A CONVEXITY PROPERTY FOR AN INTEGRAL OPERATOR ON THE CLASS $UST(K, \gamma)$

DANIEL BREAZ AND SHIGEYOSHI OWA

ABSTRACT. An integral operator $F_n(z)$ for analytic functions $f_i(z)$ in the open unit disk \mathbb{U} is introduced. The object of the present paper is to discuss a convexity property for the integral operator $F_n(z)$ involving k-uniformly starlike functions of order γ .

2000 Mathematics Subject Classification: 30C45. Keywords and Phrases: starlike, convex, uniformly starlike.

1. INTRODUCTION

Let \mathcal{A} be the class of functions f(z) of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}.$

Let $\mathcal{S}^*(\alpha)$ denote the subclass of \mathcal{A} consisting of functions f(z) which satisfy

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some α ($0 \leq \alpha < 1$). A function $f(z) \in \mathcal{S}^*(\alpha)$ is said to be starlike of order α in U. Also let $\mathcal{K}(\alpha)$ be the subclass of \mathcal{A} consisting of all functions f(z) which satisfy

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some α ($0 \leq \alpha < 1$). A function f(z) in $\mathcal{K}(\alpha)$ is said to be convex of order α in U. Further let $\mathcal{UST}(k, \gamma)$ be the subclass of \mathcal{A} consisting of functions f(z) which satisfy

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > k \left| \frac{zf'(z)}{f(z)} - 1 \right| + \gamma \qquad (z \in \mathbb{U})$$

107

for some k $(k \ge 0)$ and γ $(0 \le \gamma < 1)$. A function $f(z) \in \mathcal{UST}(k, \gamma)$ is said to be *k*-uniformly starlike of order γ . This class was introduced by Aghalary and Azadi [1] (also see [3]).

For $f_i(z) \in \mathcal{A}$ and $\alpha_i > 0$, we define the integral operator $F_n(z)$ given by

$$F_n(z) = \int_0^z \left(\prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\alpha_i}\right) dt.$$

This integral operator $F_n(z)$ was first defined by Breaz and Breaz [2]. From the definition for the integral operator, it is easy to see that $F_n(z) \in \mathcal{A}$.

2. Main Result

Our main result for the integral operator $F_n(z)$ is contained in

Theorem 1. Let $f_i(z) \in \mathcal{UST}(k_i, \gamma_i)$ for each $i = 1, 2, 3, \dots, n$. If $\alpha_i > 0$ $(i = 1, 2, 3, \dots, n)$ and

$$0 < \sum_{i=1}^{n} (1 - \gamma_i) \alpha_i \leq 1,$$

then $F_n(z) \in \mathcal{K}(\gamma)$, where

$$\gamma = 1 - \sum_{i=1}^{n} (1 - \gamma_i) \alpha_i.$$

Proof. Since

$$F'_n(z) = \prod_{i=1}^n \left(\frac{f_i(z)}{z}\right)^{\alpha_i}$$

and

$$F_{n}''(z) = \sum_{i=1}^{n} \alpha_{i} \left(\frac{f_{i}(z)}{z}\right)^{\alpha_{i}-1} \left(\frac{zf_{i}'(z) - f_{i}(z)}{zf_{i}(z)}\right) \prod_{j=1 \neq i}^{n} \left(\frac{f_{j}(z)}{z}\right)^{\alpha_{j}},$$

we obtain

$$1 + \frac{F_n''(z)}{F_n'(z)} = 1 + \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right).$$

Thus we see, for $f_i(z) \in \mathcal{UST}(k_i, \gamma_i)$,

$$\operatorname{Re}\left(1 + \frac{F_n''(z)}{F_n'(z)}\right) = 1 + \sum_{i=1}^n \alpha_i \operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) - \sum_{i=1}^n \alpha_i$$

$$> 1 + \sum_{i=1}^{n} \alpha_i \left(k_i \left| \frac{z f_i'(z)}{f_i(z)} - 1 \right| + \gamma_i \right) - \sum_{i=1}^{n} \alpha_i$$
$$\geq 1 - \sum_{i=1}^{n} (1 - \gamma_i) \alpha_i.$$

This completes the proof of our theorem.

Corollary 2. Let $f(z) \in \mathcal{UST}(k, \gamma)$. If $\alpha > 0$ and

$$0 < \alpha \leqq \frac{1}{1-\gamma},$$

then

$$F_1(z) = \int_0^z \left(\frac{f(t)}{t}\right)^\alpha dt \in \mathcal{K}(\delta),$$

where $\delta = 1 - (1 - \gamma)\alpha$.

Remark 3. If we take $\alpha = 1$ in the corollary, then the Alexander operator defined by

$$F(z) = \int_0^z \frac{f(t)}{t} \, dt$$

is convex of order γ . Therefore, letting k = 0, we see that $f(z) \in \mathcal{S}^*(\gamma)$ implies that

$$F(z) = \int_0^z \frac{f(t)}{t} \, dt \in \mathcal{K}(\gamma).$$

References

[1] R. Aghalary and Ch. Azadi, *The Dziok-Srivastava operator and k-uniformly starlike functions*, J. Inequ. Pure Appl. Math. **6** (2005), 1 - 7.

 [2] D. Breaz and N. Breaz, Two integral operators, Stu. Univ. Babes-Bolyai, Mathematica, 3 (2002), 3 (2002), 13 - 21.

[3] A. W. Goodman, On uniformly starlike functions. J. Math. Anal. Appl. 155 (1991), 364 - 370

Daniel Breaz Department of Mathematics "1 Decembrie 1918" University Alba Iulia, 510009, Alba Romania

109

e-mail: dbreaz@uab.ro

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan e-mail:owa@math.kindai.ac.jp

110