CERTAIN CLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER

C.Selvaraj and C.Santhosh Moni

Abstract. By making use of the Hadamard product, we define a new class of analytic functions of complex order. Coefficient inequalities, sufficient condition and an interesting subordination result are obtained.

2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords and Phrases: analytic functions, Hadamard product, generalized hypergeometric functions, coefficient inequalities, subordinating sequence.

1. Introduction, Definitions And Preliminaries

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \quad a_{k} \geq 0 \tag{1}
\end{equation*}
$$

which are analytic in the open $\operatorname{disc} \mathcal{U}=\{z \in \mathbb{C} \backslash|z|<1\}$ and \mathcal{S} be the class of function $f \in \mathcal{A}$ which are univalent in \mathcal{U}.

The Hadamard product of two functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=$ $z+\sum_{k=2}^{\infty} b_{k} z^{k}$ is given by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} \tag{2}
\end{equation*}
$$

For a fixed function $g \in \mathcal{A}$ defined by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \quad\left(b_{k} \geq 0 \text { for } k \geq 2\right) \tag{3}
\end{equation*}
$$

We now define the following linear operator $D_{\lambda, g}^{m} f: \mathcal{A} \longrightarrow \mathcal{A}$ by

$$
D_{\lambda, g}^{0} f(z)=(f * g)(z)
$$

$$
\begin{gather*}
D_{\lambda, g}^{1} f(z)=(1-\lambda)(f(z) * g(z))+\lambda z(f(z) * g(z))^{\prime} \tag{4}\\
D_{\lambda, g}^{m} f(z)=D_{\lambda, g}^{1}\left(D_{\lambda, g}^{m-1} f(z)\right) \tag{5}
\end{gather*}
$$

If $f \in \mathcal{A}$, then from (4) and (5) we may easily deduce that

$$
\begin{equation*}
D_{\lambda, g}^{m} f(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m} a_{k} b_{k} \frac{z^{k}}{(k-1)!}, \tag{6}
\end{equation*}
$$

where $m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $\lambda \geq 0$.
Remark 1. It is interesting to note that several integral and differential operator follows as a special case of $D_{\lambda, g}^{m} f(z)$, here we list few of them.

1. When $g(z)=z /(1-z), D_{\lambda, g}^{m} f(z)$ reduces to an operator introduced recently by F. Al-Oboudi [1].
2. Let the coefficients b_{k} be of the form

$$
\begin{gather*}
b_{k}=\frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}(k-1)!} \tag{7}\\
\left(\alpha_{1}, \ldots \alpha_{q}, \beta_{1}, \ldots \beta_{s} \in \mathbb{C} \text { and } \beta_{j} \neq 0,-1,-2, \ldots \text { for } \mathrm{j}=\{1,2, \ldots, \mathrm{~s}\}\right)
\end{gather*}
$$

and if $m=0$, then $D_{\lambda, g}^{m} f(z)$ reduces to the well-known Dziok-Srivastava operator. It is well known that Dziok-Srivastava operator includes as its special cases various other linear operator which were introduced and studied by Hohlov, Carlson and Shaffer and Ruscheweyh. For details we refer to $[6,7,8]$

Apart from these, the operator $D_{\lambda, g}^{m} f(z)$ generalizes the well-known operators like Sălăgean operator [14] and Bernardi-Libera-Livingston operator.

Using the operator $D_{\lambda, g}^{m} f(z)$, we define $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$ to be the class of functions $f \in \mathcal{A}$ satisfying the inequality

$$
\begin{equation*}
1+\frac{1}{\delta}\left(\frac{D_{\lambda, g}^{m+1} f(z)}{D_{\lambda, g}^{m} f(z)}-1\right) \prec \frac{1+A z}{1+B z}, \quad z \in \mathcal{U} \tag{8}
\end{equation*}
$$

where $\delta \in \mathbb{C} \backslash\{0\}, A$ and B are arbitrary fixed numbers, $-1 \leq B<A \leq 1, m \in \mathbb{N}_{0}$.
Remark 2. Several interesting well-known and new subclasses of analytic functions can be obtained by specializing the parameters in $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$. Here we list a few of them.

1. If we let $g(z)=\frac{z}{1-z}, \lambda=1$ in (8), then the class $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$ reduces to the well- known class

$$
\mathcal{H}^{m}(\delta ; A, B):=\left\{f: 1+\frac{1}{\delta}\left(\frac{D^{m+1} f(z)}{D^{m} f(z)}-1\right) \prec \frac{1+A z}{1+B z}\right\}
$$

where $D^{m} f$ is the well- known Sălăgean operator. The class $\mathcal{H}^{m}(\delta ; A, B)$ was introduced and studied by Attiya [4].
2. If we let $g(z)=z+\sum_{n=2}^{\infty} \frac{\left(\alpha_{1}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}(k-1)!} a_{k} z^{k}$ in (8), then we have following class of functions

$$
\mathcal{H}_{\lambda}^{m}\left(\alpha_{1}, \beta_{1} ; A, B\right):=\left\{f: 1+\frac{1}{\delta}\left(\frac{D^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{D^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1\right) \prec \frac{1+A z}{1+B z}\right\}
$$

introduced and studied by C. Selvaraj and K.R.Karthikeyan in [17].
3. If we let $g(z)=\frac{z}{1-z}, \lambda=1, m=0$ in (8), then the class $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$ reduces to the well- known class of starlike functions of complex order [12].

Further, we note that several subclass of analytic functions can be obtained by specializing the parameters in $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$ (see for example $[3,11,12]$).

We use Ω to denote the class of bounded analytic functions $w(z)$ in \mathcal{U} which satisfy the conditions $w(0)=1$ and $|w(z)|<1$ for $z \in \mathcal{U}$.

2.CoEFFICIENT ESTIMATES

Theorem 1. Let the function $f(z)$ defined by (1) be in the class $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$.
(a) If $(A-B)^{2}|\delta|^{2}>(k-1)\left\{2 B(A-B) \lambda \operatorname{Re}\{\delta\}+\left(1-B^{2}\right) \lambda^{2}(k-1)\right\}$, let

$$
G=\frac{(A-B)^{2}|\delta|^{2}}{(k-1)\left\{2 B(A-B) \lambda \operatorname{Re}\{\delta\}+\left(1-B^{2}\right) \lambda^{2}(k-1)\right\}}, \quad k=2,3, \ldots, m-1
$$

$M=[G]$ (Gauss symbol) and $[G]$ is the greatest integer not greater than G. Then, for $j=2,3, \ldots, M+2$

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{[1+(j-1) \lambda]^{m} \lambda^{j-1}(j-1)!b_{j}} \prod_{k=2}^{j}|(A-B) \delta-(k-2) B| \tag{9}
\end{equation*}
$$

and for $\quad j>M+2$

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{[1+(j-1) \lambda]^{m} \lambda^{j-1}(j-1)(M+1)!b_{j}} \prod_{k=2}^{M+3}|(A-B) \delta-(k-2) B| \tag{10}
\end{equation*}
$$

(b) If $(A-B)^{2}|\delta|^{2} \leq(k-1)\left\{2 B(A-B) \lambda \operatorname{Re}\{\delta\}+\left(1-B^{2}\right) \lambda^{2}(k-1)\right\}$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{(A-B)|\delta|}{\lambda(j-1)[1+(j-1) \lambda]^{m} b_{j}} \quad j \geq 2 \tag{11}
\end{equation*}
$$

The bounds in (9) and (11) are sharp for all admissible $A, B, \delta \in \mathbb{C} \backslash\{0\}$ and for each j.

Proof. Since $f(z) \in \mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$, the inequality (8) gives

$$
\begin{equation*}
\left|D_{\lambda, g}^{m+1} f(z)-D_{\lambda, g}^{m} f(z)\right|=\left\{[(A-B) \delta+B] D_{\lambda, g}^{m} f(z)-B D_{\lambda, g}^{m+1} f(z)\right\} w(z) \tag{12}
\end{equation*}
$$

Equation (12) may be written as

$$
\begin{align*}
\sum_{k=2}^{\infty}[1+ & (k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k} z^{k} \tag{13}\\
& =\left\{(A-B) \delta z+\sum_{k=2}^{\infty}[(A-B) \delta-B(k-1) \lambda][1+(k-1) \lambda]^{m} b_{k} a_{k} z^{k}\right\} w(z) .
\end{align*}
$$

Or equivalently

$$
\begin{align*}
& \sum_{k=2}^{j}[1+(k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k} z^{k}+\sum_{k=j+1}^{\infty} c_{k} z^{k} \\
& \quad=\left\{(A-B) \delta z+\sum_{k=2}^{j-1}[(A-B) \delta-B(k-1) \lambda][1+(k-1) \lambda]^{m} b_{k} a_{k} z^{k}\right\} w(z) \tag{14}
\end{align*}
$$

for certain coefficients c_{k}. Explicitly $c_{k}=[1+(k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k}-[(A-B) \delta-$ $B(k-2) \lambda][1+(k-2) \lambda]^{m} b_{k-1} a_{k-1} z^{-1}$. Since $|w(z)|<1$, we have

$$
\begin{equation*}
\left|\sum_{k=2}^{j}[1+(k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k} z^{k}+\sum_{k=j+1}^{\infty} c_{k} z^{k}\right| \tag{15}
\end{equation*}
$$

$$
\leq\left|(A-B) \delta z+\sum_{k=2}^{j-1}[(A-B) \delta-B(k-1) \lambda][1+(k-1) \lambda]^{m} b_{k} a_{k} z^{k}\right|
$$

Let $z=r e^{i \theta}, r<1$, applying the Parseval's formula (see [9] p.138) on both sides of the above inequality and after simple computation, we get

$$
\begin{aligned}
& \sum_{k=2}^{j}[1+(k-1) \lambda]^{2 m} \lambda^{2}(k-1)^{2} b_{k}^{2}\left|a_{k}\right|^{2} r^{2 k}+\sum_{k=j+1}^{\infty}\left|c_{k}\right|^{2} r^{2 k} \\
\leq & (A-B)^{2}|\delta|^{2} r^{2}+\sum_{k=2}^{j-1}|(A-B) \delta-B(k-1) \lambda|^{2}[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left|a_{k}\right|^{2} r^{2 k} .
\end{aligned}
$$

Let $r \longrightarrow 1^{-}$, then on some simplification we obtain

$$
\begin{gather*}
{[1+(j-1) \lambda]^{2 m} \lambda^{2}(j-1)^{2} b_{j}^{2}\left|a_{j}\right|^{2} \leq(A-B)^{2}|\delta|^{2}} \\
+\sum_{k=2}^{j-1}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\}[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left|a_{k}\right|^{2} \quad j \geq 2 \tag{16}
\end{gather*}
$$

Now the following two cases arises:
(a) Let $(A-B)^{2}|\delta|^{2}>(k-1) \lambda\left\{2 B(A-B) \operatorname{Re}(\delta)+\left(1-B^{2}\right) \lambda(k-1)\right\}$, suppose that $j \leq M+2$, then for $j=2$, (16) gives

$$
\left|a_{2}\right| \leq \frac{(A-B)|\delta|}{(1+\lambda)^{m} \lambda b_{2}}
$$

which gives (9) for $j=2$. We establish (9) for $j \leq M+2$, from (16), by mathematical induction. Suppose (9) is valid for $j=2,3, \ldots,(k-1)$. Then it follows from (16)

$$
\begin{aligned}
{[1} & +(j-1) \lambda]^{2 m} \lambda^{2}(j-1)^{2} b_{j}^{2}\left|a_{j}\right|^{2} \\
\leq & (A-B)^{2}|\delta|^{2} \\
& +\sum_{k=2}^{j-1}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\}[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left|a_{k}\right|^{2} \\
\leq & (A-B)^{2}|\delta|^{2} \\
& +\sum_{k=2}^{j-1}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\}[1+(k-1) \lambda]^{2 m} b_{k}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\{\frac{1}{[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left\{\lambda^{k-1}(k-1)!\right\}^{2}} \prod_{n=2}^{k}|(A-B) \delta-(n-2) B|^{2}\right\} \\
= & (A-B)^{2}|\delta|^{2}+\sum_{k=2}^{j-1}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\} \\
& \times\left\{\frac{1}{\left\{\lambda^{k-1}(k-1)!\right\}^{2}} \prod_{n=2}^{k}|(A-B) \delta-(n-2) B|^{2}\right\} \\
= & (A-B)^{2}|\delta|^{2}+ \\
& \left(|(A-B) \delta-B \lambda|^{2}-\lambda^{2}\right) \frac{1}{\lambda^{2}(1!)^{2}}(A-B)^{2}|\delta|^{2}+ \\
& \left(|(A-B) \delta-2 B \lambda|^{2}-4 \lambda^{2}\right) \frac{1}{\lambda^{4}(2!)^{2}}\left((A-B)^{2}|\delta|^{2}|(A-B) \delta-B \lambda|^{2}\right) \\
= & \frac{1}{\left\{\lambda^{j-2}(j-2)!\right\}^{2}} \prod_{k=2}^{j}|(A-B) \delta-(k-2) B|^{2} .
\end{aligned}
$$

Thus, we get

$$
\left|a_{j}\right| \leq \frac{1}{[1+(j-1) \lambda]^{m} \lambda^{j-1}(j-1)!b_{j}} \prod_{k=2}^{j}|(A-B) \delta-(k-2) B|,
$$

which completes the proof of (9).
Next, we suppose $j>M+2$. Then (16) gives

$$
\begin{aligned}
& {[1+(j-1) \lambda]^{2 m} \lambda^{2}(j-1)^{2} b_{j}^{2}\left|a_{j}\right|^{2} \leq(A-B)^{2}|\delta|^{2} } \\
+ & \sum_{k=2}^{M-2}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\}[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left|a_{k}\right|^{2} \\
+ & \sum_{k=M+3}^{j-1}\left\{|(A-B) \delta-B(k-1) \lambda|^{2}-(k-1)^{2} \lambda^{2}\right\}[1+(k-1) \lambda]^{2 m} b_{k}^{2}\left|a_{k}\right|^{2} .
\end{aligned}
$$

On substituting upper estimates for $a_{2}, a_{3}, \ldots, a_{M+2}$ obtained above and simplifying, we obtain (10).
(b) Let $(A-B)^{2}|\delta|^{2} \leq(k-1) \lambda\left\{2 B(A-B) R e(\delta)+\left(1-B^{2}\right) \lambda(k-1)\right\}$, then it follows from (16)

$$
[1+(j-1) \lambda]^{2 m} \lambda^{2}(j-1)^{2} b_{j}^{2}\left|a_{j}\right|^{2} \leq(A-B)^{2}|\delta|^{2} \quad(j \geq 2)
$$

which proves (11).
The bounds in (9) are sharp for the functions $f(z)$ given by

$$
D_{\lambda, g}^{m} f(z)= \begin{cases}z(1+B z)^{\frac{(A-B) \delta}{B}} & \text { if } B \neq 0 \\ z \exp (A \delta z) & \text { if } B=0 .\end{cases}
$$

Also, the bounds in (11) are sharp for the functions $f_{k}(z)$ given by

$$
D_{\lambda, g}^{m} f_{k}(z)= \begin{cases}z(1+B z)^{\frac{(A-B) \delta}{B \lambda(k-1)}} & \text { if } B \neq 0 \\ z \exp \left(\frac{A \delta}{\lambda(k-1)} z^{k-1}\right) & \text { if } B=0\end{cases}
$$

Remark 2. If we let $\lambda=1, g(z)=\frac{z}{1-z}$ in Theorem 1, we get the result due to Attiya [4].
3. A SUFFICIENT CONDITION FOR A FUNCTION TO BE IN $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$

Theorem 2. Let the function $f(z)$ defined by (1) and let

$$
\begin{equation*}
\sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m}\{(k-1)+|(A-B) \delta-B(k-1)|\} \lambda b_{k}\left|a_{k}\right| \leq(A-B)|\delta| \tag{17}
\end{equation*}
$$

holds, then $f(z)$ belongs to $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$.
Proof. Suppose that the inequality holds. Then we have for $z \in \mathcal{U}$

$$
\begin{array}{r}
\left|D_{\lambda, g}^{m+1} f(z)-D_{\lambda, g}^{m} f(z)\right|-\mid(A-B) \delta D_{\lambda, g}^{m} f(z)- \\
B\left[D_{\lambda, g}^{m+1} f(z)-D_{\lambda, g}^{m} f(z)\right] \mid \\
=\left|\sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k} z^{k}\right|-\mid(A-B) \delta\left[z+\sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m} b_{k} a_{k} z^{k}\right]- \\
B \sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m} \lambda(k-1) b_{k} a_{k} z^{k} \mid
\end{array}
$$

$\leq \sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m}\{(k-1) \lambda+|(A-B) \delta-B(k-1) \lambda|\} b_{k}\left|a_{k}\right| r^{k}-(A-B)|\delta| r$.
Letting $r \longrightarrow 1^{-}$, then we have

$$
\begin{gathered}
\left|D_{\lambda, g}^{m+1} f(z)-D_{\lambda, g}^{m} f(z)\right|-\mid(A-B) \delta D_{\lambda, g}^{m} f(z)- \\
B\left[D_{\lambda, g}^{m+1} f(z)-D_{\lambda, g}^{m} f(z)\right] \mid \\
\leq \sum_{k=2}^{\infty}[1+(k-1) \lambda]^{m}\{(k-1) \lambda+|(A-B) \delta-B(k-1) \lambda|\} b_{k}\left|a_{k}\right|-(A-B)|\delta| \leq 0 .
\end{gathered}
$$

Hence it follows that

$$
\frac{\left|\frac{D_{\lambda, g}^{m+1} f(z)}{D_{\lambda, g}^{m} f(z)}-1\right|}{\left|B\left[\frac{D_{\lambda, g}^{m+1} f(z)}{D_{\lambda, g}^{m} f(z)}-1\right]-(A-B) \delta\right|}<1, \quad z \in \mathcal{U}
$$

Letting

$$
w(z)=\frac{\frac{D_{\lambda, g}^{m+1} f(z)}{D_{\lambda, g}^{m} f(z)}-1}{B\left[\frac{D_{\lambda, g}^{m+g} f(z)}{D_{\lambda, g}^{m} f(z)}-1\right]-(A-B) \delta},
$$

then $w(0)=0, w(z)$ is analytic in $|z|<1$ and $|w(z)|<1$. Hence we have

$$
\frac{D_{\lambda, g}^{m+1} f(z)}{D_{\lambda, g}^{m} f(z)}=\frac{1+[B+\delta(A-B)] w(z)}{1+B w(z)}
$$

which shows that f belongs to $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$.

3. Subordination Results For the Class $\mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$

Definition 1. A sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ of complex numbers is called a subordinating factor sequence if, whenever $f(z)$ is analytic, univalent and convex in \mathcal{U}, we have the subordination given by

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k} a_{k} z^{k} \prec f(z) \quad\left(z \in \mathcal{U}, a_{1}=1\right) \tag{18}
\end{equation*}
$$

Lemma 1. The sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} b_{k} z^{k}\right\}>0 \quad(z \in \mathcal{U}) \tag{19}
\end{equation*}
$$

For convenience, we shall henceforth

$$
\begin{align*}
& \sigma_{k}(\delta, \lambda, m, A, B) \tag{20}\\
& \quad=[1+(k-1) \lambda]^{m} \lambda\{(k-1)+|(A-B) \delta-B(k-1)|\} b_{k}
\end{align*}
$$

to be real.
Let $\widetilde{\mathcal{H}}_{\lambda}^{m}(g, \delta ; A, B)$ denote the class of functions $f \in \mathcal{A}$ whose coefficients satisfy the conditions (17). We note that $\widetilde{\mathcal{H}}_{\lambda}^{m}(g, \delta ; A, B) \subseteq \mathcal{H}_{\lambda}^{m}(g, \delta ; A, B)$.

Theorem 3. Let the function $f(z)$ defined by (1) be in the class $\widetilde{\mathcal{H}}_{\lambda}^{m}(g, \delta ; A, B)$ where $-1 \leq B<A \leq 1$. Also let \mathcal{C} denote the familiar class of functions $f \in \mathcal{A}$ which are also univalent and convex in \mathcal{U}. Then

$$
\begin{equation*}
\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}(f * g)(z) \prec g(z) \quad(z \in \mathcal{U} ; g \in \mathcal{C}) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{R e}(f(z))>-\frac{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)}{\sigma_{2}(\delta, \lambda, m, A, B)} \quad(z \in \mathcal{U}) \tag{22}
\end{equation*}
$$

The constant $\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}$ is the best estimate.
Proof. Let $f(z) \in \widetilde{\mathcal{H}}_{\lambda}^{m}(\delta ; A, B)$ and let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in \mathcal{C}$. Then

$$
\begin{aligned}
& \frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}(f * g)(z) \\
& \quad=\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}\left(z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}\right) .
\end{aligned}
$$

Thus, by Definition 1, the assertion of the theorem will hold if the sequence

$$
\left\{\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]} a_{k}\right\}_{k=1}^{\infty}
$$

is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 1 , this will be true if and only if

$$
\begin{equation*}
\mathfrak{R e}\left\{1+2 \sum_{k=1}^{\infty} \frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]} a_{k} z^{k}\right\}>0 \quad(z \in \mathcal{U}) \tag{23}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \mathfrak{R e}\left\{1+\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)} \sum_{k=1}^{\infty} a_{k} z^{k}\right\} \\
& =\mathfrak{R e}\left\{1+\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)} a_{1} z\right. \\
& \left.\quad+\frac{1}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)} \sum_{k=2}^{\infty} \sigma_{2}(\delta, \lambda, m, A, B) a_{k} z^{k}\right\} \\
& \geq 1-\left\{\left|\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)}\right| r\right. \\
& \left.\quad+\frac{1}{|(A-B)| \delta\left|+\sigma_{2}(\delta, \lambda, m, A, B)\right|} \sum_{k=2}^{\infty} \sigma_{k}(\delta, \lambda, m, A, B)\left|a_{k}\right| r^{k}\right\}
\end{aligned}
$$

Since $\sigma_{k}(\delta, \lambda, m, A, B)$ is a real increasing function of $k(k \geq 2)$

$$
\begin{aligned}
1- & \left\{\left|\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)}\right| r+\right. \\
& \left.\frac{1}{|(A-B)| \delta\left|+\sigma_{2}(\delta, \lambda, m, A, B)\right|} \sum_{k=2}^{\infty} \sigma_{k}(\delta, \lambda, m, A, B)\left|a_{k}\right| r^{k}\right\} \\
& >1-\left\{\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)} r+\frac{(A-B)|\delta|}{(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)} r\right\} \\
& =1-r>0
\end{aligned}
$$

Thus (23) holds true in \mathcal{U}. This proves the inequality (21). The inequality (22) follows by taking the convex function $g(z)=\frac{z}{1-z}=z+\sum_{k=2}^{\infty} z^{k}$ in (21). To prove the sharpness of the constant $\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}$, we consider $f_{0}(z) \in$ $\widetilde{\mathcal{H}}_{\lambda}^{m}(g, \delta ; A, B)$ given by

$$
f_{0}(z)=z-\frac{(A-B)|\delta|}{\sigma_{2}(\delta, \lambda, m, A, B)} z^{2} \quad(-1 \leq B<A \leq 1)
$$

Thus from (21), we have

$$
\begin{equation*}
\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(b, \lambda, m, A, B)\right]} f_{0}(z) \prec \frac{z}{1-z} \tag{24}
\end{equation*}
$$

It can be easily verified that

$$
\min \left\{\operatorname{Re}\left(\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]} f_{0}(z)\right)\right\}=-\frac{1}{2} \quad(z \in \mathcal{U})
$$

This shows that the constant $\frac{\sigma_{2}(\delta, \lambda, m, A, B)}{2\left[(A-B)|\delta|+\sigma_{2}(\delta, \lambda, m, A, B)\right]}$ is best possible.
Remark 3.By specializing the parameters, the above result reduces to various other results obtained by several authors.

References

[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[2] M. K. Aouf, S. Owa and M. Obradović, Certain classes of analytic functions of complex order and type beta, Rend. Mat. Appl. (7) 11 (1991), no. 4, 691-714.
[3] M. K. Aouf, H. E. Darwish and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (2001), no. 10, 14431452.
[4] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput. 187 (2007), no. 1, 62-67.
[5] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745.
[6] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103(1999), 1-13.
[7] J. Dziok and H. M. Srivastava, Some sublasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv. Stud. Contemp. Math., 5(2002), 115-125.
[8] J. Dziok and H. M. Srivastava, Certain sublasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14(2003), 7-18.
[9] P.L.Duren, Univalent functions, Springer - verlag, Berlin, 1983.
[10] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyss. Ucebn. Zaved. Matematika, 10(1978), 83-89.
[11] G. Murugusundaramoorthy and N. Magesh, Starlike and convex functions of complex order involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 18 (2007), no. 5-6, 419-425.
[12.] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), no. 1, 1-12.
[13.] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[14.] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysisfifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[15.] N. S. Sohi and L. P. Singh, A class of bounded starlike functions of complex order, Indian J. Math. 33 (1991), no. 1, 29-35.
[16.] C.Selvaraj and K.R.Karthikeyan, Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun. 12 (2008), no. 2.
[17.] C.Selvaraj and K.R.Karthikeyan, Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequ. Appl. 2 (2008), no. 4, 449-458.
[18.] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689-693.
C.Selvaraj

Department of Mathematics, Presidency College, Chennai-600 005, Tamilnadu, India email: pamc9439@yahoo.co.in
C. Santhosh Moni
R.M.K.Engineering College
R.S.M.Nagar,

Kavaraipettai-601206,
Thiruvallur District, Gummidipoondi Taluk, Tamilnadu,India
email: csmrmk@yahoo.com.

