A NOTE ON PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS

Sedat Ilhan and Meral Suer

Abstract. In this study, we give some results on pseudo-symmetric numerical semigroups which generated by three elements, and we investigate the sutructures $\frac{S}{d}$ and $\frac{I}{d}$, for d a positive integer and I an ideal of S pseudosymmetric numerical semigroup.

2000 Mathematics Subject Classification: 20M14.
Keywords and phrases: Numerical semigroup, Ideal, Pseudo, Symmetric, Gaps.

1. Introduction

Let \mathbb{Z} and \mathbb{N} denote, the sets of integers and non-negative integers, respectively. A subset S of \mathbb{N} is called a numerical semigroup if it is closed and associative under addition and $0 \in S$. Furthermore, a subset $\left\{s_{1}, s_{2}, \ldots s_{p}\right\}$ of the set S is a generating set of S provided that

$$
<s_{1}, s_{2}, \ldots s_{p}>=\left\{k_{1} s_{1}+k_{2} s_{2}+\ldots+k_{n} s_{p}: k_{1}, k_{2}, \ldots, k_{p} \in \mathbb{N}\right\}
$$

It was observed in [1] that the set $\mathbb{N} \backslash S$ is a finite set if and only if

$$
\text { g.c.d }\left\{s_{1}, s_{2}, \ldots s_{p}\right\}=1 .
$$

The Frobenius number of S, denoted by $g(S)$, is the largest integer not in S. That is, $g(S)=\max \{x: x \in \mathbb{Z} \backslash S\}$. We define $n(S)=$ $\sharp(\{0,1,2, \ldots, g(S)\} \cap S)$. It is also well-known that $S=\left\{0, s_{1}, s_{2}, \ldots, s_{n-1}, s_{n}=\right.$ $g(S)+1, \rightarrow\}$, where " \rightarrow " means that every integer greater than $g(S)+1$ belongs to S and $n=n(S), s_{i}<s_{i+1}$, for $i=1,2, \ldots, n$.([2]).
S is symmetric if for every $x \in \mathbb{Z} \backslash S$ the integer $g(S)-x$ belongs to S. Similarly, a numerical semigroup S is pseudo-symmetric if $g(S)$ is even and the only integer such that $x \in \mathbb{Z} \backslash S$ and $g(S)-x \notin S$ is $x=\frac{g(S)}{2}$ ([3]).

The elements of $\mathbb{N} \backslash S$, denoted by $H(S)$, are called the gaps of S. A gap x of a numerical semigroup S is said to be fundamental if $\{2 x, 3 x\} \subset S$. We denote by $F H(S)$ the set of all fundamental gaps of S ([5]).

A subset I of S is said to be an ideal if $I+S \subseteq I$. In other words, I is an ideal of S if and only if $x \in I$ and $s \in S$ implies $x+s \in I$. An ideal I of S is said to be generated by $A \subseteq S$ if $I=A+S$. We also say that the ideal I is finitely generated if there exists a finite set $A \subseteq S$ such that $I=A+S$. Finally, we say I is principal if it can be generated by a single element. That is, there exists $x_{0} \in S$ such that $I=\left\{x_{0}\right\}+S=\left\{x_{0}+s: s \in S\right\}$. In this case, we usually write $\left[x_{0}\right]$ instead of $\left\{x_{0}\right\}+S$. ([4]).

For S a numerical semigroup and d is positive integer, we define $\frac{S}{d}=$ $\{x \in \mathbb{N}: d x \in S\}$ to be the quotient of S by d. The set $\frac{I}{d}=\{x \in S: d x \in I\}$ is called an ideal which quotient of I by $x \in S, x \neq 0$, where I be an ideal of S. The elements of S / I, denoted by $H(I)$, are called the gaps of I. ([3]).

In this paper, we assume that S is pseudo-symmetric numerical semigroup which generated by three elements s_{1}, s_{2}, s_{3}. We write $\frac{S}{d}$, when $d=\frac{g(S)}{2}$ and $d>\frac{g(S)}{2}$ for $d \in \mathbb{N}$ in section 2.

Section 3 consists of relations between $\frac{S}{d}=\{x \in \mathbb{N}: d x \in S\}$ and $\frac{I}{d}=\{x \in S: d x \in I\}$

2. Results

In this section, we give some results on $\frac{S}{d}$, where $S=<s_{1}, s_{2}, s_{3}>$ is a pseudo-symmetric numerical semigroup.

Definition 2.1. For S numerical semigroup and d is positive integer, we define $\frac{S}{d}=\{x \in \mathbb{N}: d x \in S\}$ to be the quotient of S by d.

Note 2.2. $\frac{S}{d}=\{x \in \mathbb{N}: d x \in S\}$ is a numerical semigroup which containing S, and if $d \in S$ then $\frac{S}{d}=\mathbb{N}$, where d is a positive integer.([3]). The following covering result follows from Definition 2.1.

Corollary 2.3. Let S be a numerical semigroup and d is a positive integer. Then $d \in F S(H)$ if and only if $\frac{S}{d}=\mathbb{N} \backslash\{1\}$.([3]).

Theorem 2.4. Let S be a pseudo-symmetric numerical semigroup and d is a positive integer. If $d>\frac{g(S)}{2}$ then $\frac{S}{d}=\mathbb{N} \backslash\{1\}$.

Proof. If $d>\frac{g(S)}{2}$ then $2 d>g(S)$. Thus, we obtain that $3 d>2 d>g(S)$ and $\{2 d, 3 d\} \subset S$ since $d \geq 1$ and $2 d, 3 d \in S$. That is $d \in F S(H)$, and we have that $\frac{S}{d}=\mathbb{N} \backslash\{1\}$ from Corollary 2.3.

Theorem 2.5. Let S be a pseudo-symmetric numerical semigroup and d is a positive integer. If $d=\frac{g(S)}{2}$ then $\frac{S}{d}=<3,4,5>$.

Proof. $x \in \frac{S}{d} \Longrightarrow d x \in S \Longrightarrow \frac{g(S)}{2} x \in S \Longrightarrow x=0$ or $x>2$. Because;
(i) If $x=1$ then $\frac{g(S)}{2} 1 \in S$. This is a contradiction.
(ii) If $x=2$ then $\frac{g(S)}{2} 2=g(S) \in S$. This is a contradiction. Thus, we find that

$$
x \in\{0,3,4,5, \rightarrow \ldots\}=<3,4,5>
$$

Now, we suppose $a \in<3,4,5>$. Then, there exist $k_{1}, k_{2}, k_{3} \in \mathbb{N}$ such that $a=3 k_{1}+4 k_{2}+5 k_{3}$. In this case,we write $d a=3 d k_{1}+4 d k_{2}+5 d k_{3}=$ $3 \frac{g(S)}{2} k_{1}+4 \frac{g(S)}{2} k_{2}+5 \frac{g(S)}{2} k_{3}=3 \frac{g(S)}{2} k_{1}+2 g(S) k_{2}+5 \frac{g(S)}{2} k_{3} \in S$, since $2 g(S) \in$ S. Thus, we have $a \in \frac{S}{d}$.

Corollary 2.6. Let S be a pseudo-symmetric numerical semigroup and d is a positive integer. Then, $\frac{S}{d}$ is symmetric or pseudo-symmetric.

Example 2.7. Let be $S=<7,8,25>=\{0,7,8,14,15,16,21,22,23,24$, $25,28,29,30,31,32,33,35, \rightarrow \ldots\}$. The Frobenius number of S is $g(S)=34$. The set of gaps and fundamental gaps of $S, H(S)=\{1,2,3,4,5,6,9,10,11$, $12,13,17,18,19,20,26,27,34\}$ and $F H(S)=\{11,12,18,19,20,26,27,34\}$, respectively. If $d=\frac{g(S}{2}=17$ then $\frac{S}{17}=\{x \in \mathbb{N}: 17 x \in S\}=\{0,3,4,5, \rightarrow$ $\ldots\}=<3,4,5>$ is pseudo-symmetric numerical semigroup. If $d=20>17$ then $\frac{S}{20}=\{x \in \mathbb{N}: 20 x \in S\}=\{0,2,3,4,5, \rightarrow \ldots\}=<2,3>=\mathbb{N} \backslash\{1\}$ is symmetric numerical semigroup.If $d=5$ then $\frac{S}{5}=\{x \in \mathbb{N}: 5 x \in S\}=$ $\{0,3,5,6,7, \rightarrow \ldots\}=<3,5,7>$ is pseudo-symmetric numerical semigroup. If $d=2$ then $\frac{S}{2}=\{x \in \mathbb{N}: 2 x \in S\}=\{0,4,7,8,11,12,14,15,16,18, \rightarrow$ $\ldots\}=<4,7>$ is symmetric numerical semigroup.

3. The relations between $\frac{S}{d}$ and $\frac{I}{d}$

In this section, we will give some results related the relation between $\frac{S}{d}$ and $\frac{I}{d}$, where d is positive integer and I is a principal of S.

Definition 3.1. Let I be an ideal of S. The set $\frac{I}{d}=\{s \in S: s d \in I\}$ is called an ideal which quotient of I by $d \in S, d \neq 0$.

Theorem 3.2. Let I be an ideal of S and $x \in S, x \neq 0$. Then the following conditions are satisfied:
(1) $\frac{I}{x}$ is a ideal of S.
(2) $I \subseteq \frac{I}{x} \subseteq \frac{I}{k x}$, for all $k \in \mathbb{N}, k>0$.

Proof. (1) $\forall a \in \frac{I}{x}, \forall s \in S, a+s \in \frac{I}{x}: a \in \frac{I}{x} \Longrightarrow a x \in I \Longrightarrow \forall s \in$ $S, x a+s x=x(a+s) \in I$ since I is an ideal of S. (2) $a \in I \Longrightarrow a x \in I$ for $x \in S \Longrightarrow(a x) k \in I$ for all $k \in \mathbb{N}, k>0 \Longrightarrow a \in \frac{I}{k x}$.

Theorem 3.3. Let I be an ideal of S and $x \in S, x \neq 0$. Then the following conditions are satisfied:
(1) If $x \in I$ then $\frac{I}{x}=S \backslash\{0\}$.
(2) $\frac{I}{x} \subseteq \frac{S}{x}$.

Proof. Let I be an ideal of S and $x \in S, x \neq 0$.
(1) Let $I=[s]$. Then,there exist $m \in S \backslash\{0\}$ and $s_{0} \in S$ such that $m x=s+s_{0}$. In this case, $m x \in I=[s]$. That is, $m \in \frac{I}{x}$.
(2) $a \in \frac{I}{x} \Longrightarrow a x \in I, a \in S \Longrightarrow a x \in S, a \in \mathbb{N} \Longrightarrow a \in \frac{S}{x}$.

Example 3.4. Let be $S=<4,9,11>=\{0,4,8,9,11,12,13,15, \rightarrow \ldots\}$. The Frobenius number of S is $g(S)=14$. Then the principal ideal $I=[9]$ of S is given by: $I=[9]=9+S=\{9,13,17,18,20,21,22,24, \longrightarrow \ldots\}$. Thus, we obtain that $\frac{I}{4}=\{8,9,11,12,13,15, \longrightarrow \ldots\} \subset \frac{S}{4}=\mathbb{N}$ and $\frac{I}{4} \subseteq \frac{I}{20}=$ $\{4,8,9,11,12,13,15, \longrightarrow \ldots\}=S \backslash\{0\}$.

References

[1] Barucci, V., Dobbs,D.E. and Fontana, M.,Maximality properties in numerical semigroups and applications to one-dimensional analyticalle irreducible local domains, Memoirs of the Amer.Math.Soc.598, (1997).
[2] Marco D'anna, Type sequences of numerical semigroups, Semigroup Forum,56, (1998),1-31.
[3] Rosales, J.C., One half of a pseudo-symmetric numerical semigroups, London Math. Soc., doi: 10.1112/blms/bd010, (2008). .
[4] Rosales, J.C., Garcia-Sanchez, P.A., Garcia-Garcia,J.I. and Jimenez Madrid, J.A. Irreducible ideals of finitely generated commutative monoids, Journal of Algebra, 238,(2001),328-344.
[5] Rosales, J.C.,P.A. Garcia-Sanchez, J.I. Garcia-Garcia and J.A. Jimenez Madrid, Fundamental gaps in numerical semigroups, Journal of pure and applied algebra 189, (2004),301-313.

Sedat Ilhan and Meral Suer
Department of Mathematics, Faculty of Science and Art, Dicle University, Diyarbakır 21280, Turkey
e-mail:sedati@dicle.edu.tr

