HOMOMORPHISMS BETWEEN C^{*}-ALGEBRAS AND THEIR STABILITIES

Abbas Najati and Asghar Rahimi

Abstract. In this paper, we introduce the following additive type functional equation

$$
f(r x+s y)=\frac{r+s}{2} f(x+y)+\frac{r-s}{2} f(x-y),
$$

where $r, s \in \mathbb{R}$ with $r+s, r-s \neq 0$. Also we investigate the Hyers-Ulam-Rassias stability of this functional equation in Banach modules over a unital C^{*}-algebra. These results are applied to investigate homomorphisms between C^{*}-algebras.

2000 Mathematics Subject Classification: Primary 39B52, 46L05, 47B48.

1. Introduction

A classical question in the theory of functional equations is the following: When is it true that a function, which approximately satisfies a functional equation \mathcal{E} must be close to an exact solution of \mathcal{E} ? If the problem accepts a solution, we say that the equation \mathcal{E} is stable. Such a problem was formulated by Ulam [32] in 1940 and solved in the next year for the Cauchy functional equation by Hyers [9]. It gave rise the stability theory for functional equations. Aoki [2] generalized the Hyers theorem for approximately additive mappings. Th.M. Rassias [28] extended the Hyers theorem by obtaining a unique linear mapping under certain continuity assumption when the Cauchy difference is allowed to be unbounded. P. Găvruta [7] provided a further generalization of the Th.M. Rassias theorem. For the history and various aspects of this theory we refer the reader to $[26,27,29,30]$. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [3], [4], [5], [8], [11] and [15]-[25]). We also refer the readers to the books [1], [6], [10], [12] and [31].

In this paper, we introduce the following additive functional equation

$$
\begin{equation*}
f(r x+s y)=\frac{r+s}{2} f(x+y)+\frac{r-s}{2} f(x-y), \tag{1}
\end{equation*}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
where $r, s \in \mathbb{R}$ with $r+s, r-s \neq 0$. We investigate the Hyers-Ulam-Rassias stability of the functional equation (1) in Banach modules over a unital C^{*}-algebra. These results are applied to investigate homomorphisms between unital C^{*}-algebras.
2. Hyers-Ulam-Rassias stability of the functional equation (1) in Banach modules over a C^{*}-algebra

Throughout this section, assume that A is a unital C^{*}-algebra with norm |.|, unit 1. Also we assume that X and Y are (unit linked) normed left A-module and Banach left A-module with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, respectively. Let $U(A)$ be the set of unitary elements in A and let $r, s \in \mathbb{R}$ with $r+s, r-s \neq 0$. For a given mapping $f: X \rightarrow Y, u \in U(A)$ and a given $\mu \in \mathbb{C}$, we define $D_{u} f, D_{\mu} f: X^{2} \rightarrow Y$ by

$$
\begin{aligned}
D_{u} f(x, y) & :=f(r u x+s u y)-\frac{r+s}{2} u f(x+y)-\frac{r-s}{2} u f(x-y), \\
D_{\mu} f(x, y) & :=f(r \mu x+s \mu y)-\frac{r+s}{2} \mu f(x+y)-\frac{r-s}{2} \mu f(x-y)
\end{aligned}
$$

for all $x, y \in X$. An additive mapping $f: X \rightarrow Y$ is called A-linear if $f(a x)=a f(x)$ for all $x \in X$ and all $a \in A$.

Proposition 1. Let $L: X \rightarrow Y$ be a mapping with $L(0)=0$ such that

$$
\begin{equation*}
D_{u} L(x, y)=0 \tag{2}
\end{equation*}
$$

for all $x, y \in X$ and all $u \in U(A)$. Then L is A-linear.
Proof. Letting $y=x$ and $y=-x$ in (2), respectively, we get

$$
\begin{equation*}
L((r+s) u x)=\frac{r+s}{2} u L(2 x), \quad L((r-s) u x)=\frac{r-s}{2} u L(2 x) \tag{3}
\end{equation*}
$$

for all $x \in X$ and all $u \in U(A)$. Therefore it follows from (2) and (3) that

$$
\begin{equation*}
L(r u x+s u y)=L\left(\frac{r+s}{2} u(x+y)\right)+L\left(\frac{r-s}{2} u(x-y)\right) \tag{4}
\end{equation*}
$$

for all $x, y \in X$ and all $u \in U(A)$. Replacing x by $\frac{1}{r+s} x+\frac{1}{r-s} y$ and y by $\frac{1}{r+s} x-\frac{1}{r-s} y$ in (4), we get

$$
\begin{equation*}
L(u x+u y)=L(u x)+L(u y) \tag{5}
\end{equation*}
$$

for all $x, y \in X$ and all $u \in U(A)$. Hence L is additive (by letting $u=1$ in (5)) and (3) implies that $L((r+s) u x)=(r+s) u L(x)$ for all $x \in X$ and all $u \in U(A)$. Since $r+s \neq 0$, we get

$$
\begin{equation*}
L(u x)=u L(x) \tag{6}
\end{equation*}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x \in X$ and all $u \in U(A)$. It is clear that (6) holds for $u=0$.
Now let $a \in A(a \neq 0)$ and m an integer greater than $4|a|$. Then $\left|\frac{a}{m}\right|<\frac{1}{4}<$ $1-\frac{2}{3}=\frac{1}{3}$. By Theorem 1 of [14], there exist three elements $u_{1}, u_{2}, u_{3} \in U(A)$ such that $\frac{3}{m} a=u_{1}+u_{2}+u_{3}$. So $a=\frac{m}{3}\left(\frac{3}{m} a\right)=\frac{m}{3}\left(u_{1}+u_{2}+u_{3}\right)$. Since L is additive, by (6) we have

$$
\begin{aligned}
L(a x) & =\frac{m}{3} L\left(u_{1} x+u_{2} x+u_{3} x\right)=\frac{m}{3}\left[L\left(u_{1} x\right)+L\left(u_{2} x\right)+L\left(u_{3} x\right)\right] \\
& =\frac{m}{3}\left(u_{1}+u_{2}+u_{3}\right) L(x)=\frac{m}{3} \cdot \frac{3}{m} a L(x)=a L(x)
\end{aligned}
$$

for all $x \in X$. So $L: X \rightarrow Y$ is A-linear, as desired.

Corollary 2. Let $L: X \rightarrow Y$ be a mapping with $L(0)=0$ such that

$$
D_{1} L(x, y)=0
$$

for all $x, y \in X$. Then L is additive.
Corollary 3. A mapping $L: X \rightarrow Y$ with $L(0)=0$ satisfies

$$
D_{\mu} L(x, y)=0
$$

for all $x, y \in X$ and all $\mu \in \mathbb{T}:=\{\mu \in \mathbb{C}:|\mu|=1\}$, if and only if L is \mathbb{C}-linear.
Now, we investigate the Hyers-Ulam-Rassias stability of the functional equation (1) in Banach modules.

We recall that throughout this paper $r, s \in \mathbb{R}$ with $r+s, r-s \neq 0$.
Theorem 4. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} y\right)=0, \tag{7}\\
\widetilde{\varphi}(x):=\sum_{k=0}^{\infty} \frac{1}{2^{k}}\left\{\varphi\left(\frac{2^{k+1} r x}{r^{2}-s^{2}}, \frac{-2^{k+1} s x}{r^{2}-s^{2}}\right)\right. \tag{8}\\
\left.+\varphi\left(\frac{2^{k} x}{r+s}, \frac{2^{k} x}{r+s}\right)+\varphi\left(\frac{2^{k} x}{r-s}, \frac{-2^{k} x}{r-s}\right)\right\}<\infty, \\
\left\|D_{1} f(x, y)\right\|_{Y} \leq \varphi(x, y) \tag{9}
\end{gather*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $L: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-L(x)\|_{Y} \leq \frac{1}{2} \widetilde{\varphi}(x) \tag{10}
\end{equation*}
$$

for all $x \in X$.
A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...

Proof. It follows from (9)that

$$
\begin{aligned}
& \left\|D_{1} f(x, y)-D_{1} f\left(\frac{x+y}{2}, \frac{x+y}{2}\right)-D_{1} f\left(\frac{x-y}{2}, \frac{y-x}{2}\right)\right\|_{Y} \\
& \leq \varphi(x, y)+\varphi\left(\frac{x+y}{2}, \frac{x+y}{2}\right)+\varphi\left(\frac{x-y}{2}, \frac{y-x}{2}\right)
\end{aligned}
$$

for all $x, y \in X$. Therefore

$$
\begin{align*}
& \left\|f(r x+s y)-f\left(\frac{r+s}{2}(x+y)\right)-f\left(\frac{r-s}{2}(x-y)\right)\right\|_{Y} \tag{11}\\
& \leq \varphi(x, y)+\varphi\left(\frac{x+y}{2}, \frac{x+y}{2}\right)+\varphi\left(\frac{x-y}{2}, \frac{y-x}{2}\right)
\end{align*}
$$

for all $x, y \in X$. Replacing x by $\frac{1}{r+s} x+\frac{1}{r-s} y$ and y by $\frac{1}{r+s} x-\frac{1}{r-s} y$ in (11), we get

$$
\begin{align*}
\|f(x+y)-f(x)-f(y)\|_{Y} \leq & \varphi\left(\frac{x}{r+s}+\frac{y}{r-s}, \frac{x}{r+s}-\frac{y}{r-s}\right) \tag{12}\\
& +\varphi\left(\frac{x}{r+s}, \frac{x}{r+s}\right)+\varphi\left(\frac{y}{r-s}, \frac{-y}{r-s}\right)
\end{align*}
$$

for all $x, y \in X$. Letting $y=x$ in (12), we get

$$
\begin{align*}
\|f(2 x)-2 f(x)\|_{Y} \leq & \varphi\left(\frac{2 r x}{r^{2}-s^{2}}, \frac{-2 s x}{r^{2}-s^{2}}\right) \tag{13}\\
& +\varphi\left(\frac{x}{r+s}, \frac{x}{r+s}\right)+\varphi\left(\frac{x}{r-s}, \frac{-x}{r-s}\right)
\end{align*}
$$

for all $x \in X$. For convenience, set

$$
\psi(x):=\varphi\left(\frac{2 r x}{r^{2}-s^{2}}, \frac{-2 s x}{r^{2}-s^{2}}\right)+\varphi\left(\frac{x}{r+s}, \frac{x}{r+s}\right)+\varphi\left(\frac{x}{r-s}, \frac{-x}{r-s}\right)
$$

for all $x \in X$. It follows from (8) that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{2^{k}} \psi\left(2^{k} x\right)=\widetilde{\varphi}(x)<\infty \tag{14}
\end{equation*}
$$

for all $x \in X$. Replacing x by $2^{k} x$ in (13) and dividing both sides of (13) by 2^{k+1}, we get

$$
\left\|\frac{1}{2^{k+1}} f\left(2^{k+1} x\right)-\frac{1}{2^{k}} f\left(2^{k} x\right)\right\|_{Y} \leq \frac{1}{2^{k+1}} \psi\left(2^{k} x\right)
$$

for all $x \in X$ and all $k \in \mathbb{N}$. Therefore we have

$$
\begin{align*}
\left\|\frac{1}{2^{k+1}} f\left(2^{k+1} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|_{Y} & \leq \sum_{l=m}^{k}\left\|\frac{1}{2^{l+1}} f\left(2^{l+1} x\right)-\frac{1}{2^{l}} f\left(2^{l} x\right)\right\|_{Y} \\
& \leq \frac{1}{2} \sum_{l=m}^{k} \frac{1}{2^{l}} \psi\left(2^{l} x\right) \tag{15}
\end{align*}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x \in X$ and all integers $k \geq m \geq 0$. It follows from (14) and (15) that the sequence $\left\{\frac{f\left(2^{k} x\right)}{2^{k}}\right\}$ is a Cauchy sequence in Y for all $x \in X$, and thus converges by the completeness of Y. So we can define the mapping $L: X \rightarrow Y$ by

$$
L(x)=\lim _{k \rightarrow \infty} \frac{f\left(2^{k} x\right)}{2^{k}}
$$

for all $x \in X$. Letting $m=0$ in (15) and taking the limit as $k \rightarrow \infty$ in (15), we obtain the desired inequality (10). It follows from the definition of $L,(7)$ and (9) that

$$
\begin{aligned}
\left\|D_{1} L(x, y)\right\|_{Y} & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|D_{1} f\left(2^{k} x, 2^{k} y\right)\right\|_{Y} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} y\right)=0
\end{aligned}
$$

for all $x, y \in X$. Therefore the mapping $L: X \rightarrow Y$ satisfies the equation (1) and $L(0)=0$. Hence by Corollary $2, L$ is a additive mapping.

To prove the uniqueness of L, let $L^{\prime}: X \rightarrow Y$ be another additive mapping satisfying (10). Therefore it follows from (10) and (14) that

$$
\begin{aligned}
\left\|L(x)-L^{\prime}(x)\right\|_{Y} & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|f\left(2^{k} x\right)-L^{\prime}\left(2^{k} x\right)\right\|_{Y} \\
& \leq \frac{1}{2} \lim _{k \rightarrow \infty} \frac{1}{2^{k}} \sum_{l=0}^{\infty} \frac{1}{2^{l}} \psi\left(2^{l+k} x\right) \\
& =\frac{1}{2} \lim _{k \rightarrow \infty} \sum_{l=k}^{\infty} \frac{1}{2^{l}} \psi\left(2^{l} x\right)=0
\end{aligned}
$$

for all $x \in X$. So $L(x)=L^{\prime}(x)$ for all $x \in X$. It completes the proof.
Theorem 5. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (7), (8) and

$$
\left\|D_{u} f(x, y)\right\| \leq \varphi(x, y)
$$

for all $x, y \in X$ and all $u \in U(A)$. Then there exists a unique A-linear mapping $L: X \rightarrow Y$ satisfying (10) for all $x \in X$.

Proof. By Theorem 4 (letting $u=1$), there exists a unique additive mapping L : $X \rightarrow Y$ satisfying (10) and

$$
L(x)=\lim _{k \rightarrow \infty} \frac{f\left(2^{k} x\right)}{2^{k}}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x \in X$. By the assumption, we have

$$
\begin{aligned}
\left\|D_{u} L(x, y)\right\|_{Y} & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|D_{u} f\left(2^{k} x, 2^{k} y\right)\right\|_{Y} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} y\right)=0
\end{aligned}
$$

for all $x, y \in X$ and all $u \in U(A)$. Since $L(0)=0$, by Proposition 1 the additive mapping $L: X \rightarrow Y$ is A-linear.

Corollary 6. Let δ, ε, p and q be non-negative real numbers such that $0<p, q<1$. Assume that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{gathered}
\left\|D_{1} f(x, y)\right\|_{Y} \leq \delta+\varepsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{q}\right) \\
\left(\left\|D_{u} f(x, y)\right\|_{Y} \leq \delta+\varepsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{q}\right)\right)
\end{gathered}
$$

for all $x, y \in X$ (and all $u \in U(A))$. Then there exists a unique additive (A-linear) mapping $L: X \rightarrow Y$ such that

$$
\begin{align*}
\|f(x)-L(x)\|_{Y} \leq & 3 \delta+\frac{2|r|^{p}+|r+s|^{p}+|r-s|^{p}}{\left(2-2^{p}\right)\left|r^{2}-s^{2}\right|^{p}} \varepsilon\|x\|_{X}^{p} \\
& +\frac{2|s|^{q}+|r+s|^{q}+|r-s|^{q}}{\left(2-2^{q}\right)\left|r^{2}-s^{2}\right|^{q}} \varepsilon\|x\|_{X}^{q} \tag{16}
\end{align*}
$$

for all $x \in X$.
Proof. Define $\varphi(x, y):=\delta+\varepsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{q}\right)$, and apply Theorem 4 (Theorem 5).
Remark 7. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there exists a function $\Phi: X^{2} \rightarrow[0, \infty)$ satisfying

$$
\begin{gather*}
\lim _{n \rightarrow \infty} 2^{n} \Phi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0, \tag{17}\\
\widetilde{\Phi}(x):=\sum_{k=1}^{\infty} 2^{k}\left\{\Phi\left(\frac{2 r x}{2^{k}\left(r^{2}-s^{2}\right)}, \frac{-2 s x}{2^{k}\left(r^{2}-s^{2}\right)}\right)+\Phi\left(\frac{x}{2^{k}(r+s)}, \frac{x}{2^{k}(r+s)}\right)\right. \tag{18}\\
\left.+\Phi\left(\frac{x}{2^{k}(r-s)}, \frac{-x}{2^{k}(r-s)}\right)\right\}<\infty, \\
\left\|D_{1} f(x, y)\right\| \leq \Phi(x, y) \quad\left(\left\|D_{u} f(x, y)\right\| \leq \Phi(x, y)\right)
\end{gather*}
$$

for all $x, y \in X$ (and all $a \in U(A)$). By a similar method to the proof of Theorem 4 , one can show that there exists a unique additive (A-linear) mapping $L: X \rightarrow Y$ satisfying

$$
\|f(x)-L(x)\| \leq \frac{1}{2} \widetilde{\Phi}(x)
$$

for all $x \in X$.
For the case $\Phi(x, y):=\varepsilon\left(\|x\|^{p}+\|y\|^{q}\right) \quad$ (where ε, p and q are non-negative real numbers with $p, q>1$), there exists a unique additive (A-linear) mapping $L: X \rightarrow Y$ satisfying

$$
\begin{align*}
\|f(x)-L(x)\|_{Y} \leq & \frac{2|r|^{p}+|r+s|^{p}+|r-s|^{p}}{\left(2^{p}-2\right)\left|r^{2}-s^{2}\right|^{p}} \varepsilon\|x\|_{X}^{p} \\
& +\frac{2|s|^{q}+|r+s|^{q}+|r-s|^{q}}{\left(2^{q}-2\right)\left|r^{2}-s^{2}\right|^{q}} \varepsilon\|x\|_{X}^{q} \tag{19}
\end{align*}
$$

for all $x \in X$.
Corollary 8. Let ε, p and $q>0$ be non-negative real numbers such that $\lambda:=p+q \neq$ 1 and $|r| \neq|r|^{\lambda}$. Assume that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{gathered}
\left\|D_{1} f(x, y)\right\|_{Y} \leq \varepsilon\|x\|_{X}^{p}\|y\|_{X}^{q} \\
\left(\left\|D_{u} f(x, y)\right\|_{Y} \leq \varepsilon\|x\|_{X}^{p}+\|y\|_{X}^{q}\right)
\end{gathered}
$$

for all $x, y \in X($ and all $u \in U(A))$. Then f is additive $(A$-linear $)$.

3. Homomorphisms Between C^{*}-algebras

Homomorphisms between C^{*}-algebrasThroughout this section, assume that A is a unital C^{*}-algebra with norm $\|.\|_{A}$ and B is a C^{*}-algebra with norm $\|\cdot\|_{B}$. We recall that throughout this paper $r, s \in \mathbb{R}$ with $r+s, r-s \neq 0$.

We investigate C^{*}-algebra homomorphisms between C^{*}-algebras.
Theorem 9. Let $f: A \rightarrow B$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (7), (8) and

$$
\begin{align*}
\left\|D_{\mu} f(x, y)\right\|_{B} & \leq \varphi(x, y) \tag{20}\\
\left\|f\left(2^{k} u^{*}\right)-f\left(2^{k} u\right)^{*}\right\|_{B} & \leq \varphi\left(2^{k} u, 2^{k} u\right) \tag{21}\\
\left\|f\left(2^{k} u x\right)-f\left(2^{k} u\right) f(x)\right\|_{B} & \leq \varphi\left(2^{k} u x, 2^{k} u x\right) \tag{22}
\end{align*}
$$

for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{N}$. Then there exists a unique C^{*}-algebra homomorphism $H: A \rightarrow B$ satisfying (10) for all $x \in X$. Moreover $H(x)[H(y)-f(y)]=0$ for all $x, y \in A$.

Proof. By the same reasoning as in the proof of Theorem 5, there exists a unique \mathbb{C}-linear mapping $H: A \rightarrow B$ satisfying (10). The mapping $H: A \rightarrow B$ is defined by

$$
H(x)=\lim _{k \rightarrow \infty} \frac{1}{2^{k}} f\left(2^{k} x\right)
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x \in A$. Hence it follows from (7), (21) and (22) that

$$
\begin{aligned}
\left\|H\left(u^{*}\right)-H(u)^{*}\right\|_{B} & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|f\left(2^{k} u^{*}\right)-f\left(2^{k} u\right)^{*}\right\|_{B} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{k}} \varphi\left(2^{k} u, 2^{k} u\right)=0, \\
\|H(u x)-H(u) f(x)\|_{B} & =\lim _{k \rightarrow \infty} \frac{1}{2^{k}}\left\|f\left(2^{k} u x\right)-f\left(2^{k} u\right) f(x)\right\|_{B} \\
& \leq \lim _{k \rightarrow \infty} \frac{1}{2^{k}} \varphi\left(2^{k} u x, 2^{k} u x\right)=0
\end{aligned}
$$

for all $x \in A$ and all $u \in U(A)$. So $H\left(u^{*}\right)=H(u)^{*}$ and $H(u x)=H(u) f(x)$ for all $x \in A$ and all $u \in U(A)$. Since H is \mathbb{C}-linear and each $x \in A$ is a finite linear combination of unitary elements (see [13]), i.e., $x=\sum_{k=1}^{m} \lambda_{k} u_{k}$, where $\lambda_{k} \in \mathbb{C}$ and $u_{k} \in U(A)$ for all $1 \leq k \leq n$, we have

$$
\begin{aligned}
& H\left(x^{*}\right)=H\left(\sum_{k=1}^{m} \overline{\lambda_{k}} u_{k}^{*}\right)=\sum_{k=1}^{m} \overline{\lambda_{k}} H\left(u_{k}^{*}\right)=\sum_{k=1}^{m} \overline{\lambda_{k}} H\left(u_{k}\right)^{*} \\
&=\left(\sum_{k=1}^{m} \lambda_{k} H\left(u_{k}\right)\right)^{*}=\left[H\left(\sum_{k=1}^{m} \lambda_{k} u_{k}\right)\right]^{*}=H(x)^{*} \\
& H(x y)=H\left(\sum_{k=1}^{m} \lambda_{k} u_{k} y\right)=\sum_{k=1}^{m} \lambda_{k} H\left(u_{k} y\right) \\
&= \sum_{k=1}^{m} \lambda_{k} H\left(u_{k}\right) f(y)=H\left(\sum_{k=1}^{m} \lambda_{k} u_{k}\right) f(y)=H(x) f(y)
\end{aligned}
$$

for all $x, y \in A$. Since H is \mathbb{C}-linear, we have

$$
H(x y)=\lim _{k \rightarrow \infty} \frac{1}{2^{k}} H\left(2^{k} x y\right)=\lim _{k \rightarrow \infty} \frac{1}{2^{k}} H(x) f\left(2^{k} y\right)=H(x) H(y)
$$

for all $x, y \in A$. Therefore the mapping $H: A \rightarrow B$ is a C^{*}-algebra homomorphism and $H(x)[H(y)-f(y)]=0$ for all $x, y \in A$.

Corollary 10. Let δ, ε, p and q be non-negative real numbers such that $0<p, q<1$. Assume that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{aligned}
\left\|D_{\mu} f(x, y)\right\|_{Y} & \leq \delta+\varepsilon\left(\|x\|_{X}^{p}+\|y\|_{X}^{q}\right) \\
\left\|f\left(2^{k} u^{*}\right)-f\left(2^{k} u\right)^{*}\right\|_{B} & \leq \delta+\varepsilon\left(2^{k p}+2^{k q}\right), \\
\left\|f\left(2^{k} u x\right)-f\left(2^{k} u\right) f(x)\right\|_{B} & \leq \delta+\varepsilon\left(2^{k p}\|x\|_{X}^{p}+2^{k q}\|x\|_{X}^{q}\right)
\end{aligned}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{N}$. Then there exists a unique C^{*}-algebra homomorphism $H: A \rightarrow B$ satisfying (16) for all $x \in X$. Moreover

$$
H(x)[H(y)-f(y)]=0
$$

for all $x, y \in A$.
Remark 11. Let $f: X \rightarrow Y$ be a mapping with $f(0)=0$ for which there exists a function $\Phi: X^{2} \rightarrow[0, \infty)$ satisfying (17), (18) and

$$
\begin{aligned}
\left\|D_{\mu} f(x, y)\right\|_{B} & \leq \Phi(x, y), \\
\left\|f\left(\frac{u^{*}}{2^{k}}\right)-f\left(\frac{u}{2^{k}}\right)^{*}\right\|_{B} & \leq \Phi\left(\frac{u}{2^{k}}, \frac{u}{2^{k}}\right), \\
\left\|f\left(\frac{u x}{2^{k}}\right)-f\left(\frac{u}{2^{k}}\right) f(x)\right\|_{B} & \leq \Phi\left(\frac{u x}{2^{k}}, \frac{u x}{2^{k}}\right)
\end{aligned}
$$

for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{N}$. By a similar method to the proof of Theorem 9 , one can show that there exists a unique C^{*}-algebra homomorphism $H: A \rightarrow B$ satisfying (10) and $H(x)[H(y)-f(y)]=0$ for all $x, y \in A$.

For the case $\Phi(x, y):=\varepsilon\left(\|x\|^{p}+\|y\|^{q}\right.$) (where ε, p and q are non-negative real numbers with $p, q>1$), there exists a unique C^{*}-algebra homomorphism $H: A \rightarrow B$ satisfying (19) and $H(x)[H(y)-f(y)]=0$ for all $x, y \in A$.

Applying Corollary 8, Theorem 9 and Remark 11, we get the following results.
Theorem 12. Let ε, p and $q>0$ be non-negative real numbers such that $\lambda:=p+q<$ 1 and $|r| \neq|r|^{\lambda}$. Let $f: A \rightarrow B$ be a mapping satisfying $f(0)=0$ for which there exists a function $\varphi: X^{2} \rightarrow[0, \infty)$ satisfying (7) and

$$
\begin{aligned}
\left\|D_{\mu} f(x, y)\right\|_{Y} & \leq \varepsilon\|x\|_{X}^{p}\|y\|_{X}^{q} \\
\left\|f\left(2^{k} u^{*}\right)-f\left(2^{k} u\right)^{*}\right\|_{B} & \leq \varphi\left(2^{k} u, 2^{k} u\right), \\
\left\|f\left(2^{k} u x\right)-f\left(2^{k} u\right) f(x)\right\|_{B} & \leq \varphi\left(2^{k} u x, 2^{k} u x\right)
\end{aligned}
$$

for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{N}$. Then f is a C^{*}-algebra homomorphism.
Theorem 13. Let ε, p and $q>0$ be non-negative real numbers such that $\lambda:=p+q>$ 1 and $|r| \neq|r|^{\lambda}$. Let $f: A \rightarrow B$ be a mapping satisfying $f(0)=0$ for which there exists a function $\Phi: X^{2} \rightarrow[0, \infty)$ satisfying (17) and

$$
\begin{aligned}
\left\|D_{\mu} f(x, y)\right\|_{Y} & \leq \varepsilon\|x\|_{X}^{p}\|y\|_{X}^{q} \\
\left\|f\left(\frac{u^{*}}{2^{k}}\right)-f\left(\frac{u}{2^{k}}\right)^{*}\right\|_{B} & \leq \Phi\left(\frac{u}{2^{k}}, \frac{u}{2^{k}}\right), \\
\left\|f\left(\frac{u x}{2^{k}}\right)-f\left(\frac{u}{2^{k}}\right) f(x)\right\|_{B} & \leq \Phi\left(\frac{u x}{2^{k}}, \frac{u x}{2^{k}}\right)
\end{aligned}
$$

A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{N}$. Then f is a C^{*}-algebra homomorphism.

Corollary 14. Let ε, p and $q>0$ be non-negative real numbers such that $\lambda:=$ $p+q \neq 1$ and $|r| \neq|r|^{\lambda}$. Assume that a mapping $f: X \rightarrow Y$ with $f(0)=0$ satisfies the inequality

$$
\begin{aligned}
\left\|D_{\mu} f(x, y)\right\|_{Y} & \leq \varepsilon\|x\|_{X}^{p}\|y\|_{X}^{q} \\
\left\|f\left(2^{k} u^{*}\right)-f\left(2^{k} u\right)^{*}\right\|_{B} & \leq \varepsilon 2^{k \lambda}, \\
\left\|f\left(2^{k} u x\right)-f\left(2^{k} u\right) f(x)\right\|_{B} & \leq \varepsilon 2^{k \lambda}\|x\|_{X}^{k \lambda}
\end{aligned}
$$

for all $x, y \in A$, all $u \in U(A)$, all $\mu \in \mathbb{S}^{1}$ and all $k \in \mathbb{Z}$. Then f is a C^{*}-algebra homomorphism.

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[3] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
[4] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[6] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[7] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[8] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), 217-235.
[9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[10] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[11] G. Isac and Th. M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228.
[12] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[13] R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, New York, 1983.
[14] R.V. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[15] M.S. Moslehian and Th.M. Rassias, Stability of functional equations in nonArchimedian spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[16] A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bull. Belgian Math. Soc.-Simon Stevin 14 (2007), 755-774.
[17] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), 569-574.
[18] A. Najati and M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl. 337 (2008), 399-415.
[19] A. Najati and C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl. 335 (2007), 763-778.
[20] A. Najati and C. Park, The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, J. Difference Equat. Appl. 14 (2008), 459-479.
[21] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl. 275 (2002), 711-720.
[22] C. Park, Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C ${ }^{*}$-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
[23] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[24] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisims between C^{*}-algebras, Bull. Belgian Math. Soc.-Simon Stevin 13 (2006), 619-631.
[25] C. Park and A. Najati, Homomorphisms and derivations in $C *$-algebras, Abstract and Applied Analysis, (2007) Article ID 80630, 12 pages.
[26] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
[27] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268-273.
[28] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[29] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative
A. Najati, A. Rahimi - Homomorphisms between C^{*}-algebras and their...
mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[30] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[31] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[32] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.

Abbas Najai
Department of Mathematics
University of Mohaghegh Ardabili
Address: Ardabil 56199-11367, Iran
email:a.nejati@yahoo.com

Asghar Rahimi
Faculty of Basic Sciences
Department of Mathematics
University of Maragheh
Address: Maragheh, Iran
email:asgharrahimi@yahoo.com

