1} A_{n} x_{n}\right), \tag{2.n}\\
d_{1}\left(x_{1}, A_{n} A_{n-1} A_{n-2} \ldots A_{1} x_{1}\right), \\
d_{n}\left(x_{n}, A_{n-1} A_{n-2} \ldots A_{1} x_{1}\right), \\
d_{n}\left(x_{n}, A_{n-1} A_{n-2} \ldots A_{1} A_{n} x_{n}\right)
\end{array}\right) \leq 0
$$

for all $x_{1} \in X_{1}, x_{n} \in X_{n}$, where $\phi_{i} \in \Phi$, for $i=1, \ldots, n$. Then

$$
A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i}
$$

has a unique fixed point $p_{i} \in X_{i}$ for $i=1, \ldots, n$. Further, $A_{i} p_{i}=p_{i+1}$ for $i=$ $1, \ldots, n-1$ and $A_{n} p_{n}=p_{1}$.

Proof. Let $\left\{x_{r}^{(1)}\right\}_{r \in N},\left\{x_{r}^{(2)}\right\}_{r \in N}, \ldots,\left\{x_{r}^{(i)}\right\}_{r \in N}, \ldots,\left\{x_{r}^{(r)}\right\}_{r \in N}$ be sequences in $X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{n}$, respectively.

Now let $x_{0}^{(1)}$ be an arbitrary point in X_{1}. We define the sequences $\left\{x_{r}^{(i)}\right\}_{r \in N}$ for $i=1, \ldots, n$ by

$$
\begin{gathered}
x_{r}^{(1)}=\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}, \\
x_{r}^{(i)}=A_{i-1} A_{i-2} \ldots A_{1}\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}
\end{gathered}
$$

for $i=2, \ldots, n$.

For $n=1,2, \ldots$, we assume that $x_{n}^{(1)} \neq x_{n+1}^{(1)}$. Applying the inequality (2.1) for $x_{2}=A_{1}\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r-1} x_{0}^{(1)}, x_{1}=\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}$ we get

$$
\left.\phi_{1}\left(\begin{array}{c}
d_{1}\left(\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)},\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right), \\
d_{2}\left(A_{1}\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r-1} x_{0}^{(1)}, A_{1}\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right), \\
d_{1}\left(\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)},\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right), \\
d_{1}\left(\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r} x_{0}^{(1)},\left(A_{n} A_{n-1} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right)
\end{array}\right), \begin{array}{cc}
d_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}\right), & d_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}\right), \\
0, & d_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}\right)
\end{array}\right) \leq 0 .
$$

From the implicit relation we have

$$
\begin{equation*}
d_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}\right) \leq c d_{2}\left(x_{r-1}^{(2)}, x_{r}^{(2)}\right) \tag{3.1}
\end{equation*}
$$

for $r=1,2, \ldots$.
Applying the inequality (2.i) for $x_{i+1}=A_{i} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r-1} x_{0}^{(1)}$ and $x_{i}=$ $A_{i-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}$, we obtain

$$
\begin{aligned}
& \phi_{i}\left(\begin{array}{c}
d_{i}\left(A_{i-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{i-1}\left(A_{n} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right), \\
d_{i+1}\left(A_{i} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r-1} x_{0}^{(1)}, A_{i} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right), \\
d_{i}\left(A_{i-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{i-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right), \\
d_{i}\left(A_{i-1 \ldots} \ldots A_{1}\left(A_{i-1} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{\left.i-1 \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right)}\right.
\end{array}\right) \\
& =\phi_{i}\left(\begin{array}{cc}
d_{i}\left(x_{r}^{(i)}, x_{r+1}^{(i)}\right), & d_{i+1}\left(x_{r-1}^{(i+1)}, x_{r}^{(i+1)}\right), \\
0, & d_{i+1}\left(x_{r}^{(i+1)}, x_{r+1}^{(i+1)}\right)
\end{array}\right) \leq 0
\end{aligned}
$$

and so

$$
\begin{equation*}
d_{i}\left(x_{r}^{(i)}, x_{r+1}^{(i)}\right) \leq c d_{i+1}\left(x_{r-1}^{(i+1)}, x_{r}^{(i+1)}\right) \tag{3.i}
\end{equation*}
$$

for $i=2, \ldots, n-1$ and $r=1,2, \ldots$.
Now applying the inequality (2.n) for $x_{n}=A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}$ and $x_{1}=$
$\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}$, we have

$$
\phi_{n}\left(\begin{array}{c}
d_{n}\left(A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right), \\
d_{1}\left(\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)},\left(A_{n} \ldots A_{1}\right)^{r+1} x_{0}^{(1)}\right), \\
d_{n}\left(A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right), \\
d_{n}\left(A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}, A_{n-1} \ldots A_{1}\left(A_{n} \ldots A_{1}\right)^{r} x_{0}^{(1)}\right)
\end{array}\right), \begin{array}{cc}
=\phi_{n}\left(\begin{array}{cc}
d_{n}\left(x_{n}^{(n)}, x_{n+1}^{(n)}\right), & d_{1}\left(x_{n-1}^{(1)}, x_{n}^{(1)}\right), \\
0, & d_{n}\left(x_{n}^{(n)}, x_{n+1}^{(n)}\right)
\end{array}\right) \leq 0
\end{array}
$$

and so

$$
\begin{equation*}
d_{n}\left(x_{r}^{(n)}, x_{r+1}^{(n)}\right) \leq c d_{1}\left(x_{r-1}^{(1)}, x_{r}^{(1)}\right) \tag{3.n}
\end{equation*}
$$

for $r=1,2, \ldots$.
It now follows from (3.1), (3.i) and (3.n) that for large enough n

$$
\begin{aligned}
d_{i}\left(x_{r}^{(i)}, x_{r+1}^{(i)}\right) & \leq c d_{i+1}\left(x_{r-1}^{(i+1)}, x_{r}^{(i+1)}\right) \\
& \leq \cdots \\
& \leq c^{n-i} d_{n}\left(x_{r+i-n}^{(n)}, x_{r+i-n+1}^{(n)}\right) \\
& \leq c^{n-i+1} d_{1}\left(x_{r+i-n-1}^{(1)}, x_{r+i-n}^{(1)}\right) \\
& \leq \cdots \\
& \leq c^{2 n-i+1} d_{1}\left(x_{r+i-2 n-1}^{(1)}, x_{r+i-2 n}^{(1)}\right) \\
& \leq \cdots \\
& \leq c^{m n-i+1} d_{1}\left(x_{r+i-m n-1}^{(1)}, x_{r+i-m n}^{(1)}\right) \\
& \leq c^{m n} \max \left\{d_{1}\left(x_{1}^{(1)}, x_{2}^{(1)}\right), \ldots, d_{n}\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right\}
\end{aligned}
$$

Since $c<1$, it follows that $\left\{x_{r}^{(i)}\right\}$ is Cauchy sequences in X_{i} with a limit p_{i} in X_{i} for $i=1,2, \ldots, n$.

To prove that p_{i} is a fixed point of $A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}$ for $i=2, \ldots, n-1$, suppose that $A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i} \neq p_{i}$. Using the inequality (2.i) for $x_{i}=p_{i}$ and $x_{i+1}=x_{r}^{(i+1)}$, we obtain

$$
\phi_{i}\left(\begin{array}{c}
d_{i}\left(x_{r+1}^{(i)}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}\right) \\
d_{i+1}\left(x_{r}^{(i+1)}, x_{r+1}^{(i+1)}\right), d_{i}\left(p_{i}, x_{r}^{(i)}\right) \\
d_{i}\left(p_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}\right)
\end{array}\right) \leq 0
$$

Letting $r \rightarrow \infty$, we have

$$
\phi_{i}\binom{d_{i}\left(p_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}\right), 0,0,}{d_{i}\left(p_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}\right)} \leq 0 .
$$

It follows from (ii) that $p_{i}=A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}$ for $i=2, \ldots, n-1$.
For the case $i=1$, we use (2.1) with $x_{1}=p_{1}$ and $x_{2}=A_{1}\left(A_{n} \ldots A_{1}\right)^{r-1} x_{0}^{(1)}$, giving

$$
\phi_{1}\left(\begin{array}{c}
d_{1}\left(x_{r}^{(1)}, A_{n} \ldots A_{1} p_{1}\right), \\
d_{2}\left(x_{r}^{(2)}, x_{r+1}^{(2)}\right), d_{1}\left(p_{1}, x_{r}^{(1)}\right), \\
d_{1}\left(p_{1}, A_{n} \ldots A_{1} p_{1}\right)
\end{array}\right) \leq 0 .
$$

Letting $r \rightarrow \infty$, we have

$$
\phi_{i}\binom{d_{1}\left(p_{1}, A_{n} \ldots A_{1} p_{1}\right), 0,0,}{d_{1}\left(p_{1}, A_{n} \ldots A_{1} p_{1}\right)} \leq 0 .
$$

It follows from (ii) that $p_{1}=A_{n} \ldots A_{1} p_{1}$.
Finally, if $i=n$, using the inequality (2.n) for $x_{n}=p_{n}$ and $x_{1}=x_{n}^{(1)}$ we get

$$
\phi_{n}\left(\begin{array}{c}
d_{n}\left(x_{r+1}^{(n)}, A_{n-1} \ldots A_{1} A_{n} p_{n}\right), \\
d_{1}\left(x_{r}^{(1)}, x_{r+1}^{(1)}\right), d_{n}\left(p_{n}, x_{r+1}^{(n)}\right), \\
d_{n}\left(p_{n}, A_{n-1} \ldots A_{1} A_{n} p_{n}\right)
\end{array}\right) \leq 0 .
$$

Letting $r \rightarrow \infty$, we have

$$
\phi_{n}\binom{d_{n}\left(p_{n}, A_{n-1} \ldots A_{1} A_{n} p_{n}\right), 0,0,}{d_{n}\left(p_{n}, A_{n-1} \ldots A_{1} A_{n} p_{n}\right)} \leq 0
$$

and by (ii), $p_{n}=A_{n-1} \cdots A_{1} A_{n} p_{n}$.
To prove the uniqueness, suppose that $A_{i-1} \ldots A_{1} A_{n} \ldots A_{i}$ has a second fixed point $z_{i} \neq p_{i}$ in X_{i}.

Using the inequality (2.i) for $x_{i+1}=A_{i} z_{i}$ and $x_{i}=p_{i}$ we get

$$
\begin{gathered}
\phi_{1}\left(\begin{array}{c}
d_{1}\left(A_{i} \ldots A_{1} A_{n} \ldots A_{i} z_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}\right), \\
d_{i+1}\left(A_{i} z_{i}, A_{i} \ldots A_{1} A_{n} \ldots A_{i+1} z_{i}\right) \\
\\
= \\
d_{i}\left(p_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i+1}\left(z_{i}, p_{i}\right), 0, d_{i}\left(p_{i}, z_{i}\right), 0\right) \leq 0
\end{array}\right)
\end{gathered}
$$

which implies that $z_{i}=p_{i}$, proving the uniqueness of p_{i} for $i=2, \ldots, n-1$. The uniqueness of p_{1} in X_{1} and p_{n} in X_{n} follow similarly.

We finally note that

$$
A_{i} p_{i}=A_{i} \ldots A_{1} A_{n} \ldots A_{i+1}\left(A_{i} p_{i}\right),
$$

so that $A_{i} p_{i}$ is a fixed point of $A_{i} \ldots A_{1} A_{n} \ldots A_{i+1}$. Since the fixed point is unique, it follows that $A_{i} p_{i}=p_{i+1}$ for $i=1, \ldots, n-1$. It follows similarly that $A_{n} p_{n}=p_{1}$. This completes the proof of the theorem.

Example 2.2. Let $\left(X_{i}, d\right)$ for $i=1, \ldots, n$ be n complete metric spaces where $X_{i}=\left\{x_{i}: i-1 \leq x_{i} \leq i\right\}$ for $i=1, \ldots, n$ and d is the usual metric for the real numbers. Define $A_{i}: X_{i} \rightarrow X_{i+1}$ for $i=1, \ldots, n-1$ and $A_{n}: X_{n} \rightarrow X_{1}$ by

$$
\begin{aligned}
A_{1} x_{1} & =\left\{\begin{aligned}
5 / 4 \text { if } 0 \leq x_{1}<1 / 2, \\
3 / 2 \text { if } 1 / 2 \leq x_{1} \leq 1,
\end{aligned}\right. \\
A_{i} x_{i} & =\left\{\begin{array}{r}
i+1 / 4 \text { if } i-1 \leq x_{i}<i-3 / 4, \\
i+1 / 2 \text { if } i-3 / 4 \leq x_{i} \leq i
\end{array}\right.
\end{aligned}
$$

for $i=2, \ldots, n-1$,

$$
A_{n} x_{n}=\left\{\begin{array}{c}
3 / 4 \text { if } n-1 \leq x_{n}<n-3 / 4 \\
1 \text { if } n-3 / 4 \leq x_{n} \leq n
\end{array}\right.
$$

and $\phi_{1}=\phi_{2}=\ldots \phi_{n}=\phi \in \Phi$ such that $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, t_{4}\right\}$ and $0 \leq c<1$

Note that there exists p_{i} in X_{i} such that $A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} p_{i}=p_{i}$ for $i=1, \ldots, n$. For example if we put
(a) $i=n$, we get $A_{n-1} \ldots A_{1} A_{n} p_{n}=p_{n}$ if $w_{n}=n-\frac{1}{2}$ because

$$
\begin{aligned}
A_{n-1} \ldots A_{1} A_{n}(n-1 / 2) & =A_{n-1} \ldots A_{1}(1) \\
& =A_{n-1} A_{n-2} \ldots A_{2}(3 / 2) \\
& =A_{n-1} \ldots A_{i+1}(i+1 / 2) \\
& =\ldots \\
& =A_{n-1}(n-5 / 2) \\
& =A_{n-1}(n-3 / 2)=n-1 / 2
\end{aligned}
$$

and $n \leq n-3 / 2 \leq n-3 / 4$.
(b) Note that for $i=1, \ldots, n-1$ and $i-3 / 4 \leq x_{i}<i,(i+1)-3 / 4 \leq A_{i} x_{i}<i+1$ and $1 / 2 \leq A_{n} x_{n} \leq 1$ with $n-3 / 4 \leq x_{n}<n$, there exists $p_{i}=i-1 / 2$ such that $A_{i-1} \ldots A_{1} A_{n} \ldots A_{i}(i-1 / 2)=i-1 / 2$ for $i=1, \ldots, n-1$. Further,

$$
d\left(A_{i-1} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} x_{i}\right)=0
$$

for $i=1, \ldots, n$ and

$$
\begin{gathered}
\phi_{i}\left(\begin{array}{c}
d\left(A_{i-1} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} x_{i}\right), \\
d\left(x_{i+1}, A_{i} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1}\right), \\
d\left(x_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1}\right), \\
d\left(x_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} x_{i}\right)
\end{array}\right) \\
=-c \max \left\{\begin{array}{c}
d\left(x_{i+1}, A_{i} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1}\right), \\
d\left(x_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i+1} x_{i+1)}\right), \\
d\left(x_{i}, A_{i-1} \ldots A_{1} A_{n} \ldots A_{i} x_{i}\right)
\end{array}\right\} \leq 0
\end{gathered}
$$

which is true for all $x_{i} \in X_{i}, x_{i+1} \in X_{i+1}$ and $0 \leq c<1$. Thus all conditions of Theorem 2.1 are satisfied.

If we take $n=5$ in Theorem 2.1, we get the following Corollary.
Corollary 2.3. Let $\left(X_{i}, d_{i}\right), i=1, \ldots, 5$ be 5 complete metric spaces, $A_{i}: X_{i} \rightarrow$ $X_{i+1}, i=1,2,3,4$ and $A_{5}: X_{5} \rightarrow X_{1}$ be 5 mappings satisfying

$$
\phi_{1}\left(\begin{array}{c}
d_{1}\left(A_{5} A_{4} A_{3} A_{2} x_{2}, A_{5} A_{4} A_{3} A_{2} A_{1} x_{1}\right) \tag{7.1}\\
d_{2}\left(x_{2}, A_{1} A_{5} A_{4} A_{3} A_{2} x_{2}\right) \\
d_{1}\left(x_{1}, A_{5} A_{4} A_{3} A_{2} x_{2}\right), d_{1}\left(x_{1}, A_{5} A_{4} A_{3} A_{2} A_{1} x_{1}\right)
\end{array}\right) \leq 0
$$

for all $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ with $x_{2} \neq A_{1} x_{1}$,

$$
\phi_{2}\left(\begin{array}{c}
d_{2}\left(A_{1} A_{5} A_{4} A_{3} x_{3}, A_{1} A_{5} A_{4} A_{3} A_{2} x_{2}\right), \tag{7.2}\\
d_{3}\left(x_{3}, A_{2} A_{1} A_{5} A_{4} A_{3} x_{3}\right) \\
d_{2}\left(x_{2}, A_{1} A_{5} A_{4} A_{3} x_{3}\right), d_{2}\left(x_{2}, A_{1} A_{5} A_{4} A_{3} A_{2} x_{2}\right)
\end{array}\right) \leq 0
$$

for all $x_{2} \in X_{2}$ and $x_{3} \in X_{3}$ with $x_{3} \neq A_{2} x_{2}$,

$$
\phi_{3}\left(\begin{array}{c}
d_{3}\left(A_{2} A_{1} A_{n} A_{n-1} \ldots A_{4} x_{4}, A_{2} A_{1} A_{n} A_{n-1} \ldots A_{3} x_{3}\right), \tag{7.3}\\
d_{4}\left(x_{4}, A_{3} A_{2} A_{1} A_{n} A_{n-1} \ldots A_{4} x_{4}\right) \\
d_{3}\left(x_{3}, A_{2} A_{1} A_{n} A_{n-1} \ldots A_{4} x_{4}\right), \\
d_{3}\left(x_{3}, A_{2} A_{1} A_{n} A_{n-1} \ldots A_{3} x_{3}\right)
\end{array}\right) \leq 0
$$

for all $x_{3} \in X_{2}$ and $x_{4} \in X_{3}$ with $x_{4} \neq A_{3} x_{3}$,

$$
\phi_{4}\left(\begin{array}{c}
d_{4}\left(A_{3} A_{2} A_{1} A_{5} x_{5}, A_{3} A_{2} A_{1} A_{5} A_{4} x_{4}\right), \\
d_{5}\left(x_{5}, A_{4} A_{3} A_{2} A_{1} A_{5} x_{5}\right) \\
d_{4}\left(x_{4}, A_{3} A_{2} A_{1} A_{5} x_{5}\right), \\
d_{4}\left(x_{4}, A_{3} A_{2} A_{1} A_{5} x_{5} A_{4} x_{4}\right)
\end{array}\right) \leq 0
$$

for all $x_{4} \in X_{4}$ and $x_{5} \in X_{5}$ with $x_{5} \neq A_{4} x_{4}$.

$$
\phi_{5}\left(\begin{array}{c}
d_{5}\left(A_{4} A_{3} A_{2} A_{1} x_{1}, A_{4} A_{3} A_{2} A_{1} A_{5} x_{5}\right), \tag{7.5}\\
d_{1}\left(x_{1}, A_{5} A_{4} A_{3} A_{2} A_{1} x_{1}\right) \\
d_{5}\left(x_{5}, A_{4} A_{3} A_{2} A_{1} x_{1}\right), \\
d_{5}\left(x_{5}, A_{4} A_{3} A_{2} A_{1} A_{5} x_{5}\right)
\end{array}\right) \leq 0
$$

for all $x_{1} \in X_{1}$ and $x_{5} \in X_{5}$ with $x_{1} \neq A_{5} x_{5}$. Then $A_{i-1} A_{i-2} \ldots A_{1} A_{n} A_{n-1} \ldots A_{i}$ has a unique fixed point $p_{i} \in X_{i}$, for all $i=1, \ldots, 5$

The following example illustrates our Corollary 2.3.
Example 2.4. Let $\left(X_{i}, d\right)$ for $i=1, \ldots, 5$ be 5 metric spaces where $X_{i}=\left\{x_{i}\right.$: $i-1 \leq i \leq i\}$ for $i=1, \ldots, 5$ and d is the usual metric for the real numbers. Define $A_{i}: X_{i} \rightarrow X_{i+1}$, for $i=1, \ldots, 4$ and $A_{5}: X_{5} \rightarrow X_{1}$ by

$$
\begin{aligned}
& A_{i} x_{1}=\left\{\begin{array}{c}
1 \text { if } 0 \leq x_{1}<3 / 4, \\
3 / 2 \text { if } 3 / 4 \leq x_{1} \leq 1
\end{array}, A_{2} x_{2}=\left\{\begin{array}{c}
5 / 2 \text { if } 1 \leq x_{2}<3 / 2, \\
3 \text { if } 3 / 2 \leq x_{2} \leq 2
\end{array},\right.\right. \\
& A_{3} x_{3}=\left\{\begin{array}{c}
13 / 4 \text { if } 2 \leq x_{3}<5 / 2, \\
7 / 2 \text { if } 5 / 2 \leq x_{3} \leq 3
\end{array}, A_{4} x_{4}=\left\{\begin{array}{c}
17 / 4 \text { if } x_{4} \leq 3<7 / 2 \\
\frac{9}{2} \text { if } x_{4} \in\left[\frac{7}{2}, 4[\right.
\end{array},\right.\right. \\
& A_{5} x_{5}=\left\{\begin{array}{c}
3 / 4 \text { if } 4 \leq x_{5}<9 / 2 \\
1 \text { if } 9 / 2 \leq x_{5} \leq 5
\end{array} .\right.
\end{aligned}
$$

Let $\phi_{1}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, t_{4}\right\}$ and $\phi_{1}=\phi_{2}=\phi_{3}=\phi_{4}=\phi_{5}$. Then

$$
\begin{aligned}
A_{5} A_{4} A_{3} A_{2} A_{1}\left(\frac{3}{2}\right) & =\frac{3}{2}, \\
A_{1} A_{5} A_{4} A_{3} A_{2}(3) & =3, \\
A_{2} A_{1} A_{5} A_{4} A_{3}\left(\frac{7}{2}\right) & =\frac{7}{2}, \\
A_{3} A_{2} A_{1} A_{5} A_{4}\left(\frac{9}{2}\right) & =\frac{9}{2}, \\
A_{4} A_{3} A_{2} A_{1} A_{5}(1) & =1 .
\end{aligned}
$$

The inequalities $(7,1),(7.2),(7.3),(7.4)$ and (7.5) are satisfied for $i=1, \ldots, 5$ since the value of the left hand side of each inequality is 0 . Hence, all the conditions of Corollary 2.3 are satisfied.

We finally note that if we take $n=2$ in Theorem 2.1, we obtain Theorem 2.3 of [1].

References

[1] A. Aliouche and B. Fisher, Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces, Applied Mathematics and Mechanics., 27 (9) (2006), 1217-1222.
[2] R. K. Jain, H. K. Sahu and B. Fisher, Related fixed point theorems for three metric spaces, Novi Sad J. Math. 26 (1996), 11-17.
[3] R. K. Jain, H. K. Sahu and B. Fisher, A related fixed point theorem on three metric spaces, Kyungpook Math. J. 36 (1996), 151-154.
[4] R. K. Jain, A. K Shrivastava and B. Fisher, Fixed point theorems on three complete metric spaces, Novi Sad J. Math. 27 (1997), 27-35.
[5] S. Jain and B. Fisher, A related fixed point theorem for three metric spaces, Hacettepe J. Math. and Stat. 31 (2002), 19-24.
[6] N. P. Nung, A fixed point theorem in three metric spaces, Math. Sem. Notes, Kobe Univ. 11 (1983) 77-79.
[7] K. P. R. Rao, N. Srinivasa Rao and B. V. S. N. Hari Prasad, Three fixed point results for three maps, J. Nat. Phy. Sci., 18 (2004) 41-48.
[8] K. P. R. Rao, B. V. S. N. Hari Prasad and N. Srinivasa Rao, Generalizations of some fixed point theorems in complete metric spaces, Acta Ciencia Indica, Vol. XXIX, M. 1 (2003), 31-34.

Fayçal Merghadi
Department of Mathematics
University of Larbi Tebessa Tebessa, 12000, Algeria.
email: faycel_mr@yahoo.fr

Abdelkrim Aliouche
Department of Mathematics
University of Larbi Ben M'Hidi Oum-El-Bouaghi, 04000, Algeria.
email: alioumath@yahoo.fr

Brian Fisher
Department of Mathematics
University of Leicester, Leicester, LE8 5PJ, UK.
email: fbr@le.ac.uk

