SOME NEW CLASSES OF ANALYTIC FUNCTIONS DEFINED BY MEAN OF A CONVOLUTION OPERATOR

Saquib Hussain

Abstract. In this paper we use the inverse of most famous Carlson Shaffer operator and introduce some new classes of analytic functions. Some inclusion results, a radius problem are discussed. We also show that these classes are closed under convolution with a convex function.

2000 Mathematics Subject Classification: 30C45,30C50.

1. Introduction

Let A_{p} denotes the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z:|z|<1\}$ and $p \in N=\{1,2,3, \ldots\}$. Further for $0 \leqslant \alpha<p, S_{p}^{*}(\alpha)$ and $K_{p}(\alpha)$ denotes the classes of all p-valently starlike and convex functions of order α respectively. Also the class of p-valently close-toconvex of order α type γ is denoted by $B_{p}(\alpha, \gamma)$ and is given by

$$
B_{p}(\alpha, \gamma)=\left\{f \in A_{p}: \exists g \in S_{p}^{*}(\gamma) \text { s.t. } \operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\alpha, z \in E,, 0 \leqslant \alpha, \gamma<1\right\}
$$

The classes S_{p}^{*} and K_{p} was introduced by Goodman [3] and $B_{p}(\alpha, \gamma)$ was studied by Aouf [1]. Clearly

$$
\begin{equation*}
f \in K_{p}(\alpha) \Longleftrightarrow \frac{z f^{\prime}}{f} \in S_{p}^{*}(\alpha) \tag{1.2}
\end{equation*}
$$

The convolution (or Hadamard product) is denoted and defined by

$$
f(z) * g(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}
$$

where

$$
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \text { and } g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k} .
$$

The generalized Bernadi operator is denoted and defined as,

$$
\begin{equation*}
J_{c, p}(f(z))=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, c>-p . \tag{1.3}
\end{equation*}
$$

Inspiring from carlson shaffer, Saitoh [7] introduced a linear operator, $L_{p}(a, c)$, ($a \in R, c \in C-\{0,-1,-2, \ldots\}$) as:

$$
\begin{equation*}
L_{p}(a, c) f(z)=\phi_{p}(a, c ; z) * f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} a_{k+p} z^{p+k}, \tag{1.4}
\end{equation*}
$$

where

$$
\phi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k},
$$

and $(a)_{k}$ is Pochhammer symbol.
Al-Kharasani and Al-Hajiry [2] defined the linear operator $L_{p}^{*}(a, c)$ as

$$
\begin{equation*}
L_{p}^{*}(a, c) f(z)=\phi_{p}^{*}(a, c ; z) * f(z), \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{*}(a, c ; z)=\frac{z^{p}}{(1-z)^{p+1}} . \tag{1.6}
\end{equation*}
$$

From (1.5) and (1.6) the following identity can be easily verified

$$
\begin{equation*}
L_{p}^{*}(a, c+1) f(z)=z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}+(c-1) L_{p}^{*}(a, c) f(z) \tag{1.7}
\end{equation*}
$$

Using the operator $L_{p}^{*}(a, c)$, we introduce the following new classes of analytic functions.

Definition 1.1

$$
S_{p}^{*}(a, c, \alpha)=\left\{f \in A_{p}: \operatorname{Re}\left[\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}\right]>\alpha, 0 \leq \alpha<1\right\} .
$$

Definition 1.2

$$
K_{p}^{*}(a, c, \alpha)=\left\{f \in A_{p}: \operatorname{Re}\left[\frac{\left(z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}\right)^{\prime}}{\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}\right]>\alpha, 0 \leq \alpha<1\right\} .
$$

Definition 1.3

$$
B_{p}^{*}(a, c, \alpha, \gamma)=\left\{f \in A_{p}: \exists g \in S_{p}^{*}(a, c, \gamma) \operatorname{Re}\left[\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) g(z)}\right]>\alpha, 0 \leq \alpha, \gamma<1\right\}
$$

2.Preliminary Results

We shall need the following lemmas in the proof of our main results:
Lemma 2.1[4] Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and $\psi(u, v)$ be a complex valued function satisfying the conditions:
(i) $\psi(u, v)$ is continuous in a domain $D \subseteq C \times C$.
(ii) $(1,0) \in D$ and $\psi(1,0)>0$.
(iii) $\operatorname{Re\psi }\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq \frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{k=1}^{\infty} a_{k} z^{k}$ is analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \psi\left(h(z), z h^{\prime}(z)\right)>0$ in E, then $\operatorname{Re} h(z)>0$ in E.

Lemma 2.2 [5] Let ψ be a convex and g be a starlike in E. Then for F analaytic in E with $F(0)=1$, then $\frac{\psi * F g}{\psi * g}$ is contained in convex hull of $F(E)$.

Lemma 2.3 [6] Let p be an analytic function in E with $p(0)=1$ and $\operatorname{Re}(p(z))>$ $0, z \in E$, then for $s>0$ and $\mu \neq-1$ (complex),

$$
\operatorname{Re}\left[p(z)+\frac{s z p^{\prime}(z)}{p(z)+\mu}\right]>0 \quad \text { for }|z|<r_{0}
$$

where r_{0} is given by

$$
\begin{equation*}
r_{0}=\frac{|\mu+1|}{\sqrt{A+\left(A^{2}-\left|\mu^{2}-1\right|^{2}\right)^{\frac{1}{2}}}} . \tag{2.1}
\end{equation*}
$$

and $A=2(s+1)^{2}+|\mu|^{2}-1$.

3.MAIN RESULTS

Theorem 3.1 For $0 \leq \alpha<p, c \geq p$,

$$
S_{p}^{*}(a, c+1, \alpha) \subseteq S_{p}^{*}(a, c, \beta)
$$

where

$$
\begin{equation*}
\beta=\frac{2[p-2 \alpha(p-c)]}{\sqrt{(2 c-2 p-2 \alpha+1)^{2}+8(p-2 \alpha(p-c))+(2 c-2 p-2 \alpha+1)}} . \tag{3.1}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}=H(z)=(p-\beta) h(z)+\beta . \tag{3.2}
\end{equation*}
$$

We want to show that $H(z) \in P(\beta)$ or $h(z) \in P$.
From (1.7), (3.2)and after some simplification, we have

$$
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}-\alpha=(\beta-\alpha)+(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(p-\beta) h(z)+(\beta+c-p)} .
$$

Now by taking $u=h(z)$ and $v=z h^{\prime}(z)$, we formulate a functional $\psi(u, v)$ as

$$
\psi(u, v)=(\beta-\alpha)+(p-\beta) u(z)+\frac{(p-\beta) v(z)}{(p-\beta) u(z)+(\beta+c-p)} .
$$

Then obviously $\psi(u, v)$ satisfies conditions (i) and (ii) of Lemma 2.1 in the domain $D \subseteq C \times\left(C-\left\{\frac{\beta+c-p}{\beta-p}\right\}\right)$.

For the third condition we proceed as follows:

$$
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right)=(\beta-\alpha)+\frac{(p-\beta)(\beta+c-p) v_{1}}{(p-\beta)^{2} u_{2}^{2}+(\beta+c-p)^{2}}
$$

When we put $v_{1} \leq \frac{1}{2}\left(1+u_{2}^{2}\right)$, then $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq \frac{A+B u_{2}^{2}}{2 C}$, where

$$
\begin{aligned}
& A=2(\beta-\alpha)(\beta+c-p)^{2}-(\beta+c-p)(p-\beta) \\
& B=2(\beta-\alpha)(p-\beta)^{2}-(\beta+c-p)(p-\beta) \\
& C=(\beta+c-p)^{2}+(p-\beta)^{2} u_{2}^{2}>0 .
\end{aligned}
$$

We note that $\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$,we obtain β, as given by (3.1), and from $B \leq 0$ gives $0 \leq \beta<p$. Hence $H(z) \in P(\beta)$ and consequently $f(z) \in S_{p}^{*}(a, c, \beta)$.

Special Case. For $\alpha=0, a=1, c=1, p=1$, we obtain a well known result that every convex function is starlike of order $\frac{1}{2}$.

Theorem 3.2. For $0 \leq \alpha<p, c \geq p$,

$$
K_{p}^{*}(a, c+1, \alpha) \subseteq K_{p}^{*}(a, c, \alpha) .
$$

Proof. The proof follows immediately by using (1.2) and Theorem 3.1.
Theorem 3.3. For $0 \leq \alpha<p, c \geq p$,

$$
B_{p}^{*}(a, c+1, \alpha, \gamma) \subseteq B_{p}^{*}(a, c, \alpha, \gamma) .
$$

Proof. Let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) g(z)}=H(z)=(p-\alpha) h(z)+\alpha . \tag{3.3}
\end{equation*}
$$

Using (1.7), (3.3) and after some simplification, we have

$$
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) g(z)}-\alpha=(p-\alpha) h(z)+\frac{(p-\alpha) z h^{\prime}(z)}{(c-p)+H_{0}(z)},
$$

where

$$
H_{0}(z)=\frac{z\left(L_{p}^{*}(a, c) g(z)\right)^{\prime}}{L_{p}^{*}(a, c) g(z)} .
$$

Now by taking $u=h(z)$ and $v=z h^{\prime}(z)$, we formulate the function $\psi(u, v)$ as

$$
\psi(u, v)=(p-\alpha)+\frac{(p-\beta) v(z)}{(c-p)+H_{0}(z)} .
$$

Then clearly $\psi(u, v)$ satisfies all the conditions of Lemma 2.1. Hence $H(z) \in P(\alpha)$ and consequently $f \in B_{p}^{*}(a, c, \alpha, \gamma)$.

Theorem 3.4. Let $f \in S_{p}^{*}(a, c, \alpha)$, then $J_{c, p} f \in S_{p}^{*}(a, c, \alpha)$.
Proof. Let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) J_{c, p} f(z)\right)^{\prime}}{L_{p}^{*}(a, c) J_{c, p} f(z)}=H(z)=(p-\alpha) h(z)+\alpha . \tag{3.4}
\end{equation*}
$$

Using (2.6), (3.4) and after some simplification, we have

$$
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}=(p-\alpha) h(z)+\frac{(p-\alpha) z h^{\prime}(z)}{(p-\alpha) h(z)+(\alpha+c)} \in P(\alpha) .
$$

Now by taking $u=h(z) \& v=z h^{\prime}(z)$, we formulate the function $\psi(u, v)$ as

$$
\psi(u, v)=(p-\alpha)+\frac{(p-\alpha) v(z)}{(p-\alpha) h(z)+(\alpha+c)} .
$$

Then clearly $\psi(u, v)$ satisfies all the conditions of Lemma 2.1. Hence $H(z) \in P(\alpha)$ and consequently $J_{c, p} f \in S_{p}^{*}(a, c, \alpha)$.

Theorem 3.5. If $\phi \in C$ and $f \in S_{p}^{*}(a, c, \alpha)$ then $\phi * f \in S_{p}^{*}(a, c, \alpha)$.
Proof. Let $G=\phi * f$. Then

$$
\begin{equation*}
L_{p}^{*}(a, c) G=\phi *\left(L_{p}^{*}(a, c) * f\right) . \tag{3.5}
\end{equation*}
$$

By logarithmic differentiation of (3.5) and after some simplification, we have

$$
\frac{z\left(L_{p}^{*}(a, c) G\right)^{\prime}}{L_{p}^{*}(a, c) G}=\frac{\phi * F L_{p}^{*}(a, c) f}{\phi * L_{p}^{*}(a, c) f},
$$

where

$$
F=\frac{z\left(L_{p}^{*}(a, c) * f\right)^{\prime}}{L_{p}^{*}(a, c) * f} .
$$

As $f \in S_{p}^{*}(a, c, \alpha)$, therefore by using Lemma 2.2, it follows at once that $\phi * f \in$ $S_{p}^{*}(a, c, \alpha)$.

Theorem 3.6. Let $f(z) \in S_{p}^{*}(a, c, \alpha)$, then $f(z) \in S_{p}^{*}(a, c+1, \alpha)$ for $|z|<r$, where r is given by (2.1), with $s=\frac{1}{p-\alpha}, \mu=\frac{\alpha+p-1}{p-\alpha}$.

Proof. Let $f(z) \in S_{p}^{*}(a, c, \alpha)$ then

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}=H(z)=\alpha+(p-\alpha) h, \quad h \in P . \tag{3.6}
\end{equation*}
$$

Working in the same way as in Theorem 3.1, we have

$$
\frac{1}{p-\alpha}\left\{\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) f(z)}-\alpha\right\}=h(z)+\frac{\left(\frac{1}{p-\alpha}\right) z h^{\prime}(z)}{h(z)+\frac{\alpha+p-1}{p-\alpha}}
$$

Then by using Lemma 2.3 with $s=\frac{1}{p-\alpha}$, and $\mu=\frac{\alpha+p-1}{p-\alpha} \neq-1$, we have $f(z) \in$ $S_{p}^{*}(a, c+1, \alpha)$ for $|z|<r$, where r is given by (2.1) and this radius is best possible.

References

[1] M. K. Aouf, On a class of p-valent close to convex functions, Int. J. Math. Sci. 11(1988),259-266.
[2] H. A. Al-Kharasani and S.S. Al-Hajiry, A linear operator and its applications on p-valent functions, Int. J. of. Math. Analysis, 1(2007),627-634
[3] A. W. Goodman, On Schwarz-Christofell transformation and p-valent functions,Tran.Amer. Math. Soc. 68(1950), 204-223.
[4] S. S. Miller, Differential Inequalities and Caratheodory functions, Bull. Amer. Math.Soc.81(1975), 70-81.
[5] S. Ruscheweyh, New Criteria for Univalent Functions, Proc.Amer. Math. Soc.49(1975),109-115.
[6] S. Ruscheweyh and V. Singh, On Certain extrtemal problems for functions with positive real parts,Proc.Amer. Math. Soc.61(1976), 329-334.
[7] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japonica, 44(1996), 31-38.

Saqib Hussain
Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
email: saqib_math@yahoo.com

