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Abstract. Many new integral representations for the linear system of non-
standard hyperbolic equations with two singular lines in infinite regions, are ob-
tained. Furthermore, the obtained results are used to investigate some new bound-
ary value problems in infinite regions. Example of the obtained results is set. The
paper is devoted to investigate two different cases.
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1. Introduction

Hyperbolic differential equations with singular coefficients or singular surfaces
possess importance in diverse areas of mathematical physics and mathematical en-
gineering, including elasticity, hydrodynamics, thermodynamics and other problems
[1-7]. Furthermore, it is also well known that hyperbolic differential equations with
one or more singular lines occur in engineering and physical processes. For exam-
ple, the non-model hyperbolic equation of second order with two singular lines is
employed to describe the transformation spectrum of electric signals on long lines
with variable parameters in the theory of the electric flail [3-7].

Radjabov N. and co-workers recently have investigated some singular equations.
The contributions [3, 4] examin certain classes of singular elliptic and hyperbolic
partial differential equations,the contributions [4,5,7] discuss non-model linear hy-
perbolic equations with singular points or singular surfaces in finite and infinite re-
gions while the contribution [6] discuss non-model linear hyperbolic equations with
regular coefficients in infinite regions. The obtained solutions bad been used to solve
many boundary value problems. More detailed information for the study of these
equations can be found in a number of works [3-7].
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2. Main Results

Let D be the following infinite region:

D = {(x, y) : −∞ ≤ x ≤ ∞,−∞ ≤ y ≤ ∞},

Which is bounded by

Γ1 = {−∞ ≤ x ≤ ∞, y = 0},
Γ2 = {x = 0,−∞ ≤ y ≤ ∞}.

In the region D we consider the following system:

xy.∂
2Us(x,y)
∂x∂y +

n∑
j=1

[
x.ajs(x, y).

∂Uj(x,y)
∂x + y.bjs(x, y).

∂Uj(x,y)
∂y + cjs(x, y).Uj(x, y)

]
=

= fs(x, y), 1 ≤ s ≤ n
(1)

where the coefficients ajs(x, y), bjs(x, y), cjs(x, y) and fs(x, y) are given continuous
functions.

In the present paper for the system (1) depending on equation coefficients a
series of new integral representations are obtained. These integral representations
are used for the solution of a number of boundary value problems, the following
statements being valid.

Case 1.

Theorem 1 Let the coefficients in system (1) satisfy the following condition:

a) ass(x, y) with respect to the variable y satisfy Holder’s conditions and with a
variable x have continuous derivatives of the first order.

b) bss(x, y) of the variable x satisfy Holder’s conditions and with a variable y have
continuous derivatives of the first order and the function ∂bss(x,y)

∂y with respect
to the variable x satisfy Holder’s conditions.

c) ajs(x, y))(j 6= s) of the variable x have continuous derivatives of the first order
and continuous with the variable y.

d) bjs(x, y))(j 6= s) of the variable y have continuous derivatives of the first order
and continuous with the variable x.
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e) In a neighborhood of Γ1 and Γ2 the functions ajs(x, y), bjs(x, y), cjs(x, y) satisfy
the following Holder’s conditions:

c(1)
s (x, y) = 0(|x|αs), c(1)s (x, y) = 0(|y|βs), αs > 0, βs > 0 (2)

(where c(1)
s (x, y) is the first order set of all continuous functions)

bjs(x, y) = 0(|x|αjs), αjs > 0 in a neighborhood of Γ1, (3)

bjs(x, y) = 0(|y|βjs), βjs > 0 in a neighborhood of Γ2, (4)

∂bjs(x, y)
∂y

= 0(|x|δjs), δsj > 0 in a neighborhood of Γ1, (5)

ajs(x, y) = 0(|x|µjs), µjs > 0 in a neighborhood of Γ2, (6)

∂ajs(x, y)
∂y

= 0(|x|γjs), γjs > 0 in a neighborhood of Γ1, (7)

f) 0 < ass(x, 0) < 1, 0 < bss(0, y) < 1.

Then any solution for the system (1) within the class C2(D) can be represented
in the form

Us(x, y) = e−ws
2(x,y)|y|−ass(x,0)Vs(x, y), (8)

where Vs(x, y) is a solution of the system (1) Volterra integral equations of the second
type in the form:

Vs(x, y)−
∫ ∞

y
dτ

∫ ∞

x
M

(1)
js (x, y; t, τ)Vs(t, τ)dt−

−
n∑

j=1,j 6=s

{∫ ∞

y
dτ

∫ ∞

x
M

(2)
js (x, y; t, τ)Vj(t, τ)dt+

∫ ∞

x
Vj(t, y).M

(3)
js (x, y; t)dt+

∫ ∞

y
M

(4)
js (x, y; τ)Vj(x, τ)dτ

}
= E(1)

s (x, y), (9)

E
(1)
s = Φs(x) +

∫∞
y ew

s
2(x,τ)−ws

1(x,τ)|τ |ass(x,0)−bss(0,τ).Ψs(τ)dτ+∫∞
y ew

s
2(x,τ)−ws

1(x,τ)|τ |ass(x,0)−bss(0,τ).
∫∞
x ew

s
1(t,τ)|t|bss(0,τ) fs(t,τ)

tτ dt,
(10)

where Φs(x),Ψs(y) are given continuous functions of the variables x and y. More-
over, Φs(x) ∈ C2(Γ1),Ψs(y) ∈ C1(Γ2), [M (1)

js (x, y; t, τ), M (2)
js (x, y; t, τ), M (3)

js (x, y; t),

M
(4)
js (x, y; t, τ) as given later in pages 8,9], [ws

1(x, y), w
s
s(x, y) as given later in the

proof by the formulae (15), (16)].
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Proof. Let the coefficients in system (1) satisfy: ass(x, y) ∈ C1
x(D) with respect

to the variable y satisfy HOlder’s conditions, bss(x, y) with respect to the variable
x satisfy Holder’s conditions, at j 6= s, ajs(x, y) ∈ C1

x(D) be continuous on y and
bjs(x, y) ∈ C1

y (D) be continuous on x. Then the system (1) can be written in the
form:[

∂
∂x + bss(x,y)

x

] [
∂
∂y + ass(x,y)

y

]
Us(x, y) = fs(x,y)

xy + c
(1)
s (x,y)

xy Us(x, y)−

−
n∑

j=1,j 6=s

[
ajs(x,y)

y .
∂Uj(x,y)

∂x + bjs(x,y)
x .

∂Uj(x,y)
∂y + cj(x,y)

x,y Uj(x, y) ≡ Fs(x, y)
]
,

(11)

c(1)
s (x, y) = −cs(x, y) + x

∂ass(x, y)
∂x

+ ass(x, y).bss(x, y) (12)

Then we can put

∂Us(x, y)
∂y

+
ass(x, y)

y
Us(x, y) = Vs(x, y). (13)

Substituting in equation (11), we get

∂Vs(x, y)
∂x

+
bss(x, y)

x
Vs(x, y) = Fs(x, y). (14)

Solving equation (14), we get

Vs(x, y) = e−ws
1(x,y)|x|−bss(x,0).{Ψs(y)+

+
∫∞
x ew

s
1(t,y).|t|bss(0,y).Fs(t, y)dt},

where Ψs(y) are arbitrary continuous functions on Γ2,

ws
1(x, y) =

∫ ∞

x

bss(t, y)− bss(0, y)
t

dt. (15)

Similarly, by solving equation (13), we get

Us(x, y) = e−ws
2(x,y)|y|−ass(x,0).{Φs(y)+

+
∫∞
y ew

s
2(x,τ).|τ |ass(x,0).Vs(t, y)dτ},

(16)

where Φs(x) are arbitrary continuous functions,

ws
2(x, y) =

∫ ∞

y

ass(x, τ)− ass(x, 0)
τ

dτ.

Substituting the obtained value Vs(x, y) in equation (16) we get

Us(x, y) = e−ws
2(x,y)|y|−ass(x,0).[Φs(x)+

+
∫∞
y ew

s
2(x,τ).|τ |ass(x,0).{e−ws

1(x,τ)|x|−bss(0,τ).(Ψs(τ)+
+

∫∞
x ew

s
1(t,τ).|t|bss(0,τ).Fs(t, τ)dt}dτ ].

(17)
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Then we get

Us(x, y)− e−ws
2(x,y)|y|−ass(x,0)

∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0).dτ∫∞
x ew

s
1(t,τ)| tx |

bss(0,τ).{ c1s(t,τ)
tτ Us(t, τ)−

∑n
j=1,j 6=s(

ajs(t,τ)
τ .

∂Uj(t,τ)
∂t +

bjs(t,τ)
t

∂Uj(t,τ)
∂τ + cj(t,τ

tτ Uj(t, τ))}dt = F
(1)
s (x, y),

(18)

where

F
(1)
s (x, y) = e−ws

2(x,y)|y|ass(x,0).{Φs(x)+
+

∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0)|x|−bss(x,0).Ψs(τ)dτ +
∫∞
y ew

s
2(x,τ).

.e−ws
1(x,τ)|τ |ass(x,0).|x|−bss(0,τ)dτ

∫∞
x ew

s
1(t,τ).|τ |bss(0,y).fs(t,τ)

tτ dt}
(19)

and the function F (1)
s (x, y) satisfy: bss(0, y) > 0, ass(x, 0) > 0.

Also we get∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0)dτ
∫∞
x ew

s
1(t,τ).|τ |bss(0,τ).|x|−bss(0,τ).

ajs(t,τ)
τ

∂Uj(t,τ)
∂t dt =

∫∞
y ew

s
2(x,τ) 1

τ .ajs(x, τ)|τ |ass(x,0)Uj(x, τ)dτ−
−

∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0). 1τ |x|
−bss(0,τ).

.
∫∞
x [∂ajs(t,τ)

∂t + ajs(t,τ)
t .bss(t, τ)]ew

s
1(t,τ).|t|bss(x,0)Uj(x, τ)dt,

(20)

∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0)dτ
∫∞
x ew

s
1(t,τ).|t|bss(0,τ).|x|−bss(0,τ).

bjs(t,τ)
t

∂Uj(t,τ)
∂t dt = ew

s
2(x,y)−ws

1(x,y).|y|ass(x,0).∫∞
x ew

s
1(t,τ).| tx |

bss(x,0).
bjs(t,y)

t .Uj(x, y)dt−
∫∞
y (ass(x,τ)

τ − ∂ws
1(x,τ)
∂τ )dτ∫∞

x ew
s
1(t,τ).|t|bss(0,τ).|x|−bss(0,τ).

bjs(t,τ)
t Uj(t, τ)−

−
∫∞
y ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0)dτ.

.
∫∞
x [∂ws

1(t,τ)
∂τ .bjs(t, τ) + ∂bss(0,τ)

∂τ .bjs(t, τ)(ln| tx |) + ∂bjs(t,τ)
∂τ ]t−1.

.| tx
bss(0,τ)

.ew
s
1(t,τ).Uj(x, τ)dt.

(21)

Substituting the obtained values in equation (18) we get

K
(1)
1 (x, y; t, τ) = e−ws

2(x,y).|y|ass(x,0).
{
ew

s
2(x,τ).

.e−ws
1(x,τ)+ws

1(x,0).|τ |ass(x,0).| tx |
bss(0,τ)(tτ)−1c

(1)
s (t, τ),

K
(2)
js (x, y; t, τ) = e−ws

2(x,y).|y|ass(x,0).{
−[ew

s
2(x,τ)−ws

1(x,τ).|τ |ass(x,0) 1
τ |x|bss(0,τ) .

(∂ajs(t,τ)
∂t + ajs(t,τ)

t bss(t, τ)).
.ew

s
1(t,τ).|t|bss(0,τ) − (ajs(x,τ)

τ − ∂ws
1(x,τ)
∂τ ).

.ew
s
1(t,τ).|t|bss(0,τ)|x|bss(0,τ).( bjs(t,τ)

∂τ −
−ews

2(x,τ)−ws
1(x,τ)+ws

1(t,τ) > |τ |ass(x,0).

.(∂ws
1(t,τ)
∂τ bjs(t, τ) + ∂bss(0,τ)

∂τ bjs(t, τ)ln| tx |+
∂bjs(t,τ)

∂τ )
t−1.|t|bss(0,τ)|x|−bss(0,τ)]

}
,

(22)
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K
(3)
js (x, y; t) = ew

s
1(t,y)−ws

1(x,y).| tx |
bss(0,y).

bjs(t,y)
t ,

K
(4)
js (x, y; τ) = ew

s
2(x,τ)−ws

2(x,y).|y|−ass(x,0). |τ |
ass(x,0)

τ ajs(x, τ),

then we get the solution of the following system integral equations:

Us(x, y)−
∫ ∞

y
dτ

∫ ∞

x
K

(1)
1 (x, y; t, τ)Us(t, τ)dt−

∑
j=1,j 6=s

{
∫ ∞

y
dτ

∫ ∞

x
K

(2)
js (x, y; t, τ)Uj(t, τ)dt+

+
∫ ∞

x
K

(3)
js (x, y; t)Uj(t, y)dt+

∫ ∞

y
K

(4)
js (x, y; τ)Uj(t, τ)dτ} = F (1)

s (x, y), 1 ≤ s ≤ n.

(23)
Then Kernels satisfy the following properties:

K
(1)
1 (x, y;x, τ) = ew

s
2(x,τ)−ws

2(x,y).| τy |
ass(x,0)(xτ)−1c

(1)
s (t, τ),

K
(1)
1 (x, y;x, y) = c

(1)
s (x,y)

xy ,

K
(2)
js (x, y;x, τ) = ew

s
2(x,τ)−ws

2(x,y)[|y|−ass(x,0).

|τ |ass(x,0)τ−1(∂ajs(x,τ)
∂x + ajs(x,τ)

x bss(x, τ))−
−(ass(x,τ)

τ − ∂ws
1(x,τ)
∂τ ). bjs(x,τ)

x − |τ |ass(x,0).|y|−ass(x,0).

.(∂ws
1(x,τ)
∂τ bjs(x, τ) + ∂bjs(x,τ)

∂τ )x−1],

K
(2)
js (x, y;x, y) = 1

y
∂ajs(x,y)

∂x + ajs(x,y)
xy bss(x, y)− ass(x,y)

xy bjs(x, y)+

+ 1
x

∂ws
1(x,y)
∂y − 1

xbjs(x, y)
∂ws

1(x,y)
∂y − 1

x
∂bjs(x,y)

∂y =

=
x

∂ajs(x,y)

∂x
−y

∂bjs(x,y)

∂y

xy +
y

∂ws
1(x,y)

∂y
−ybjs(x,y)

∂ws
1(x,y)

∂y

xy , j 6= s,

K
(3)
js (x, y;x) =

bjs(x, y)
x

, (24)

K
(4)
js (x, y;x) =

ajs(x, y)
y

, j 6= s. (25)

Equation (19) satisfy

0 < ass(x, 0) < 1, 0 < bss(0, y) < 1.

We introduce the new unknown function:

Vs(x, y) = Us(x, y)|y|ass(x,0)ew
s
2(x,y).
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For Vs(x, y), we can get the general solution for equation (1) in the form of integral
equation (9), where

M
(1)
1 (x, y; t, τ) = K

(1)
1 (x, y; t, τ)e−ws

2(x,τ).|τ |−ass(t,0) =
= ew

s
2(x,τ)−ws

2(t,τ)+ws
1(x,0)−ws

1(x,τ).|τ |ass(x,0)−ass(t,0).

.| tx |
bss(0,τ)(tτ)−1c

(1)
s (t, τ),

M
(2)
js (x, y; t, τ) = K

(2)
js (x, y; t, τ)e−wj

2(t,τ).|τ |−ajj(t,0) =
= −{ews

2(x,τ)−wj
2(t,τ)+ws

1(t,τ)−ws
1(x,τ).|τ |ass(x,0)−ajj(t,0).

.| tx |
bss(0,τ)[ t

∂ajs(t,τ)

∂t
+ajs(t,τ)

tτ ]− ew
s
1(t,τ)−wj

2(t,τ).| tx |
bss(0,τ)

|τ |−ajj(t,0) bjs(t,τ)
t [ass(x,τ)

τ − ∂ws
1(x,τ)
∂τ ]−

−ews
2(x,τ)−wj

2(t,τ)+ws
1(t,τ)−ws

1(x,τ).|τ |ass(x,0)−ajj(t,0).

.| tx |
bss(x,0).

[
∂ws

1(t,τ)

∂τ
bjs(t,τ)+

∂bss(0,τ)
∂τ

bjs(t,τ)ln| t
x
|+

∂bjs(t,τ)

∂τ
]

t },

M
(3)
js (x, y; t) = K

(3)
js (x, y; t)e−wj

2(t,τ).|τ |−ajj(t,0) =
= ew

s
2(x,y)−wj

2(t,τ)+ws
1(t,y)−ws

1(x,y).| tx |
bss(0,y)

.|y|ass(x,0)−ajj(t,0).bjs(t, y)t−1,

M
(4)
js (x, y; τ) = K

(4)
js (x, y; τ) = e−wj

2(x,τ).|τ |−ajj(x,0) = .

= ew
s
2(x,τ)−wj

2(x,τ).|τ |ass(x,0)−ajj(t,0).ajs(t, y).τ−1.

The Kernels satisfy the following properties:

M
(1)
1 (x, y;x, y) = c

(1)
s (x,y)

xy ,

M
(2)
js (x, y;x, y) = ew

s
2(x,y)−wj

2(x,y).|y|ass(x,0)−ajj(x,0)

[ (x
∂ajs(x,y)

∂x
+ajs(x,y))

xy −
(ass(x,y)−y

∂ws
1(x,y)

∂y
)

xy ].

.ew
s
1(x,y)−wj

2(x,y).bjs(x, y)|y|ajj(x,0)−

−[
∂ws

1(x,y)

∂y
bjs(x,y)+

∂bjs(x,y)

∂y

x ].ew
s
2(x,y)−wj

2(x,y),

M
(3)
js (x, y;x) = ew

j
2(x,y).|y|ass(x,0)ew

s
2(x,y) bjs(x,y)

x ,

M
(3)
js (x, y; y) = ajs(x,y)

y .|y|ass(x,0)−ajj(x,0).ew
s
2(x,y)−wj

2(x,y).

From the above inequalities, if the coefficients of the system (1) satisfy the conditions
of equation (9) on Vs(x, y) and satisfy the conditions:
1) cs1(x, y) in a neighborhood Γ1,Γ2 satisfy condition (2),

2) βjs + β
(1)
js > ajj(x, 0), α(1)

js > ajj(x, 0)− ass(x, 0) (26)

21



A. N. Adib - Various representations for the system of hyperbolic...

3) The coefficients bjs(x, y) are continuous with the variable y,
4) ∂bss(x,y)

∂y satisfy Holder’s conditions with the variable x.
Then the system (1) is the Volterra integral equations of the second type. By

solving system (9), we get Vs(x, y) and substituting the obtained value Vs(x, y) in
equation (8), we get the solution Us(x, y) of the system (1).
The proof is completed.

Theorem 2 Let the coefficients in system (1) satisfy the following conditions:

a) ajs(x, y)(j 6= s) are continuous with the variable y and have continuous deriva-
tives of the first order with the variable x, bjs(x, y)(j 6= s) are continuous with
the variable x and have continuous derivatives of the first order with the vari-
able y.

b) ajs(x, y)(j 6= s) are continuous with the variable y and have continuous deriva-
tives of the first order with the variable x.

c) bss(x, y) ∈ C(D̄), f(x, y) ∈ C(D̄), cs(x, y) ∈ C(D̄).

d) In the neighborhood Γ1 and Γ2 the functions satisfy the conditions (7), (23).

e) 0 < ass(x, 0) < 1, 0 < bss(0, y) < 1, 1 ≤ s ≤ n.

Then any solution of the system (1) within the class C2(D) is:

Us(x, y) = e−ws
1(x,y)|x|−bss(0,y).Vs(x, y), (27)

where Vs(x, y) is the solution of system (1) Volterra integral equations of the second
type in the following form:

Vs(x, y) +
∫ ∞

x
dt

∫ ∞

y
K(1)

s (x, y; t, τ)Vs(t, τ)dτ+∫ n

j=1,j 6=s
{
∫ ∞

x
dt

∫ ∞

y
K

(2)
js (x, y; t, τ)Vj(t, τ)dτ+

+
∫ (3)

js
(t, y)Vj(t, y)dt+

∫ ∞

y
K

(4)
js (x, y; τ)Vj(t, τ)dτ} = F (2)

s (x, y), 1 ≤ s ≤ n, (28)

where Φ(1)
s (x),Ψ(1)

s (y) are arbitrary continuous functions of the variables x and y.
Moreover; Φ(1)

s (x) ∈ C1(Γ1),Ψ
(1)
s (y) ∈ C2(Γ2),

F
(2)
s (x, y) = Ψ(1)

s (y) +
∫∞
x ew

s
1(t,y)−wj

2(t,y)|y|ass(t,0).|t|bss(0,y)

.Φ(1)
s (t)dt+

∫∞
s ew

s
1(t,y)−ws

2(t,y).|y|−ass(t,0).|t|bss(0,y)dt.

.
∫∞
y ew

s
2(t,τ).|τ |ass(t,0).fs(t,τ)

tτ dt.

(29)
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Proof. Let the coefficients in system (1) satisfy: bss(x, y) ∈ C1
y (D) with respect

to the variable x satisfy Holder’s conditions, ass(x, y) with respect to the variable y
satisfy Holder’s conditions, at j 6= s ajs(x, y) ∈ C1

x(D) be continuous with respect to
the variable y and bjs(x, y) ∈ C1

y (D) be continuous with respect to the variable x.
Then the system (1) can be written in the form:[

∂
∂y + ass(x,y)

y

] [
∂
∂x + bss(x,y)

x

]
Us(x, y) = fs(x,y)

xy + c
(2)
s (x,y)

xy .Us(x, y)−

−
n∑

j=1

[
ajs(x,y)

y
∂Uj(x,y)

∂x + bjs(x,y)
x

∂Uj(x,y)
∂y + cj(x,y)

xy Uj(x, y) ≡ F
(1)
s (x, y)

]
,

(30)

where
c(2)
x (x, y) = −cs(x, y) + y

∂bss(x, y)
∂y

+ ass(x, y).bss(x, y). (31)

By solving equation (30), we get

Us(x, y)− e−ws
1(x,y)|x|−bss(0,y).ew

s
1(t,y)−ws

2(t,y).|t|bss(0,y)dt.

.
∫∞
y ew

s
2(x,τ)| τy |

ass(t,0).{ c
(2)
s (t,τ)

tτ Us(t, τ)−
n∑

j=1,j 6=s
(ajs(t,τ)

τ .
∂Uj(t,τ)

∂t +

+ bjs(t,τ)
t .

∂Uj(t,τ)
∂τ + cj(t,τ)

tτ Uj(t, τ))}dt = F
(1)
s (x, y),

(32)

F
(1)(x,y)
s = e−ws

1(x,y)|x|−bss(0,y).{Ψ(1)
s (y)+

+
∫∞
x ew

s
1(t,y)−ws

2(t,y).|y|−ass(t,0).|t|bss(0,y)dt.
∫∞
y ew

s
2(t,τ).|τ |ass(t,0).

fs(t,τ)
tτ dτ}.

(33)

Similarly, we can get

Us(x, y).ew
s
1(x,y)|x|bss(0,y) = Vs(x, y),

K
(1)
s (x, y; t, τ) = −ews

2(t,τ)−ws
2(t,y)+ws

1(t,y)−ws
1(t,τ).

.|t|bss(0,y)−bss(0,τ).| τy |
ass(t,0)(xτ)−1cs2(t, τ),

K
(2)
js (x, y; t, τ) = ew

s
1(t,y)−wj

1(t,τ)+ws
2(t,τ)−ws

2(t,y).

.|t|bss(0,y)−bjj(0,τ).[ajs(t,τ)
τ .(∂ws

2(t,τ)
∂t + ∂ass(t,0)

∂t .ln| τy |) + 1
τ

∂ajs(t,τ)
∂τ ].

−ews
1(t,y)−ws

2(t,y)+ws
2(t,τ)−wj

1(t,τ).(−∂ws
2(t,y)
∂t + bss(t,y)

t ).
.|t|bss(0,y)−bjj(0,τ).| τy |

ass(t,0).
ajs(t,τ)

τ −
−ews

1(t,y)−ws
2(t,y)+ws

2(tr,τ)−wj
1(t,τ).|t|bss(0,y)−bjj(0,τ).[(ass(t,0)

τ )
.
bjs(t,τ)

t + 1
t

∂bjs(t,y)
∂τ ].| τy |

ass(t,0) + cj(t,τ)
tτ .|t|−bjj(0,τ).e−wj

1(t,τ),

K
(3)
js (t, y) = ew

s
1(t,y)−wj

1(t,y).
1
t
[|t|bss(0,y)−bjj(0,y).bjs(t, y)],
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K
(4)
js (t, y, τ) = ew

s
1(x,y)−ws

2(x,y)+ws
2(x,τ)−wj

1(x,τ).|x|bss(0,y)−bjj(0,τ).

.| τy |
ass(x,0).

ajs(x,τ)
τ .

Moreover the Kernels of the system (26) at x = t, y = τ satisfy the following
properties:

K(1)
s (x, y;x, y) =

cs2(x, y)
y

,

K
(2)
js (x, y;x, y) = ew

s
1(x,y)−wj

1(x,y).[ajs(x,y)
y .

∂ws
2(x,y)
∂x + 1

y
∂ajs(x,y)

∂x ]

|x|bss(0,y)−bjj(0,y) − (−∂ws
2(x,y)
∂x − bss(x,y)

x )|x|bss(0,y)−bjj(0,y).
ajs(x,y)

y − [ass(x,0)
y .

bjs(x,y)
x + 1

x
∂bjs(x,y)

∂y ] + cj(x,y)
xy |x|−bjj(0,y).

.e−wj
1(x,y).

The function K(2)
js (x, y;x, y) can be represented in the form

K
(2)
js (x, y;x, y) = [

A
(2)
js (x, y)
y

.+
B

(2)
js (x, y)
xy

]|x|bss(0,y)−bjs(0,y),

where
A

(2)
js (x, y) = ajs(x, y)

∂ws
2(x, y)
∂x

+
∂ajs(x, y)

∂x
,

B
(2)
js (x, y) = (x∂ws

2(x,y)
∂x + bss(x, y)).ajs(x, y)− ass(x, 0).bjs(x, y) + y

∂bjs(x,y)
∂y +

+|x|bss(0,y)−bjj(0,y)cj(x, y).e−wj
1(x,y),

K
(3)
js (x, y) =

bjs(x, y)
x

.|x|bss(0,y)−bjj(0,y).ew
s
1(t,y)−wj

1(t,y),

K
(4)
js (x, y; y) =

ajs(x, y)
y

.|x|bss(0,y)−bjj(0,y).ew
s
1(x,y)−wj

1(x,y).

The system (28) is the Volterra system integral equation of the second type if the
functions ajs(x, y), bjs(x, y), cs2(x, y) satisfy the following conditions:

cs2(x, y) = 0(|x|αs), αs > 0 in a neighborhood of Γ1, (34)

cs2(x, y) = 0(|x|βs), βs > 0 in a neighborhood of Γ2, (35)

|bss(x, y)− bss(0, y)| ≤ H1|x|δs , δs > 0 (36)

ajs(x, y) = 0(|y|β
(2)
js ), j 6= s, β

(2)
js > 0 in a neighborhood of Γ2, (37)
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A
(2)
js (x, y) = 0(|y|β

(2)
js ), β(2)

js > 0, j 6= s in a neighborhood of Γ2, (38)

B
(2)
js (x, y) = 0(|y|δ

(2)
js ), δjs > 0, j 6= s in a neighborhood of Γ2, (39)

Bjs(x, y) = 0(|x|δ
(3)
js ) > 0, j 6= s in a neighborhood of Γ1, (40)

Also the functions ass(x, y), bss(x, y) satisfy the following conditions:

|ass(x, y)− ass(x, 0)| ≤ H2|y|δs , δs > 0 (41)

|∂ass(x, y)
∂x

− ∂ass(x, 0)
∂x

| ≤ H2|y|β
(1)
s , β(1)

s > 0, (42)

By solving the system (28), we get F (2)
s (x, y). Substituting the obtained value

F
(2)
s (x, y) in equation (28), we get the solution Us(x, y) of the system (1).

The proof is completed.

Remak 1 The coefficients of system (1) in a neighborhood of Γ1,Γ2 satisfy the
conditions (27)-(32).
Example Let in Theorem 1 and Theorem 2 the conditions:

c(1)
s (x, y) = 0(|x|α1

s), α2
s > 0, c(1)s (x, y) = 0(|y|β1

s ), β1
s > 0

in a neighborhood of Γ1 are essential and the satisfy the conditions

c(2)
s (x, y) = 0(|x|α2

s), α2
s > 0, c(2)s (x, y) = 0(|y|β2

s ), β2
s > 0.

If these conditions are fulfilled, then system (1) have solution essentially different
from the solution given in Theorem 1 and Theorem 2.
Let in system (1) ass = α = constant, bss = β = constant, fs(x, y) = 0, then the
functions of the form

U(x, y) = x−β ∑∞
n=0 y

λn.x
αβ−γ
λn+α .βλn + y−α.

∑∞
n=0 x

λn.

.λ
−αβ−γ

λn+β .Aλn, α, β 6= −λn,
(43)

are the solutions of equations (1), where n = λn, Aλn, βλn being arbitrary constants
and the series converges at 0 < x < A−1, 0 < y < β−1,

A = lim
n→∞

|Aλn+1

Aλn
|, B = lim

n→∞
|Bλn+1

Bλn
|.

In particular if αβ = γ, then the general solution of equation (1) is given by the
formula:

U(x, y) = x−βΦ(y) + y−αΨ(x),
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where Φ(y),Ψ(x) are arbitrary continuous different functions.
Problem A1. Find a solution of system (1) within the class C2(D) and the boundary
conditions:

Us(x, 0) = f1
s (x), x ∈ Γ1,

Us(x, 0) = g1
s(x), y ∈ Γ2,

(44)

where f1
s (x), g1

s(y) are arbitrary continuous functions.
Solution of Problem A1 In the case where C

(1)
s (x, y) = 0. Using the integral

representations (17), (18) and the conditions of equation (40) we can get the values
Phis(x),Ψs(y), 1 ≤ s ≤ n in the form

g1
s(y)|y|bjs(y,y) = Ψs(y),

Φs(x) = |x|−ajs(x,x)
[
f1

s (x) +
1
x
bjs(x, 0).fs(x)

]
, (45)

and by (45), the condition f) of Theorem 1 where Φs(x) ∈ C(Γ1), Ψs(y) ∈ C1(Γ2),
we get f1

s (x) ∈ C(Γ1), g1
s(y) ∈ C1(Γ2).

Solving the system of integral equations (9), we get Vs(x, y) and substituting the
obtained values Φs(x),Ψs(y), Vs(x, y) in equation (8) we get the solution of Problem
A1.

Theorem 3 Let the coefficients of system (1) satisfy the conditions a), b), e),
f), equation (12) and in problem A1 the function f1

s (x) ∈ C(Γ1), g1
s(y) ∈ C1(Γ2).

Then problem A1 has the unique solution which is given by the formulae (8), (9),
(45).

Remak 2 In the case where C(1)
s (x, y) 6= 0.

To solve problem A1, we use the formula (25) and Remark 1, we can get the unknown
functions Φs(x),Ψs(y) which can be given by the formula (45).

Theorem 4 Let the coefficients of system (1) satisfy: The conditions of Theorem
2, Theorem 3 and the functions f1

s (x), g1
s(y) satisfy the conditions of Theorem 3.

Then problem A1 has the unique solution, which is given by the equation (8), Vs(x, y)
is the solution of the system (9) and the functions Φs(x),Ψs(y) are given by the
formula (45).

Problem A2. Find a solution of system (1) within the class C2(D) and the boundary
conditions:

Us(0, y) = g2
s(y), y ∈ Γ2,

∂Us(x, y)
∂x

|y=0 = f2
s (x), x ∈ Γ1 (46)
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where f1
s (x), g1

s(y) are arbitrary continuous functions.
Solution of Problem A2. Similarly, as the Solution of Problem A1, using the
integral representations (32), (33) and the conditions of equations (46) we can get
the values ϕ1

s(x), ψ
1
s(y), 1 ≤ s ≤ n and the values of the condition e) of Theorem 2

and solving the equation (22), we get Us(x, y) and substituting the obtained values
in equation (27) we get the solution of Problem A2.

Case 2

Also, for system (1), the following statements being valid.

Theorem 5 Let the coefficients in system (1) satisfy:
ajs(x, y) ∈ C1

x(D), bjs(x, y) ∈ C1
y (D), ass(x, y) ∈ C1

x(D), bss(x, y),
cs(x, y) ∈ C(D), 1 ≤ s ≤ n, at j 6= s, j, s = 1, 2, . . . , n. Then any solution for the
system (1) within the class C2(D) ∩ C(D) is:

Us(x, y)−
∫∞
y ew

s
2(x,τ)−ws

2(x,y)dτ
∫∞
x cs1(t, τ)Us(t, τ).ew

s
1(t,τ)−ws

1(x,τ)dt+
+

∫∞
y ew

s
2(x,τ)−ws

2(x,y)dτ
∫∞
x ew

s
1(t,τ)−ws

1(x,τ).

.[−
n∑

j=1
j 6=s

(ajs(t, τ).
∂Uj

∂t + bjs(t, τ)
∂Uj

∂τ + cj(t, τ)Uj(t, τ))]dt = gs(x, y), 1 ≤ s ≤ n,

(47)
where Ψs(x),Φs(y) are given continuous functions on Γ1,Γ2 and gs(x, y) is a solution
of the system (1) Volterra integral equation of the second type in the form:

gs(x, y) = Ψs(x)e−ws
2(x,y) +

∫∞
y ew

s
2(x,τ)−ws

2(x,y)−ws
1(x,τ).Φs(τ)dτ+

+
∫∞
y ew

s
2(x,τ)−ws

2(x,y)dτ.
∫∞
x ew

s
1(t,τ)−ws

1(x,τ)fs(t, τ)dt,
(48)

ws
1(x, y) =

∫ ∞

x
bss(t, y)dt, ws

2(x, y) =
∫ ∞

y
ass(x, τ)dτ, (49)

Problem A3. Find a solution of system (1) within the class C2(D)∩C(D∪Γ1∪Γ2)
with the boundary conditions:

Us(0, y) = as(y), y ∈ Γ2,

Us(x, 0) = bs(x), x ∈ Γ1, 1 ≤ s ≤ n. (50)

as(0) = bs(0).

Solution of Problem A3. The function gs(x, y) of equation (48) on Γ1 satisfy the
following properties:

Us(0, y)−
∫ ∞

y

[
(M (1)

js (0, y; τ)Us(0, τ)−M
(2)
js (0, y; τ)Uj(0, τ))

]
dτ = gs(0, y),
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gs(0, y) = Ψs(0).e−ws
1(0,τ) +

∫ ∞

y
ew

s
2(0,τ)−ws

2(0,y).Φs(τ)dτ (51)

where
M

(1)
js (x, y; τ) = ew

s
2(x,τ)−ws

2(x,y).ajs(x, τ), (52)

M
(2)
js (x, y; τ) = ew

s
2(x,τ)−ws

2(x,y)−ws
1(x,τ).ajs(0, τ), (53)

M
(3)
js (x, y; τ) = ew

s
1(t,y)−ws

1(x,y).bjs(t, y), (54)

M
(4)
js (x, y; t) = ew

s
1(t,0)−ws

2(x,y)−ws
1(x,0).bjs(t, 0),

From equation (52, (53) we get

M
(1)
js (0, y; τ) = M

(2)
js (0, y; τ)

then
Us(0, y) = gs(0, y)

Similarly, the function gs(x, y) of equation (50) on Γ2 satisfy:

Us(x, 0)−
∑

j=1,j 6=s

∫ ∞

x

[
M

(3)
js (x, 0; t)−M

(4)
js (x, 0; t)

]
Uj(t, 0)dt = gs(x, 0), (55)

gs(x, 0) = Ψs(x), 1 ≤ s ≤ n. (56)

Then we can put
M

(3)
js (x, 0; t) = ew

s
1(t,0)−ws

1(x,0).bjs(x, 0),

M
(4)
js (x, 0; t) = ew

s
1(t,0)−ws

1(x,0).bjs(t, 0) = M
(3)
js (x, 0; t).

We get
Us(x, 0) = gs(x, 0) = Ψs(x).

Substitute the values Us(x, 0), Us(0, y) in equations (51), (55) we can get the values
Ψs(x),Φs(y) in the forms

Ψs(x) = bs(x),∫∞
y ew

s
2(0,τ)−ws

2(0,y).Φs(tau)dτ = as(y)− bs(0).e−ws
2(0,y),∫∞

y ew
s
2(0,τ).Φs(τ)dτ = as(y).ew

s
2(0,y) − bs(0).

Φs(y) = e−ws
2(0,y)

[
ew

s
2(0,y).ass(0, y)(as(y)− bs(0)) + ew

s
2(0,y)a1

s(y)
]
,

Φs(y) = ass(0, y)[as(y)− bs(0)] + as(y), (57)
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Φs(0) = ass(0, 0)as(0) + a1
s(0), as(0) = bs(0).

Substituting the obtained values Ψs(x),Φs(y) in system (48) and using the condi-
tions (50) of problem A3 we get the solution of Volterra system integral equation of
the second type which is solvable and its uniqueness solution can be get by using
the kernels (52), (53), (54).
The proof of the following Theorem is completed.

Theorem 6 Let the coefficients of system (1) satisfy: the conditions of Theorem
5, ass(0, y) ∈ C2(Γ2), as(y) ∈ C2(Γ2) and bs(x) ∈ C1(|Γ1). Then problem A3 has
the unique solution in the form:

Us(x, y) = g(x, y) +
∫∞
y

∫∞
x N1(x, y; t, τ)g(t, τ)dt.dτ +

∫∞
y N2(x, y; τ)g(x, τ)dτ+

+
∫∞
y N3(x, y; t)g(t, y)dt−

∫∞
y N4(x, y; τ)g(0, τ)dτ −

∫∞
x N5(x, y; τ)g(t, 0)dt

(58)
where g(t, y), U(x, y), N1, N2, N3, N4, N5 are the kernels of the system integral equa-
tion (51), (55). The formula (58) of the functions Gs(x, y) can be obtained by using
the inequalities (48), (49), (57), (50).

Problem A4. Find a solution of system (1) within the class C(D∪Γ1∪Γ2)∩C2(D)
with the boundary conditions:

∂Us

∂y
|x=0 = fs(y), Us(x, 0) = gs(x). (59)

where fs(y), gs(x) are continuous functions on Γ2,Γ1.
Solution of Problem A4. From equation (47), we can get the values

Us(x, 0) = Φs(x) = gs(x),Ψs(x) = gs(x)

and
Φ1

s(y)− ass(0, y)
∫ ∞

y
Φ1

s(τ)dτ = Fs(y), (60)

By solving equation (60) and substituting the obtained values Ψs(x),Φs(y) in equa-
tion (48) and then solving the obtained system, we get the solution of Problem
A4.

Theorem 7 Let in system (1) the coefficients a(x, y), b(x, y), c(x, y), f(x, y) sat-
isfy the conditions of Theorem 5 and in Problem A4: fs(y) ∈ C1(Γ1), gs(x) ∈ C2(Γ1).
Then problem A4 has the unique solution which is given by the formulae (58), (48),
and

Φs(y) = fs(y)−ass(0, y).gs(0)e−ws
2(0,y)+ass(0, y).

∫ ∞

y

[
fs(τ)

ass(0, τ)
− e−ws

2(0,y)gs(0)
]
dτ.

(61)
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Remak 3 Similarly, we can investigate system (1) where the coefficients sat-
isfy the conditions bss(x, y) ∈ C1

y (D), ass(x, y), cs(x, y) ∈ C(D), s = 1, 2, . . . , n;
ajs(x, y) ∈ C1

x(D), bjs(x, y) = inC1
y (D) at j 6= s, j, s = 1, 2, . . . , n. Also, we can

get a series of new integral representations and a number of boundary value prob-
lems.
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