ON THE FIBONACCI Q-MATRICES OF THE ORDER m

Serpil Halici, Tuna Batu

Abstract. In this paper, the Fibonacci Q-matrices of the order m and their properties are considered. In addition to this, we introduce the Fibonacci Q-matrices of the order a negative real number m and the pure imaginary m. Further, we examine some properties of these matrices.

2000 Mathematics Subject Classification: 11B37, 11B39,11B50.

1. Introduction

In the last decades the theory of Fibonacci numbers was complemented by the theory of the so-called Fibonacci Q-matrix (see [1], [2], [5]). This 2×2 square matrix is defined in [5] as follows.

$$
Q=\left[\begin{array}{ll}
1 & 1 \tag{1}\\
1 & 0
\end{array}\right]
$$

It is well known that, (see [7]), the $n^{\text {th }}$ power of the Q -matrix is

$$
Q^{n}=\left[\begin{array}{cc}
F_{n+1} & F_{n} \tag{2}\\
F_{n} & F_{n-1}
\end{array}\right]
$$

where $n=0, \pm 1, \pm 2, \cdots$, and F_{n} is nth Fibonacci number. Q^{n} matrix is expressed by the formula

$$
Q^{n}=\left[\begin{array}{cc}
F_{n}+F_{n-1} & F_{n-1}+F_{n-2} \\
F_{n-1}+F_{n-2} & F_{n-2}+F_{n-3}
\end{array}\right]=\left[\begin{array}{cc}
F_{n} & F_{n-1} \\
F_{n-1} & F_{n-2}
\end{array}\right]+\left[\begin{array}{cc}
F_{n-1} & F_{n-2} \\
F_{n-2} & F_{n-3}
\end{array}\right] .
$$

The Fibonacci Q-matrices of the order m are considered by Stakhov in [1]. These matrices are defined by Stakhov as follows, for $m \in R^{+}$

$$
G_{m}=\left[\begin{array}{cc}
m & 1 \tag{3}\\
1 & 0
\end{array}\right] .
$$

It is well known that the Fibonacci numbers of order m is defined by the following recurrence relation for $n \in Z$,

$$
\begin{equation*}
F_{m}(n+2)=m F_{m}(n+1)+F_{m}(n) \tag{4}
\end{equation*}
$$

where $F_{m}(0)=0$ and $F_{m}(1)=1$. The entries of these matrices of order m can be represented by Fibonacci numbers of order m as follows,

$$
G_{m}^{n}=\left[\begin{array}{cc}
F_{m}(n+1) & F_{m}(n) \tag{5}\\
F_{m}(n) & F_{m}(n-1)
\end{array}\right]
$$

where $m \in R^{+}$and $n \in Z$. If we consider the determinants of the G_{m}^{n} matrices of the order m, then we can see that

$$
\operatorname{Det}\left(G_{m}^{n}\right)=\left|\begin{array}{cc}
F_{m}(n+1) & F_{m}(n) \tag{6}\\
F_{m}(n) & F_{m}(n-1)
\end{array}\right|=(-1)^{n}
$$

It can be seen that the Cassini Formula for the Fibonacci numbers of the order m is

$$
\begin{equation*}
F_{m}(n+1) F_{m}(n-1)-\left[F_{m}(n)\right]^{2}=(-1)^{n} \tag{7}
\end{equation*}
$$

Theorem 1. For $m \in R^{+}$and $n \in Z$,

$$
\begin{equation*}
G_{m}^{n}=m G_{m}^{n-1}+G_{m}^{n-2} \tag{8}
\end{equation*}
$$

Proof. Since,

$$
G_{m}^{n-1}=\left[\begin{array}{cc}
F_{m}(n) & F_{m}(n-1) \tag{9}\\
F_{m}(n-1) & F_{m}(n-2)
\end{array}\right]
$$

and

$$
G_{m}^{n-2}=\left[\begin{array}{ll}
F_{m}(n-1) & F_{m}(n-2) \tag{10}\\
F_{m}(n-2) & F_{m}(n-3)
\end{array}\right]
$$

one can write

$$
\begin{gather*}
m G_{m}^{n-1}+G_{m}^{n-2}=\left[\begin{array}{cc}
m F_{m}(n)+F_{m}(n-1) & m F_{m}(n-1)+F_{m}(n-2) \\
m F_{m}(n-1)+F_{m}(n-2) & m F_{m}(n-2)+F_{m}(n-3)
\end{array}\right] \tag{11}\\
m G_{m}^{n-1}+G_{m}^{n-2}=\left[\begin{array}{cc}
F_{m}(n+1) & F_{m}(n) \\
F_{m}(n) & F_{m}(n-1)
\end{array}\right] \tag{12}
\end{gather*}
$$

Thus, the proof is completed.

2. The Fibonacci Q-Matrices of the Order m

For $m \in R^{+}$, the Fibonacci Q-matrices of order $-m$ can be defined by

$$
G_{-m}=\left[\begin{array}{cc}
-m & 1 \tag{13}\\
1 & 0
\end{array}\right]
$$

Since, the Fibonacci numbers of order $-m$ can be defined by the following recurrence relation, for $m \in R^{+}, n \in Z$

$$
\begin{equation*}
F_{-m}(n+2)=-m F_{-m}(n+1)+F_{-m}(n) \tag{14}
\end{equation*}
$$

where $F_{-m}(0)=0, F_{-m}(1)=1$.The following theorem sets a connection of the G_{-m} matrix with the generalized Fibonacci numbers of order $-m$.

Theorem 2.For $m \in R^{+}$and $n \in Z$,

$$
G_{-m}^{n}=\left[\begin{array}{cc}
F_{-m}(n+1) & F_{-m}(n) \tag{15}\\
F_{-m}(n) & F_{-m}(n-1)
\end{array}\right] .
$$

Proof. Since, $F_{-m}(0)=0, F_{-m}(1)=1$ and
$F_{-m}(2)=-m$,
$F_{-m}(3)=m^{2}+1$,
$F_{-m}(4)=-m^{3}-2 m$,
$F_{-m}(5)=m^{4}+3 m^{2}+1, \ldots$
we can write

$$
\begin{gather*}
G_{-m}^{1}=\left[\begin{array}{cc}
-m & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
F_{-m}(2) & F_{-m}(1) \\
F_{-m}(1) & F_{-m}(0)
\end{array}\right], \tag{16}\\
G_{-m}^{2}=\left[\begin{array}{cc}
-m & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-m & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
m^{2}+1 & -m \\
-m & 1
\end{array}\right]=\left[\begin{array}{cc}
F_{-m}(3) & F_{-m}(2) \\
F_{-m}(2) & F_{-m}(1)
\end{array}\right], \tag{17}\\
G_{-m}^{3}=\left[\begin{array}{cc}
-m^{3}-2 m & m^{2}+1 \\
m^{2}+1 & -m
\end{array}\right]=\left[\begin{array}{cc}
F_{-m}(5) & F_{-m}(4) \\
F_{-m}(4) & F_{-m}(3)
\end{array}\right] . \tag{18}
\end{gather*}
$$

By the inductive method, we can easily verify that

$$
G_{-m}^{n}=\left[\begin{array}{cc}
F_{-m}(n+1) & F_{-m}(n) \tag{19}\\
F_{-m}(n) & F_{-m}(n-1)
\end{array}\right] .
$$

Theorem 3. For a given integer n and a positive real m number we have that

$$
\begin{equation*}
\operatorname{Det}\left(G_{-m}^{n}\right)=(-1)^{n} \tag{20}
\end{equation*}
$$

Proof. Using general properties of the determinants the proof can be easily seen. It is clear that the above equation is a generalized of the famous Cassini formula.

Theorem 4. For a given integer n and a positive real number m we have that

$$
\begin{equation*}
G_{-m}^{n}=-m G_{-m}^{n-1}+G_{-m}^{n-2} \tag{21}
\end{equation*}
$$

Proof. From the recursive relation $F_{-m}(n+2)=-m F_{-m}(n+1)+F_{-m}(n)$ we can write

$$
\begin{align*}
& -m G_{-m}^{n-1}+G_{-m}^{n-2}=\left[\begin{array}{cc}
-m F_{-m}(n) & -m F_{-m}(n-1) \\
-m F_{-m}(n-1) & -m F_{-m}(n-2)
\end{array}\right]+\left[\begin{array}{cc}
F_{-m}(n-1) & F_{-m}(n-2) \\
F_{-m}(n-2) & F_{-m}(n-3)
\end{array}\right], \\
& -m G_{-m}^{n-1}+G_{-m}^{n-2}=\left[\begin{array}{cc}
-m F_{-m}(n)+F_{-m}(n-1) & -m F_{-m}(n-1)+F_{-m}(n-2) \\
-m F_{-m}(n-1)+F_{-m}(n-2) & -m F_{-m}(n-2)+F_{-m}(n-3)
\end{array}\right]=G_{-m}^{n} . \tag{23}
\end{align*}
$$

3. The Fibonacci Q-Matrices of the Order $\sqrt{-m}$

The Fibonacci Q-matrices with the order $\sqrt{-m}$ can be defined by the following expression

$$
G_{\sqrt{-m}}=\left[\begin{array}{cc}
\sqrt{-m} & 1 \tag{24}\\
1 & 0
\end{array}\right]
$$

where m is a positive number. The Fibonacci numbers with order $\sqrt{-m}$ is defined by the following recurrence relation,

$$
\begin{equation*}
F_{\sqrt{-m}}(n+2)=\sqrt{-m} F_{\sqrt{-m}}(n+1)+F_{\sqrt{-m}}(n) \tag{25}
\end{equation*}
$$

$F_{\sqrt{-m}}(0)=0, F_{\sqrt{-m}}(1)=1$ and $m \in R^{+}, n \in Z$.
Theorem 5. For a given integer n and a positive real m numberwe have that

$$
G_{\sqrt{-m}}^{n}=\left[\begin{array}{cc}
F_{\sqrt{-m}}(n+1) & F_{\sqrt{-m}}(n) \tag{26}\\
F_{\sqrt{-m}}(n) & F_{\sqrt{-m}}(n-1)
\end{array}\right]
$$

Proof. Since, $F_{\sqrt{-m}}(2)=\sqrt{m} i, F_{\sqrt{-m}}(3)=-m+1, F_{\sqrt{-m}}(4)=-m \sqrt{m} i+$
$2 \sqrt{m} i, \cdots$ one can write

$$
G_{\sqrt{-m}}^{1}=\left[\begin{array}{cc}
\sqrt{m} i & 1 \tag{27}\\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
F_{\sqrt{-m}}(2) & F_{\sqrt{-m}}(1) \\
F_{\sqrt{-m}}(1) & F_{\sqrt{-m}}(0)
\end{array}\right]
$$

and

$$
G_{\sqrt{-m}}^{4}=\left[\begin{array}{cc}
m^{2}-3 m+1 & -m \sqrt{m} i+2 \sqrt{m} i \tag{28}\\
-m \sqrt{m} i+2 \sqrt{m} i & -m+1
\end{array}\right]=\left[\begin{array}{cc}
F_{\sqrt{-m}}(5) & F_{\sqrt{-m}}(4) \\
F_{\sqrt{-m}}(4) & F_{\sqrt{-m}}(3)
\end{array}\right] .
$$

Thus, by the inductive method we obtain that

$$
G_{\sqrt{-m}}^{n}=\left[\begin{array}{cc}
F_{\sqrt{-m}}(n+1) & F_{\sqrt{-m}}(n) \tag{29}\\
F_{\sqrt{-m}}(n) & F_{\sqrt{-m}}(n-1)
\end{array}\right] .
$$

Taking into account the Cassini formula we can write

$$
\begin{equation*}
\operatorname{Det}\left(G_{\sqrt{-m}}^{n}\right)=(-1)^{n} . \tag{30}
\end{equation*}
$$

Thus, we can also write

$$
\begin{equation*}
F_{\sqrt{-m}}(n+1) F_{\sqrt{-m}}(n-1)-\left[F_{\sqrt{-m}}(n)\right]^{2}=(-1)^{n} . \tag{31}
\end{equation*}
$$

This equation can be called Cassini Formula of Fibonacci numbers of the order $\sqrt{-m}$.

Using the recursive relation $F_{\sqrt{-m}}(n+2)=\sqrt{-m} F_{\sqrt{-m}}(n+1)+F_{\sqrt{-m}}(n)$ we write the following theorem.

Theorem 6.

$$
\begin{equation*}
G_{\sqrt{-m}}^{n}=\sqrt{-m} G_{\sqrt{-m}}^{n-1}+G_{\sqrt{-m}}^{n-2} . \tag{32}
\end{equation*}
$$

Proof. The proof is immediately follows from the definition $G_{\sqrt{-m}}^{n}$.

Aknowledgement. Research of the first author is supported by Sakarya University, Scientific Research Project Unit.

References

[1] A. P. Stakhov, The golden matrices and a new kind of cryptography, Chaos, Solitions and Fractals 32(2007), 1138-1146.
[2] A. Stakhov and B. Rozin, The golden shofar, Chaos, Solitions and Fractals, 26 (2005), 677-684.
[3] A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula and a new coding theory, Solitions and Fractals, 30 (2006), 56-66.
[4] http://www.goldenmuseum.com/0905 HyperFibLuck_engl.html
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience publication, U.S.A, (2001).
[6] F. E. Hohn,Elementary Matrix Algebra, Macmillan Company, New York, (1973).
[7] V. E. Hoggat, Fibonacci and Lucas numbers, Houghton-Mifflin, Palo Alto, (1969).

Serpil Halici
Department of Mathematics
Faculty of Arts and Sciences
University of Sakarya
Turkey.
email: shalici@sakarya.edu.tr

