NEIGHBORHOOD AND PARTIAL SUM PROPERTY FOR UNIVALENT HOLOMORPHIC FUNCTIONS IN TERMS OF KOMATU OPERATOR

Shahram Najafzadeh and Ali Ebadian

AbSTRACT. In the present paper, we investigate some important properties of a new class of univalent holomorphic functions by using Komatu operator. For example coefficient estimates, extreme points, neighborhoods and partial sums.

2000 Mathematics Subject Classification: 30C45, 30C80.

1. Introduction and preliminaries

Let \mathcal{S} denote the class of functions f that are analytic in the open unit disk $\mathcal{D}=\{z \in \mathcal{C}:|z|<1\}$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

and consider the subclass \mathcal{T} consisting of functions f which are univalent in \mathcal{D} and are of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k} . \tag{2}
\end{equation*}
$$

For $\alpha \geq 0,0 \leq \beta<1, c \geq-1$ and $\delta \geq 0$, we let $\mathcal{S}_{c}^{\delta}(\alpha, \beta)$ be the subclass of \mathcal{S} consisting of functions of the form (1) and satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mathcal{K}_{c}^{\delta}(f)}{z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}}\right\}>\alpha\left|\frac{\mathcal{K}_{c}^{\delta}(f)}{z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}}-1\right|+\beta \tag{3}
\end{equation*}
$$

The operator $\mathcal{K}_{c}^{\delta}(f)$ is the Komato operator [3] defined by

$$
\mathcal{K}_{c}^{\delta}(f)=\int_{0}^{1} \frac{(c+1)^{\delta}}{\Gamma(\delta)} t^{c}\left(\log \frac{1}{t}\right)^{\delta-1} \frac{f(t z)}{t} d t
$$

We also let

$$
\begin{equation*}
\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)=\mathcal{S}_{c}^{\delta}(\alpha, \beta) \cap \mathcal{T} \tag{4}
\end{equation*}
$$

By applying a simple calculation for $f \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ we get

$$
\begin{equation*}
\mathcal{K}_{c}^{\delta}(f)=z-\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right)^{\delta}\left|a_{k}\right| z^{k} . \tag{5}
\end{equation*}
$$

The family $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ is of special interest for contains many well-known as well as new classes of analytic functions. For example $\mathcal{T} \mathcal{S}_{c}^{0}(0, \beta)$ is the family of starlike functions of order at most $\frac{1}{\beta}$.

In our present investigation, we need the following elementary Lemmas.
Lemma 1.1. If $\alpha \geq 0,0 \leq \beta<1$ and $\gamma \in \mathcal{R}$ then Re $\omega>\alpha|\omega-1|+\beta$ if and only if $R e\left[\omega\left(1+\alpha e^{i \gamma}\right)-\alpha e^{i \gamma}\right]>\beta$ where ω be any complex number.

Lemma 1.2. With the same condition in Lemma 1.1, Re $\omega>\alpha$ if and only if $|\omega-(1+\alpha)|<|\omega+(1-\alpha)|$.

The main aim of this paper is to verify coefficient bounds and extreme points of the general class $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Furthermore, we obtain neighborhood property for functions in $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Also partial sums of functions in the class $\mathcal{S}_{c}^{\delta}(\alpha, \beta)$ are obtained.

2.Coefficient bounds for $\mathcal{S}_{c}^{\delta}(\alpha, \beta)$

In this section we find a necessary and sufficient condition and extreme points for functions in the class $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$.

Theorem 2.1. If

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{[(1+\alpha)-k(\alpha+\beta)]}{(1-\beta)}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}<1, \tag{6}
\end{equation*}
$$

then $f(z) \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$.
Proof. Let (6) hold, we will show that (3) is satisfied and so $f(z) \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. By Lemma 1.2, it is enough to show that

$$
|\omega-(1+\alpha|\omega-1|+\beta)|<|\omega+(1-\alpha|\omega-1|-\beta)|,
$$

where $\omega=\frac{\mathcal{K}_{c}^{\delta}(f)}{z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}}$. By letting $B=\frac{z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}}{\left|z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}\right|}$ and by using (5) we may write

$$
\begin{aligned}
R & =|\omega+1-\beta-\alpha| \omega-1| | \\
& =\frac{1}{\left|z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}\right|}\left|2 z-\beta z-\sum_{k=2}^{\infty}\left[1+(1-\beta) k+\alpha-\alpha a_{k}\right]\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k}\right| .
\end{aligned}
$$

This implies that

$$
R>\frac{|z|}{\left|z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}\right|}\left[2-\beta-\sum_{k=2}^{\infty}[k+(1+\alpha)-k(\alpha+\beta)]\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}\right] .
$$

Similarly, if $L=|\omega-1-\alpha| \omega-1|-\beta|$ we get

$$
L<\frac{|z|}{\left|z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}\right|}\left[\beta+\sum_{k=2}^{\infty}[-k+(1+\alpha)-k(\alpha+\beta)]\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}\right] .
$$

It is easy to verify that $R-L>0$ if (6) holds and so the proof is complete.
Theorem 2.2. Let $f \in \mathcal{T}$. Then f is in $\mathcal{T}_{c}^{\delta}(\alpha, \beta)$ if and only if

$$
\sum_{k=2}^{\infty} \frac{[(1+\alpha)-k(\alpha+\beta)]}{1-\beta}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}<1 .
$$

Proof. Since \mathcal{T} is the subclass of \mathcal{S} and $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)=\mathcal{S}_{c}^{\delta}(\alpha, \beta) \cap \mathcal{T}$, and using Theorem 2.1, we need only to prove the necessity of theorem. Suppose that $f \in$ $\mathcal{T} \mathcal{K}_{c}^{\delta}(\alpha, \beta)$. By Lemma 1.1, and letting $\omega=\frac{\mathcal{K}_{c}^{\delta}(f)}{z\left[\mathcal{K}_{c}^{\delta}(f)\right]^{\prime}}$ in (3) we obtain

$$
\operatorname{Re}\left(\omega\left(1+\alpha e^{i \gamma}\right)-\alpha e^{i \gamma}\right)>\beta
$$

or

$$
\operatorname{Re}\left[\frac{z-\sum_{k=2}^{\infty}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k}}{z\left(1-\sum_{k=2}^{\infty} k\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k-1}\right)}\left(1+\alpha e^{i \gamma}\right)-\alpha e^{i \gamma}-\beta\right]>0,
$$

then

$$
\operatorname{Re}\left[\frac{1-\beta-\sum_{k=2}^{\infty}(1-\beta k)\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k}-\alpha e^{i \gamma} \sum_{k=2}^{\infty}(1-k)\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k-1}}{\left(1-\sum_{k=2}^{\infty} k\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} z^{k-1}\right)}\right]>0 .
$$

The above inequality must hold for all z in \mathcal{D}. Letting $z=r e^{-i \theta}$ where $0 \leq r<1$ we obtain

$$
\operatorname{Re}\left[\frac{1-\beta-\sum_{k=2}^{\infty}(1-\beta k)\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} r^{k}-\alpha e^{i \gamma} \sum_{k=2}^{\infty}(1-k)\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} r^{k-1}}{\left(1-\sum_{k=2}^{\infty} k\left(\frac{c+1}{c+k}\right)^{\delta} a_{k} r^{k-1}\right)}\right]>0 .
$$

By letting $r \rightarrow 1$ through half line $z=r e^{-i \theta} \quad(0 \leq r<1)$ and the mean value theorem we have

$$
\left.\operatorname{Re}\left[(1-\beta)-\sum_{k=2}^{\infty}[(1-\beta k)-\alpha(1-k)]\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}\right]>0\right] .
$$

Therefore

$$
\sum_{k=2}^{\infty}[(1-\beta k)+\alpha(1-k)]\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}<1-\beta
$$

This implies that

$$
\sum_{k=2}^{\infty} \frac{(1+\alpha)-k(\alpha+\beta)}{(1-\beta)}\left(\frac{c+1}{c+k}\right)^{\delta} a_{k}<1
$$

and the proof is complete.
Theorem 2.3. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\beta}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} z^{k}, \quad k \geq 2 \tag{7}
\end{equation*}
$$

Then $f \in \mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ if and only if it can be expressed in the form $f(z)=\sum_{k=1}^{\infty} \eta_{k} f_{k}(z)$ where $\eta_{k} \geq 0$ and $\sum_{k=1}^{\infty} \eta_{k}=1$. In particular, the extreme points of $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ are the functions defined by (7).

Proof. Let f be expressed as in the above theorem. This means that we can write

$$
\begin{aligned}
f(z) & =\sum_{k=1}^{\infty} \eta_{k} f_{k}(z)=\eta_{1} f_{1}(z)+\sum_{k=2}^{\infty} \eta_{k} f_{k}(z) \\
& =\eta_{1} z+\sum_{k=2}^{\infty} \eta_{k} z-\sum_{k=2}^{\infty} \frac{(1-\beta)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} \eta_{k} z^{k} \\
& =z \sum_{k=1}^{\infty} \eta_{k}-\sum_{k=2}^{\infty} t_{k} z^{k}
\end{aligned}
$$

where $t_{k}=\frac{(1-\beta)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} \eta_{k}$. Therefore $f \in \mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ since

$$
\sum_{k=2}^{\infty} \frac{[(1+\alpha)-k(\alpha+\beta)]}{1-\beta} t_{k}\left(\frac{c+1}{c+k}\right)^{\delta}=\sum_{k=2}^{\infty} \eta_{k}=1-\eta_{1}<1
$$

Conversely, suppose that $f \in \mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Then by (6), we have

$$
a_{k}<\frac{1-\beta}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta}, \quad k \geq 2
$$

So

$$
\begin{aligned}
f(z) & =z-\sum_{k=2}^{\infty} \frac{1-\beta}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} \eta_{k} z^{k} \\
& =z-\sum_{k=2}^{\infty} \eta_{k}\left(z-f_{k}(z)\right) \\
& =\left(1-\sum_{k=2}^{\infty} \eta_{k}\right) z-\sum_{k=2}^{\infty} \eta_{k} f_{k}(z) \\
& =\eta_{1} z-\sum_{k=2}^{\infty} \eta_{k} f_{k}(z)=\sum_{k=1}^{\infty} \eta_{k} f_{k}(z) .
\end{aligned}
$$

This completes the proof.

3.Neighborhood Property

In this section we study neighborhood property for functions in the class $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. This concept was introduced by Goodman [2] and Ruscheweyh [6]. See also [1], [4], [5], and [7].

Definition 3.1. For functions f belong f to \mathcal{S} of the form (1) and $\gamma \geq 0$, we define $\eta-\gamma$-neighborhood of f by

$$
\mathcal{N}_{\gamma}^{\eta}(f)=\left\{g(z) \in \mathcal{S}: g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \quad \sum_{k=2}^{\infty} k^{\eta+1}\left|a_{k}-b_{k}\right| \leq \gamma\right\},
$$

where η is a fixed positive integer.
By using the following lemmas we will investigate the $\eta-\gamma$-neighborhood of functions in $\mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$.

Lemma 3.2. Let $m \geq 0$ and $-1 \leq \theta<1$. If $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ satisfies

$$
\sum_{k=2}^{\infty} k^{\rho+1}\left|b_{k}\right| \leq \frac{1-\theta}{1+\alpha},
$$

then $g(z) \in \mathcal{S}_{c}^{\rho}(\alpha, \theta)$.
Proof. By using of Theorem 2.1, it is sufficient to show that

$$
\frac{(1+\alpha)-k(\alpha+\theta)}{1-\theta}\left(\frac{\rho+1}{\rho+k}\right)^{\delta}=\frac{k^{\rho+1}}{1-\theta}(1+\alpha) .
$$

But

$$
\frac{(1+\alpha)-k(\alpha+\theta)}{1-\theta}\left(\frac{\rho+1}{\rho+k}\right)^{\delta} \leq \frac{1+\alpha}{1-\theta}\left(\frac{\rho+1}{\rho+k}\right)^{\delta} .
$$

Therefore it is enough to prove that

$$
Q(k, \rho)=\frac{\left(\frac{\rho+1}{\rho+k}\right)^{\delta}}{k^{\rho+1}} \leq 1 .
$$

The result follows because the last inequality holds for all $k \geq 2$.
Lemma 3.3. Let $f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \in \mathcal{T},-1 \leq \beta<1, \alpha \geq 0$ and $\epsilon \geq 0$. If $\frac{f(z)+\epsilon z}{1+\epsilon} \in \mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$ then

$$
\sum_{k=2}^{\infty} k^{\rho+1} a_{k} \leq \frac{2^{\rho+1}(1-\beta)(1+\epsilon)}{(1-\alpha-2 \beta)}\left(\frac{c+2}{c+1}\right)^{\delta}
$$

where either $\rho=0$ and $c \geq o$ or $\rho=1$ and $1 \leq c \leq 2$. The result is sharp with the extremal function

$$
f(z)=z-\frac{(1-\beta)(1+\epsilon)}{(1-\alpha-2 \beta)}\left(\frac{c+2}{c+1}\right)^{\delta} z^{2}, \quad(z \in \mathcal{D}) .
$$

Proof. Letting $g(z)=\frac{f(z)+\epsilon z}{1+\epsilon}$ we have

$$
g(z)=z-\sum_{k=2}^{\infty} \frac{a_{k}}{1+\epsilon} z^{k}, \quad(z \in \mathcal{D}) .
$$

In view of theorem 2.3, $g(z)=\sum_{k=1}^{\infty} \eta_{k} g_{k}(z)$ where $\eta_{k} \geq 0, \quad \sum_{k=1}^{\infty} \eta_{k}=1$,

$$
g_{1}(z)=z \text { and } g_{k}(z)=z-\frac{(1-\beta)(1+\epsilon)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} z^{k} \quad(k \geq 2) .
$$

So we obtain

$$
\begin{aligned}
g(z) & =\eta_{1} z+\sum_{k=2}^{\infty} \eta_{k}\left[z-\frac{(1-\beta)(1+\epsilon)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta} z^{k}\right] \\
& =z-\sum_{k=2}^{\infty} \eta_{k}\left(\frac{(1-\beta)(1+\epsilon)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta}\right) z^{k} .
\end{aligned}
$$

Since $\eta_{k} \geq 0$ and $\sum_{k=2}^{\infty} \eta_{k} \leq 1$, it follows that

$$
\sum_{k=2}^{\infty} k^{\rho+1} a_{k} \leq \sup _{k \geq 2} k^{\rho+1}\left[\frac{(1-\beta)(1+\epsilon)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta}\right]
$$

Since whenever $\rho=0$ and $c \geq 0$ or $\rho=1$ and $1 \leq c \leq 2$ we conclude

$$
W(k, \rho, \alpha, \beta, \epsilon, c, \delta)=k^{\rho+1}\left[\frac{(1-\beta)(1+\epsilon)}{[(1+\alpha)-k(\alpha+\beta)]}\left(\frac{c+k}{c+1}\right)^{\delta}\right] \text {, }
$$

is a decreasing function of k, the result will follow. So the proof is complete.
Theorem 3.4. Let either $\rho=0$ and $c \geq 0$ or $\rho=1$ and $1 \leq c \leq 2$. Suppose $-1 \leq \beta<1$, and

$$
-1 \leq \theta<\frac{(1-\alpha-2 \beta)(c+1)^{\delta}-2^{\rho+1}(1-\beta)(1+\epsilon)(c+2)^{\delta}(1+\alpha)}{(1-\alpha-2 \beta)(c+1)^{\delta}(1+\alpha)},
$$

$f(z) \in \mathcal{T}$ and $\frac{f(z)+\epsilon z}{1+\epsilon} \in \mathcal{T} \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Then the $\eta-\gamma$-neighborhood of f is the subset of $\mathcal{S}_{c}^{\eta}(\alpha, \theta)$, where

$$
\gamma=\frac{(1-\theta)(1-\alpha-2 \beta)(c+1)^{\delta}-2^{\eta+1}(1-\beta)(1+\epsilon)(c+2)^{\delta}(1+\alpha)}{(1-\alpha-2 \beta)(c+1)^{\delta}(1+\alpha)} .
$$

The result is sharp.
Proof. For $f(z)=z-\sum_{k=2}^{\infty}\left|a_{k}\right| z^{k}$, let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ be in $\mathcal{N}_{\gamma}^{\eta}(f)$. So by Lemma 3.3, we have

$$
\begin{aligned}
\sum_{k=2}^{\infty} k^{\eta+1}\left|b_{k}\right| & =\sum_{k=2}^{\infty} k^{\eta+1}\left|a_{k}-b_{k}-a_{k}\right| \\
& \leq \gamma+\frac{2^{\eta+1}(1-\beta)(1+\epsilon)}{(1-\alpha-2 \beta)}\left(\frac{c+2}{c+1}\right)^{\delta} .
\end{aligned}
$$

By using Lemma 3.2, $g(z) \in \mathcal{S}_{c}^{\eta}(\alpha, \beta)$ if

$$
\gamma+\frac{2^{\eta+1}(1-\beta)(1+\epsilon)}{(1-\alpha-2 \beta)}\left(\frac{c+2}{c+1}\right)^{\delta} \leq \frac{1-\theta}{1+\alpha} .
$$

That is,

$$
\gamma \leq \frac{(1-\theta)(1-\alpha-2 \beta)(c+1)^{\delta}-2^{\eta+1}(1-\beta)(1+\epsilon)(c+2)^{\delta}(1+\alpha)}{(1-\alpha-2 \beta)(c+1)^{\delta}(1+\alpha)}
$$

and the proof is complete.

4.Partial Sums

In this section we verify some properties of partial sums of functions in the class $\mathcal{S}_{c}^{\delta}(\alpha, \beta)$. (see [5] and [8])

Theorem 4.1. Let $f(z) \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$, and define the partial sums $f_{1}(z)$ and $f_{n}(z)$ by

$$
\begin{equation*}
f_{1}(z)=z \text { and } f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k} \quad(n \in \mathcal{N}, \quad n>1) . \tag{8}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{k}=\frac{[(1+\alpha)-k(\alpha+\beta)]}{1-\beta}\left(\frac{c+1}{c+k}\right)^{\delta} \tag{10}
\end{equation*}
$$

Then $f_{k}(z) \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Moreover

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{f(z)}{f_{n}(z)}\right\}>1-\frac{1}{c_{n+1}}, \quad(z \in \mathcal{D}, n \in \mathcal{N}) \tag{11}\\
\operatorname{Re}\left\{\frac{f_{n}(z)}{f(z)}\right\}>\frac{c_{n+1}}{1+c_{n+1}} . \tag{12}
\end{gather*}
$$

Proof. It is easy to show that $f_{1}(z)=z \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. So by Theorem 3.3, and condition (9), we have $\mathcal{N}_{1}^{\eta}(z) \subset \mathcal{S}_{c}^{\delta}(\alpha, \beta)$, so $f_{k} \in \mathcal{S}_{c}^{\delta}(\alpha, \beta)$. Next, for the coefficient c_{k} it is easy to show that

$$
c_{k+1}>c_{k}>1
$$

Therefore by using (9) we obtain

$$
\begin{equation*}
\sum_{k=2}^{n}\left|a_{k}\right|+c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} c_{k}\left|a_{k}\right| \leq 1 \tag{13}
\end{equation*}
$$

By putting

$$
\begin{aligned}
h_{1}(z) & =c_{n+1}\left\{\frac{f(z)}{f_{n}(z)}-\left(1-\frac{1}{c_{n+1}}\right)\right\} \\
& =1+c_{n+1}\left(\frac{f(z)}{f_{n}(z)}-1\right) \\
& =1+c_{n+1}\left(\frac{z+\sum_{k=2}^{\infty} a_{k} z^{k}}{z+\sum_{k=2}^{n} a_{k} z^{k}}-1\right)=1+c_{n+1}\left(\frac{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}}-1\right) \\
& =1+c_{n+1}\left[\frac{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}-1-\sum_{k=2}^{n} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}}\right] \\
& =1+\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}},
\end{aligned}
$$

and using (13), for all $z \in \mathcal{D}$ we have

$$
\left|\frac{h_{1}(z)-1}{h_{1}(z)+1}\right|=\left|\frac{\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}}}{2+\frac{c_{n+1} \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{n} a_{k} z^{k-1}}}\right| \leq \frac{c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{n}\left|a_{k}\right|-c_{n+1} \sum_{k=n+1}^{\infty}\left|a_{k}\right|} \leq 1
$$

which proves (11). Similarly, if we put

$$
\begin{aligned}
h_{2}(z) & =\left\{\frac{f_{n}(z)}{f(z)}-\frac{c_{n+1}}{1+c_{n+1}}\right\}\left(1+c_{n+1}\right) \\
& =1-\frac{\left(1+c_{n+1}\right) \sum_{k=n+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{\infty} a_{k} z^{k-1}}
\end{aligned}
$$

and using (13) we obtain

$$
\left|\frac{h_{2}(z)-1}{h_{2}(z)+1}\right| \leq 1, \quad(z \in \mathcal{D})
$$

which yields the condition (12). So the proof is complete.

References

[1] Altintas and S. Owa, Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. and Math. Sci. 19 (1996), 797-800.
[2] A. W. Goodman, Univalent functions with analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.
[3] Y. Komato, On analytic prolongation of a family of operators, Mathematica (Cluj). 39 (55) (1990), 141-145.
[4] Shahram Najafzadeh and S. R. Kulkarni, Study of certain properties of univalent functions based on Ruscheweyh derivative, Southeast Asian Bulletin of Mathematics 32 (2008), 478-488.
[5] Thomas Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighborhoods and partial sums of starlike functions based on Ruscheweyh derivative, J. Ineq. pure and appl. Math. 4 (4) (2003), art. 64.
[6] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (4) (1981), 521-527.
[7] H. Silverman, Neighbohoods of classes of analytic functions, Fareast. J. Math. Sci. 3 (2) (1995), 165-169.
[8] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. and Appl., 209 (1997), 221-227.

Shahram Najafzadeh
Department of Mathematics
University of Maragheh
Maragheh, Iran
email:najafzadeh1234@yahoo.ie

Ali Ebadian
Department of Mathematics
Urmia University
Faculty of Science
Urmia, Iran
email:a.ebadian@urmia.ac.ir

