ON CERTAIN PROPERTIES OF THE CLASS OF GENERALIZED P-VALENT NON-BAZILEVIC FUNCTIONS

Khalida Inayat Noor, Ali Muhammad

Abstract. In this paper, we introduce a class $N_{k}(p, \lambda, \mu, \rho)$. We use a method of the mathematical induction and study some of the interesting properties of the operators

$$
I_{n}^{\alpha}(f(z))=\frac{\alpha+1}{z^{\alpha+1}} \int_{0}^{z} t^{\alpha}\left(I_{n-1}^{\alpha}(f(t)) d t\right.
$$

where $n \in \mathbb{N}, \alpha>-1$, in the class $N_{k}(p, \lambda, \mu, \rho)$.
2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords and phrases: Functions with positive real part, p-valent integral operator, Non-Bazilevic functions.

1. Introduction

Let $\mathcal{A}(p)$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{m=p+1}^{\infty} a_{m} z^{m}, \quad p \in \mathbb{N}=\{1,2,3, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disk

$$
E=\{z: z \in \mathbb{C},|z|<1\} .
$$

Let $P_{k}(\rho)$ be the class of functions $h(z)$ analytic in E satisfying the properties $h(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Reh}(z)-\rho}{1-\rho}\right| d \theta \leq k \pi \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \rho \leq 1$. This class has been introduced in [7]. We note, for $\rho=0$ we obtain the class defined and studied in [8], and for $\rho=0, k=2$, we have the well known class P of functions with positive real part. The case $k=2$ gives the class $P(\rho)$ of functions with positive real part greater than ρ. From (1.2) we can easily deduce that $h \in P_{k}(\rho)$ if, and only if, there exists $h_{1}, h_{2} \in P(\rho)$ such that for $z \in E$,

$$
\begin{equation*}
h(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{1.3}
\end{equation*}
$$

Assume that $0<\mu<1$, a function $f(z) \in A$ is in $N(\mu)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\mu}\right\}>0, z \in E \tag{1.4}
\end{equation*}
$$

$N(\mu)$ was introduced by Obradovic [5] recently, he called this class of functions to be of non-Bazilevic type. Until now, the class was studied in a direction of finding necessary conditions over μ that embeds this class into the class of univalent functions or its subclass, which is still an open problem.

Definition 1.1. Let $f(z) \in A(p)$. Then $f \in N_{k}(p, \lambda, \alpha, \rho)$, if and only $i f$,

$$
\left\{(1+\lambda)\left(\frac{z^{p}}{f(z)}\right)^{\mu}-\lambda \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{z^{p}}{f(z)}\right)^{\mu}\right\} \in P_{k}(\rho), z \in E
$$

where $0<\mu<1, \lambda \in N^{*}, k \geq 2$ and $0 \leq \rho<1$. The powers are understood as principal values. For $k=2$ and with different choices of p, λ, μ, ρ, these classes have been studied in [5, 9]. In particular $N_{2}(1,-1, \mu, 0)$ is the class of non-Bazilevic function studied in [5].

We now consider the integral operator defined in [2], as follows:

$$
I_{n}^{\alpha}(f(z))=\frac{\alpha+1}{z^{\alpha+1}} \int_{0}^{z} t^{\alpha}\left(I_{n-1}(f(t))\right) d t, n \in \mathbb{N}
$$

with initial gauss $I_{0}^{\alpha}(f(z))=I_{0}(f(z))=\left(\frac{z^{p}}{f(z)}\right)^{\alpha}$.
For $\alpha=0$ the operator I_{n}^{0} was introduced and studied in [3].

2. Preliminaries and main results

In order to prove our main result we shall need the following result.
Lemma 2.1. [1] Let $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ be analytic in E and let

$$
\left\{h(z)+\frac{z h^{\prime}(z)}{\gamma}\right\} \in P_{k}(\rho), \quad \text { for } \operatorname{Re} \gamma>0, k \geq 2,0 \leq \rho<1 .
$$

Then

$$
h(z) \in P_{k}\left(\rho_{0}\right), z \in E .
$$

where

$$
\begin{equation*}
\rho_{0}=\frac{\operatorname{Re} \gamma+2 \rho|\gamma|^{2}}{\operatorname{Re} \gamma+2|\gamma|^{2}} \tag{2.1}
\end{equation*}
$$

Theorem 2.1. Let Rey >0 and $f \in N_{k}(p, \lambda, \mu, \rho)$. Then, for $z \in$ $E, I_{n}^{\alpha} f \in P_{k}\left(\rho_{n}\right)$, where

$$
\begin{equation*}
\rho_{n}=\frac{\left[(1+a)^{n}-a^{n}\right]+a^{n} \rho_{0}}{(1+a)^{n}}, \tag{2.2}
\end{equation*}
$$

with $a=2(\alpha+1)$ and

$$
\rho_{0}=\frac{|\lambda|^{2}+2 \rho p \mu \operatorname{Re} \lambda}{|\lambda|^{2}+2 p \mu \operatorname{Re} \lambda} .
$$

Proof. We use the method of Mathematical induction to prove this result.
Let

$$
H_{0}(z)=\left(\frac{z^{p}}{f(z)}\right)^{\mu}
$$

where $0<\mu<1$.
By choosing a principal branch of $\left(\frac{z^{p}}{f(z)}\right)^{\mu}$ we note that $H_{0}(z)$ is analytic in E with $H_{0}(0)=1$. Now by a simple computation, we have

$$
\left\{(1+\lambda)\left(\frac{z^{p}}{f(z)}\right)^{\mu}-\lambda \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{z^{p}}{f(z)}\right)^{\mu}\right\}=\left\{H_{0}(z)+\frac{\lambda z H_{0}^{\prime}(z)}{p \mu}\right\} \in P_{k}(\rho),
$$

where $z \in E$, and from Lemma 2.1, with $\gamma=\frac{p \mu}{\lambda}$, and $\operatorname{Re} \gamma=\frac{p \mu}{\operatorname{Re} \lambda}>0$, it implies that $H_{0}(z) \in P_{k}\left(\rho_{0}\right)$, where

$$
\rho_{0}=\frac{|\lambda|^{2}+2 p \mu \rho \operatorname{Re} \lambda}{|\lambda|^{2}+2 p \mu \operatorname{Re} \lambda} .
$$

Thus the result is true for $n=0$.
For $n=1$, we proceed as follows:

$$
H_{1}(z)=I_{1}^{\alpha}(f(z))=\frac{\alpha+1}{z^{\alpha+1}} \int_{0}^{z} t^{\alpha}\left(I_{0}^{\alpha}(f(t))\right) d t, n \in \mathbb{N}^{*}, \alpha>1 .
$$

And so

$$
\left\{H_{1}(z)+\frac{z H_{1}^{\prime}(z)}{\alpha+1}\right\} \in P_{k}\left(\rho_{0}\right), z \in E .
$$

Using again Lemma 2.1 with $\gamma=\alpha+1$ we obtain that

$$
H_{1}(z)=I_{1}^{\alpha}(f(z)) \in P_{k}\left(\rho_{1}\right),
$$

where

$$
\rho_{1}=\frac{1+2(\alpha+1) \rho_{0}}{1+2(\alpha+1)}
$$

for $z \in E$, which shows that (2.2) holds true for $n=1$.
Next we assume that the condition (2.2) holds true for $n=m$. This implies that

$$
H_{m}(z)=I_{m}^{\alpha}(f(z)) \in P_{k}\left(\rho_{m}\right)
$$

and

$$
\rho_{m}=\frac{\left[(1+a)^{m}-a^{m}\right]+a^{m} \rho_{0}}{(1+a)^{m}}, a=2(1+\alpha)
$$

Proceeding as before we see that

$$
\left\{H_{m+1}(z)+\frac{z H_{m+1}^{\prime}(z)}{\alpha+1}\right\}=H_{m}(z) \in P_{k}\left(\rho_{m}\right), z \in E
$$

where

$$
H_{m+1}(z)=I_{m+1}^{\alpha}(f(z))=\frac{\alpha+1}{z^{\alpha+1}} \int_{0}^{z} t^{\alpha}\left(I_{m}(f(t))\right) d t, \alpha>-1 .
$$

This implies that

$$
H_{m+1}(z) \in P_{k}\left(\rho_{m+1}\right)
$$

where

$$
\begin{aligned}
\rho_{m+1} & =\frac{1+a \rho_{m}}{1+a} \\
\rho_{m+1} & =\frac{1+a\left[\frac{\left\{(1+a)^{m}-a^{m}\right\}+a^{m} \rho_{0}}{(1+a)^{m}}\right]}{1+a} \\
\rho_{m+1} & =\frac{\left[(1+a)^{m+1}-a^{m+1}\right]+a^{m}}{(1+a)^{m+1}}, \quad a=2(1+\alpha),
\end{aligned}
$$

and

$$
\rho_{0}=\frac{|\lambda|^{2}+2 \rho p \mu \operatorname{Re} \lambda}{|\lambda|^{2}+2 p \mu \operatorname{Re} \lambda}
$$

Therefore, we conclude that $I_{n}^{\alpha} f \in P_{k}\left(\rho_{n}\right)$ for any integer $n \in \mathbb{N} \cup\{0\}$.
For certain choices of ρ, μ, λ and k we obtain some partial results discussed in $[4,6]$.

Acknowledgments. The authors express deep gratitude to Dr S. M. Junaid. Zaidi, Rector, CIIT, for his support and providing excellent research facilities.

References

[1] K.I.Noor, On certain classes of P-valent functions, International J. Pure and Appl. Math 18 (2005), 345-350.
[2] S. Owa, Certain integral operators, Proc. Japan Acad., 67 (1991), 88-93.
[3] S. Owa and J.Patel, Properties of certain integral operator, Southeast Asian Bull. Math., 24 (2000), 411-419.
[4] S. Owa and M. Nunokawa, On certain analytic functions and subordination, Appl. Math. Letter., 3 (1990), 41-45.
[5] M. Obradovic, A class of univalent functions, Hokkaido Math. J., 27 (2) (1998), 329-355.
[6] M. Obradovic, A property of the class of functions whose derivative has a positive real part, Publ. Inst. Math., 45 (1989), 81-84.
[7] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 716.
[8] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311323.
[9] N. Tuneski and M. Darus, Fekete-Szego functional for non-Bazilevic functions, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 18 (2002), 6365.

Khalida Inayat Noor
Mathematics Department, COMSATS Institute of Information Technology, H-8/1 Islamabad, Pakistan. e-mail:khalidanoor@hotmail.com
K.I. Noor, A. Muhammad - On certain properties of the class of ...

Ali Muhammad
Mathematics Department,
COMSATS Institute of Information Technology,
H-8/1 Islamabad, Pakistan.
e-mail:ali7887@gmail.com

