PROPERTIES OF SOME FAMILIES OF MEROMORPHIC P-VALENT FUNCTIONS INVOLVING CERTAIN DIFFERENTIAL OPERATOR

M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian

Abstract. Making use of a differential operator, which is defined here by means of the Hadamard product (or convolution), we introduce the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ of meromorphically p-valent functions. The main object of this paper is to investigate various important properties and characteristics for this class. Also a property preserving integrals is considered.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let Σ_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in N=\{1,2, \ldots\}), \tag{1.1}
\end{equation*}
$$

which are analytic and p -valent in the punctured unit disc $U^{*}=\{z: z \in C$ and $0<|z|<1\}=U \backslash\{0\}$. For functions $f(z) \in \Sigma_{p}$ given by (1.1) and $g(z) \in \Sigma_{p}$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=0}^{\infty} b_{k} z^{k} \quad(p \in N), \tag{1.2}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $f(z)$ and $g(z)$ by

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) . \tag{1.3}
\end{equation*}
$$

For complex parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}\left(\beta_{j} \notin Z_{0}^{-}=\{0,-1\right.$, $-2, \ldots\} ; j=1,2, \ldots, s)$, we now define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)$ by (see, for example, [10] and [11])

$$
\begin{gather*}
{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{s}\right)_{k}(1)_{k}} z^{k} \\
\left(q \leq s+1 ; s, q \in N_{0}=N \cup\{0\} ; z \in U\right) \tag{1.4}
\end{gather*}
$$

where $(\theta)_{k}$, is the Pochhammer symbol defined in terms of the Gamma function Γ, by

$$
(\theta)_{v}=\frac{\Gamma(\theta+v)}{\Gamma(\theta)}= \begin{cases}1 & \left(v=0 ; \theta \in C^{*}=C \backslash\{0\}\right) \\ \theta(\theta+1) \ldots(\theta+v-1) & (v \in N ; \theta \in C)\end{cases}
$$

Corresponding to the function $h_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)$, defined by

$$
\begin{equation*}
h_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=z_{q}^{-p} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) \tag{1.5}
\end{equation*}
$$

we consider a linear operator

$$
H_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right): \Sigma_{p} \longrightarrow \Sigma_{p}
$$

which is defined by the following Hadamard product:

$$
\begin{gather*}
H_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) f(z)=h_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) * f(z) \\
\left(q \leq s+1 ; s, q \in N_{0} ; z \in U\right) \tag{1.6}
\end{gather*}
$$

We observe that, for a function $f(z)$ of the form (1.1), we have

$$
\begin{equation*}
H_{p}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) f(z)=H_{p, q, s}\left(\alpha_{1}\right)=z^{-p}+\sum_{k=0}^{\infty} \Gamma_{k} a_{k} z^{k} \tag{1.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{k}=\frac{\left(\alpha_{1}\right)_{k+p} \ldots\left(\alpha_{q}\right)_{k+p}}{\left(\beta_{1}\right)_{k+p} \ldots\left(\beta_{s}\right)_{k+p}(1)_{k+p}} \tag{1.8}
\end{equation*}
$$

Then one can easily verify from (1.7) that

$$
\begin{equation*}
z\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}=\alpha_{1} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)-\left(\alpha_{1}+p\right) H_{p, q, s}\left(\alpha_{1}\right) f(z) \tag{1.9}
\end{equation*}
$$

The linear operator $H_{p, q, s}\left(\alpha_{1}\right)$ was investigated recently by Liu and Srivastava [9] and Aouf [2]. The operator $H_{p, q, s}\left(\alpha_{1}\right)$ contains the operator $\ell_{p}(a, c)$ (see [8]) for $q=2, s=1, \alpha_{1}=a>0, \beta_{1}=c(c \neq 0,-1, \ldots)$ and $\alpha_{2}=1$ and also contains the operator $D^{\nu+p-1}$ (see [1] and [4]) for $q=2, s=1, \alpha_{1}=\nu+p(\nu>-p ; p \in$ $N)$ and $\alpha_{2}=\beta_{1}=p$.

For functions $f, g \in \Sigma_{p}$, we define the linear operator $D_{\lambda, p}^{n}(f * g)(z): \Sigma_{p} \longrightarrow$ $\Sigma_{p}\left(\lambda \geq 0 ; p \in N ; n \in N_{0}\right)$ by

$$
\begin{gather*}
D_{\lambda, p}^{0}(f * g)(z)=(f * g)(z) \tag{1.10}\\
D_{\lambda, p}^{1}(f * g)(z)=D_{\lambda, p}(f * g)(z)=(1-\lambda)(f * g)(z)+\lambda z^{-p}\left(z^{p+1}(f * g)(z)\right)^{\prime} \\
=z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)] a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in N) \tag{1.11}\\
D_{\lambda, p}^{2}(f * g)(z)=D_{\lambda, p}\left(D_{\lambda, p}(f * g)\right)(z) \\
=(1-\lambda) D_{\lambda, p}(f * g)(z)+\lambda z^{-p}\left(z^{p+1} D_{\lambda, p}(f * g)(z)\right)^{\prime} \\
=z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{2} a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in N) \tag{1.12}
\end{gather*}
$$

and (in general)

$$
\begin{align*}
D_{\lambda, p}^{n}(f * g)(z)= & D_{\lambda, p}\left(D_{\lambda, p}^{n-1}(f * g)(z)\right) \\
& =z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{n} a_{k} b_{k} z^{k}\left(\lambda \geq 0 ; p \in N ; n \in N_{0}\right) \tag{1.13}
\end{align*}
$$

From (1.13) it is easy to verify that:

$$
\begin{equation*}
z\left(D_{\lambda, p}^{n}(f * g)(z)\right)^{\prime}=\frac{1}{\lambda} D_{\lambda, p}^{n+1}(f * g)(z)-\left(p+\frac{1}{\lambda}\right) D_{\lambda, p}^{n}(f * g)(z)(\lambda>0) \tag{1.14}
\end{equation*}
$$

In this paper, we introduce the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ of the functions $f, g \in$ Σ_{p}, which satisfy the condition:
$\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{\lambda D_{\lambda, p}^{n}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta \quad\left(z \in U^{*} ; \lambda>0 ; 0 \leq \beta<p ; p \in N ; n \in N_{0}\right)$.
We note that:
(i) If $\lambda=1$ and the coefficients $b_{k}=1 \quad\left(\right.$ or $\left.g(z)=\frac{1}{z^{p}(1-z)}\right)$ in (1.15), the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ reduces to the class $B_{n}(\beta)$ studied by Aouf and Hossen [3];
(ii) If $n=0, \lambda=1$ and $g(z)=\frac{1}{z^{p}(1-z)^{\nu+p}}, \quad(\nu>-p ; p \in N)$ in (1.15), the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ reduces to the class $M_{\nu+p-1}(\beta)$, studied by Aouf [1];
(iii) If $b_{k}=1\left(\right.$ or $\left.g(z)=\frac{1}{z^{p}(1-z)}\right)$ in (1.15), the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ reduces to the class $K_{p}^{n}(\lambda, \beta)$, where $K_{p}^{n}(\lambda, \beta)$ is defined by

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+1} f(z)}{\lambda D_{\lambda, p}^{n} f(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta \quad\left(z \in U^{*} ; \lambda>0 ; 0 \leq \beta<p ; p \in N ; n \in N_{0}\right), \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{\lambda, p}^{n} f(z)=z^{-p}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{n} a_{k} z^{k}\left(\lambda>0 ; p \in N ; n \in N_{0}\right) \tag{1.17}
\end{equation*}
$$

(iv) If $n=0, \lambda=1$ and the coefficients $b_{k}=\frac{(a)_{k}}{(c)_{k}}(c \neq 0,-1, \ldots)$ in (1.15), the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ reduces to $\Sigma_{p}^{n}(a, c ; \lambda, \beta)$, where $\Sigma_{p}^{n}(a, c ; \lambda, \beta)$ is defined by

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{a \ell_{p}(a+1, c) f(z)}{\ell_{p}(a, c) f(z)}-(a+p)\right\}<-\beta \quad\left(z \in U^{*} ; 0 \leq \beta<p ; p \in N\right) \tag{1.18}
\end{equation*}
$$

(v) If $n=0, \lambda=1$ and the coefficients b_{k} in (1.15) is replaced by Γ_{k}, where Γ_{k} is given by (1.8), the class $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$ reduces to $\Sigma_{p, q, s}^{n}\left(\alpha_{1}, \beta_{1} ; \lambda, \beta\right)$, where $\Sigma_{p, q, s}^{n}\left(\alpha_{1}, \beta_{1} ; \lambda, \beta\right)$ is defined by

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{\alpha_{1} H_{p, q, s}\left(\alpha_{1}+1\right) f(z)}{H_{p, q, s}\left(\alpha_{1}\right) f(z)}-\left(\alpha_{1}+p\right)\right\}<-\beta \\
\left(z \in U^{*} ; \alpha_{1} \in C^{*} ; 0 \leq \beta<p ; p \in N\right) \tag{1.19}
\end{gather*}
$$

In this paper known results of Bajpai [5], Goel and Sohi [6], Uralegaddi and Somanatha [12] and Aouf and Hossen [3] are extended.
2.BASIC PROPERTIES OF THE CLASS $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$

We begin by recalling the following result (Jack's Lemma), which we shall apply in proving our first inclusion theorems (Theorem 1 and Theorem 2 below).

Lemma 1 [7]. Let the (nonconstant) function $w(z)$ be analytic in U, with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in U$, then

$$
\begin{equation*}
z_{0} w^{\prime}\left(z_{0}\right)=\xi w\left(z_{0}\right) \tag{2.1}
\end{equation*}
$$

where ξ is a real number and $\xi \geq 1$.
Theorem 1. For $\lambda>0,0 \leq \beta<p, p \in N$ and $n \in N_{0}$,

$$
\begin{equation*}
\Sigma_{p}^{n+1}(f, g ; \lambda, \beta) \subset \Sigma_{p}^{n}(f, g ; \lambda, \beta) \tag{2.2}
\end{equation*}
$$

Proof. Let $f(z) \in \Sigma_{p}^{n+1}(f, g ; \lambda, \beta)$. Then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+2}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta,|z|<1 \tag{2.3}
\end{equation*}
$$

We have to show that (2.3) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{\lambda D_{\lambda, p}^{n}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta \tag{2.4}
\end{equation*}
$$

Define a regular function $w(z)$ in U by

$$
\begin{equation*}
\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{\lambda D_{\lambda, p}^{n}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)=-\frac{[p+(2 \beta-p) w(z)]}{1+w(z)} \tag{2.5}
\end{equation*}
$$

Clearly $w(0)=0$. Equation (2.5) may be written as

$$
\begin{equation*}
\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}=\frac{1+[1+2 \lambda(p-\beta)] w(z)}{1+w(z)} \tag{2.6}
\end{equation*}
$$

Differentiating (2.6) logarithmically with respect to z and using (1.14), we obtain

$$
\begin{equation*}
\frac{\frac{D_{\lambda, p}^{n+2}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)+\beta}{(p-\beta)}=\frac{2 \lambda z w^{\prime}(z)}{(1+w(z))\{1+[1+2 \lambda(p-\beta)] w(z)\}}-\frac{1-w(z)}{1+w(z)} \tag{2.7}
\end{equation*}
$$

We claim that $|w(z)|<1$ for $z \in U$. Otherwise there exists a point $z_{0} \in U$ such that $\max _{|z| \leq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Applying Jack's Lemma, we have $z_{0} w^{\prime}\left(z_{0}\right)=\xi w\left(z_{0}\right)(\xi \geq$ 1). Writing $w\left(z_{0}\right)=e^{i \theta}(0 \leq \theta \leq 2 \pi)$ and putting $z=z_{0}$ in (2.7), we get

$$
\begin{equation*}
\frac{\frac{D_{\lambda, p}^{n+2}(f * g)\left(z_{0}\right)}{\lambda D_{\lambda, p}^{n+1}(f * g)\left(z_{0}\right)}-\left(p+\frac{1}{\lambda}\right)+\beta}{p-\beta}=\frac{2 \lambda \xi w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\{1+[1+2 \lambda(p-\beta)] w(z)\}}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)} \tag{2.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{D_{\lambda, p}^{n+2}(f * g)\left(z_{0}\right)}{\lambda D_{\lambda, p}^{n+1}(f * g)\left(z_{0}\right)}-\left(p+\frac{1}{\lambda}\right)+\beta}{p-\beta}\right\} \geq \frac{1}{2[1+\lambda(p-\beta)]}>0 \tag{2.9}
\end{equation*}
$$

which obviously contradicts our hypothesis that $f(z) \in \Sigma_{p}^{n+1}(f, g ; \lambda, \beta)$. Thus we must have $|w(z)|<1(z \in U)$, and so from (2.5), we conclude that $f(z) \in$ $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$, which evidently completes the proof of Theorem 1.

Theorem 2. Let $f, g \in \Sigma_{p}$ satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{\lambda D_{\lambda, p}^{n}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta+\frac{(p-\beta)}{2(p-\beta+c)} \quad(z \in U) \tag{2.10}
\end{equation*}
$$

for $\lambda>0,0 \leq \beta<p, p \in N, n \in N_{0}$ and $c>0$. Then

$$
\begin{equation*}
F_{c, p}(f * g)(z)=\frac{c}{z^{c+p}} \int_{0}^{z} t^{c+p-1}(f * g)(t) d t \tag{2.11}
\end{equation*}
$$

belongs to $\Sigma_{p}^{n}(f, g ; \lambda, \beta)$.
Proof. From the definition of $F_{c, p}(f * g)(z)$, we have

$$
\begin{equation*}
z\left(D_{\lambda, p}^{n} F_{c, p}(f * g)(z)\right)^{\prime}=c D_{\lambda, p}^{n}(f * g)(z)-(c+p) D_{\lambda, p}^{n} F_{c, p}(f * g)(z) \tag{2.12}
\end{equation*}
$$

and also

$$
\begin{equation*}
z\left(D_{\lambda, p}^{n} F_{c, p}(f * g)(z)\right)^{\prime}=\frac{1}{\lambda} D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)-\left(p+\frac{1}{\lambda}\right) D_{\lambda, p}^{n} F_{c, p}(f * g)(z)(\lambda>0) \tag{2.13}
\end{equation*}
$$

Using (2.12) and (2.13), the condition (2.10) may be written as

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\frac{D_{\lambda, p}^{n+2} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}+\left(c-\frac{1}{\lambda}\right)}{1+(\lambda c-1) \frac{D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta+\frac{p-\beta}{2(p-\beta+c)} \tag{2.14}
\end{equation*}
$$

We have to prove that (2.14) implies the inequality

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)\right\}<-\beta \tag{2.15}
\end{equation*}
$$

Define a regular function $w(z)$ in U by

$$
\begin{equation*}
\frac{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right)=-\frac{[p+(2 \beta-p) w(z)]}{1+w(z)} \tag{2.16}
\end{equation*}
$$

Clearly $w(0)=0$. The equation (2.16) may be written as

$$
\begin{equation*}
\frac{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}{D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}=\frac{1+[1+2 \lambda(p-\beta)] w(z)}{1+w(z)} . \tag{2.17}
\end{equation*}
$$

Differentiating (2.17) logarithmically with respect to z and using (2.13), we obtain

$$
\begin{equation*}
\frac{D_{\lambda, p}^{n+2} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}-\frac{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}=\frac{2 \lambda(p-\beta) z w^{\prime}(z)}{(1+w(z))[1+(1+2 \lambda(p-\beta)) w(z)]} \tag{2.18}
\end{equation*}
$$

The above equation may be written as

$$
\begin{aligned}
& \frac{\frac{D_{\lambda, p}^{n+2} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}+\left(c-\frac{1}{\lambda}\right)}{1+(\lambda c-1) \frac{D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}}-\left(p+\frac{1}{\lambda}\right)=\frac{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}-\left(p+\frac{1}{\lambda}\right) \\
& +\left[\frac{2 \lambda(p-\beta) z w^{\prime}(z)}{(1+w(z))[1+(1+2 \lambda(p-\beta)) w(z)]}\right]\left[\frac{1}{1+(\lambda c-1) \frac{D_{\lambda, p} F_{c, p}(f * g)(z)}{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}}\right],
\end{aligned}
$$

which, by using (2.16) and (2.17), reduces to

$$
\begin{align*}
& \frac{\frac{D_{\lambda, p}^{n+2} F_{c, p}(f * g)(z)}{\lambda D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}+\left(c-\frac{1}{\lambda}\right)}{1+(\lambda c-1) \frac{D_{\lambda, p}^{n} F_{c, p}(f * g)(z)}{D_{\lambda, p}^{n+1} F_{c, p}(f * g)(z)}}-\left(p+\frac{1}{\lambda}\right)=-\left[\beta+(p-\beta) \frac{1-w(z)}{1+w(z)}\right] \\
& \quad+\frac{2 \lambda(p-\beta) z w^{\prime}(z)}{(1+w(z))\{c+[c+2(p-\beta)] w(z)\}} . \tag{2.19}
\end{align*}
$$

The remaining part of the proof is similar to that Theorem 1, so we omit it.
Remark 1. (i) For $\lambda=p=c=a_{k}=b_{k}=1$ and $n=\beta=0$, we note that Theorem 2 extends a results of Bajpai [5, Theorem 1];
(ii) For $\lambda=p=a_{k}=b_{k}=1$ and $n=\beta=0$, we note that Theorem 2 extends a results of Goel and Sohi [6, Corollary 1].

Theorem 3. $(f * g)(z) \in \Sigma_{p}^{n}(f, g ; \lambda, \beta)$ if and only if

$$
\begin{equation*}
F(f * g)(z)=\frac{1}{z^{1+p}} \int_{0}^{z} t^{p}(f * g)(t) d t \in \Sigma_{p}^{n+1}(f, g ; \lambda, \beta) . \tag{2.20}
\end{equation*}
$$

Proof.From the definition of $F(f * g)(z)$ we have

$$
D_{\lambda, p}^{n}\left(z F^{\prime}(f * g)(z)\right)+(1+p) D_{\lambda, p}^{n} F(f * g)(z)=D_{\lambda, p}^{n}(f * g)(z),
$$

that is,

$$
\begin{equation*}
z\left(D_{\lambda, p}^{n} F(f * g)(z)\right)^{\prime}+(1+p) D_{\lambda, p}^{n} F(f * g)(z)=D_{\lambda, p}^{n}(f * g)(z) . \tag{2.21}
\end{equation*}
$$

By using the identity (1.14), (2.21) reduces to $D_{\lambda, p}^{n}(f * g)(z)=D_{\lambda, p}^{n+1} F(f * g)(z)$. Hence $D_{\lambda, p}^{n+1}(f * g)(z)=D_{\lambda, p}^{n+2} F(f * g)(z)$, therefore,

$$
\frac{D_{\lambda, p}^{n+1}(f * g)(z)}{D_{\lambda, p}^{n}(f * g)(z)}=\frac{D_{\lambda, p}^{n+2} F(f * g)(z)}{D_{\lambda, p}^{n+1} F(f * g)(z)}
$$

and the result follows.

References

[1] M.K. Aouf, New certeria for multivalent meromorphic starlike functions of order alpha, Proc. Japan. Acad., 69 (1993), 66-70.
[2] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55 (2008), 494-509.
[3] M.K. Aouf and H.M. Hossen, New certeria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17 (1993), no. 2, 481-486.
[4] M.K. Aouf and H.M. Srivastava, A new criterion for meromorphically p-valent convex functions of order alpha, Math. Sci. Res. Hot-Line, 1 (1997), no. 8, 7-12.
[5] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22 (1977), 295-297.
[6] R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glas. Mat., 17 (1981), 19-28.
[7] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc., (2) 3 (1971), 469-474.
[8] J.-L. Liu and H.M. Srivastava, A linear operator and associated with the generalized hypergeometric function, J. Math. Anal. Appl., 259 (2000), 566-581.
[9] J.-L. Liu and H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39 (2004), 21-34.
[10] R.K. Raina and H.M. Srivastava, A new class of meromorphiclly multivalent functions with applications to generalized hypergeometric functions, Math. Comput. Modelling, 43 (2006), 350-356.
[11] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.
[12] B.A. Uralegaddi and C. Somanatha, New certeria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.
M. K. Aouf

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: mkaouf127@yahoo.com
A. Shamandy

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: shamandy16@hotmail.com
A. O. Mostafa

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: adelaeg254@yahoo.com
S. M. Madian

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email:samar_math@yahoo.com

