A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE

Alb Lupaş Alina

ABSTRACT. By means of the Ruscheweyh derivative we define a new class $\mathcal{BR}_{p,n}(m,\mu,\alpha)$ involving functions $f \in A(p,n)$. Parallel results, for some related classes including the class of starlike and convex functions respectively, are also obtained.

2000 Mathematics Subject Classification: 30C45

1. INTRODUCTION AND DEFINITIONS

Denote by U the unit disc of the complex plane, $U = \{z \in \mathbb{C} : |z| < 1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U.

Let

$$A(p,n) = \{ f \in \mathcal{H}(U) : f(z) = z^p + \sum_{j=p+n}^{\infty} a_j z^j, \ z \in U \},$$
(1)

with $A(1, n) = A_n$ and

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots, z \in U \},\$$

where $p, n \in \mathbb{N}, a \in \mathbb{C}$.

Let \mathcal{S} denote the subclass of functions that are univalent in U.

By $S_n^*(p, \alpha)$ we denote a subclass of A(p, n) consisting of *p*-valently starlike functions of order α , $0 \le \alpha < p$ which satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad z \in U.$$
(2)

31

Further, a function f belonging to S is said to be p-valently convex of order α in U, if and only if

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}+1\right) > \alpha, \quad z \in U$$
(3)

for some α , $(0 \leq \alpha < p)$. We denote by $\mathcal{K}_n(p, \alpha)$ the class of functions in \mathcal{S} which are *p*-valently convex of order α in U and denote by $\mathcal{R}_n(p, \alpha)$ the class of functions in A(p, n) which satisfy

$$\operatorname{Re} f'(z) > \alpha, \quad z \in U.$$
 (4)

It is well known that $\mathcal{K}_n(p,\alpha) \subset \mathcal{S}_n^*(p,\alpha) \subset \mathcal{S}$.

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g(w(z)) for all $z \in U$. If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

In [5] Ruscheweyh has defined the operator $D^m : A(p,n) \to A(p,n), n \in \mathbb{N}, m \in \mathbb{N} \cup \{0\},$

$$D^{0}f(z) = f(z)$$

$$D^{1}f(z) = zf'(z)$$

$$(m+1)D^{m+1}f(z) = z[D^{m}f(z)]' + mD^{m}f(z), \quad z \in U$$

We note that if $f \in A(p, n)$, then

$$D^m f(z) = z^p + \sum_{j=n+p}^{\infty} C^m_{m+j-1} a_j z^j, \ z \in U.$$

To prove our main theorem we shall need the following lemma. Lemma 1.[4]. Let u be analytic in U with u(0) = 1 and suppose that

$$\operatorname{Re}\left(1+\frac{zu'(z)}{u(z)}\right) > \frac{3\alpha-1}{2\alpha}, \quad z \in U.$$
(5)

Then $\operatorname{Re} u(z) > \alpha$ for $z \in U$ and $1/2 \le \alpha < 1$.

2. Main results

Definition 1. We say that a function $f \in A(p, n)$ is in the class $\mathcal{BR}_{p,n}(m, \mu, \alpha)$, $p, n \in \mathbb{N}, m \in \mathbb{N} \cup \{0\}, \mu \ge 0, \alpha \in [0, 1)$ if

$$\left| \frac{D^{m+1}f(z)}{z^p} \left(\frac{z^p}{D^m f(z)} \right)^{\mu} - p \right|
(6)$$

Remark. The family $\mathcal{BR}_{p,n}(m,\mu,\alpha)$ is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, $\mathcal{BR}_{1,n}(0,1,\alpha) \equiv \mathcal{S}_n^*(1,\alpha), \ \mathcal{BR}_{1,n}(1,1,\alpha) \equiv$ $\mathcal{K}_{n}(1,\alpha)$ and $\mathcal{BR}_{1,n}(0,0,\alpha) \equiv \mathcal{R}_{n}(1,\alpha)$. Another interesting subclass is the special case $\mathcal{BR}_{1,1}(0,2,\alpha) \equiv \mathcal{B}(\alpha)$ which has been introduced by Frasin and Darus [3] and also the class $\mathcal{BR}_{1,1}(0,\mu,\alpha) \equiv \mathcal{B}(\mu,\alpha)$ which has been introduced by Frasin and Jahangiri [4].

In this note we provide a sufficient condition for functions to be in the class $\mathcal{BR}_{p,n}(m,\mu,\alpha)$. Consequently, as a special case, we show that convex functions of order 1/2 are also members of the above defined family.

Theorem 2. For the function $f \in A(p,n)$, $p, n \in \mathbb{N}$, $m \in \mathbb{N} \cup \{0\}$, $\mu \ge 0$, $1/2 \le 0$ $\alpha < 1$ if

$$(m+2)\frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m+1)\frac{D^{m+1}f(z)}{D^mf(z)} + \mu(m+p) - (m+p) \prec 1 + \beta z, \ z \in U, \ (7)$$

where $\beta = \frac{3\alpha - 1}{2\alpha}$, then $f \in \mathcal{BR}_{p,n}(m,\mu,\alpha)$. *Proof.*If we consider

> $u(z) = \frac{D^{m+1}f(z)}{z^p} \left(\frac{z^p}{D^m f(z)}\right)^{\mu},$ (8)

then u(z) is analytic in U with u(0) = 1. A simple differentiation yields

$$\frac{zu'(z)}{u(z)} = (m+2)\frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m+1)\frac{D^{m+1}f(z)}{D^mf(z)} + \mu(m+p) - (m+p+1).$$
(9)

Using (7) we get $\operatorname{Re}\left(1 + \frac{zu'(z)}{u(z)}\right) > \frac{3\alpha - 1}{2\alpha}$. Thus, from Lemma 1 we deduce that $\operatorname{Re}\left\{\frac{D^{m+1}f(z)}{z^p}\left(\frac{z^p}{D^m f(z)}\right)^{\mu}\right\} > \alpha$. Therefore, $f \in \mathcal{BR}_{p,n}(m,\mu,\alpha)$, by Definition 1.

As a consequence of the above theorem we have the following interesting corollaries.

Corollary 3. If $f \in A_n$ and

$$\operatorname{Re}\left\{\frac{6zf'(z) + 6z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)} - \frac{zf''(z)}{f'(z)}\right\} > \frac{3}{2}, \quad z \in U,$$
(10)

then

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \frac{3}{2}, \quad z \in U.$$
(11)

That is, f is convex of order $\frac{3}{2}$.

Corollary 4. If $f \in A_n$ and

$$\operatorname{Re}\left\{\frac{4zf'(z) + 5z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)}\right\} > \frac{1}{2}, \quad z \in U,$$
(12)

then

$$\operatorname{Re}\left\{f'(z) + \frac{1}{2}zf''(z)\right\} > \frac{1}{2}, \quad z \in U.$$
(13)

Corollary 5. If $f \in A_n$ and

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \frac{1}{2}, \quad z \in U,$$
(14)

then

$$\operatorname{Re} f'(z) > \frac{1}{2}, \quad z \in U.$$
(15)

In another words, if the function f is convex of order $\frac{1}{2}$, then $f \in \mathcal{BR}_{1,n}(0,0,\frac{1}{2})$ $\equiv \mathcal{R}_n(1,\frac{1}{2}).$

Corollary 6. If $f \in A_n$ and

$$\operatorname{Re}\left\{\frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right\} > -\frac{3}{2}, \quad z \in U,$$
(16)

then f is starlike of order $\frac{1}{2}$, hence $f \in \mathcal{BR}_{1,n}(0,1,\frac{1}{2})$.

References

[1] A. Alb Lupaş and A. Cătaş, A note on a subclass of analytic functions defined by Ruscheweyh derivative, Journal of Mathematical Inequalities, (to appear).

[2] A. Alb Lupaş and A. Cătaş, On a subclass of analytic functions defined by Ruscheweyh derivative, Analele Universității din Oradea, Tom XVI, p. 225-228.

[3] B.A. Frasin and M. Darus, *On certain analytic univalent functions*, Internat. J. Math. and Math. Sci., 25(5), 2001, 305-310.

[4] B.A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic functions, Analele Universității din Oradea, Tom XV, 2008, 61-64.

[5] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

Alb Lupaș Alina Department of Mathematics University of Oradea str. Universității nr. 1, 410087Oradea, Romania email: dalb@uoradea.ro

34