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Abstract.Econometric theory concerns the study and development of
tools and methods for applied econometric applications. The ordinary least
squares (OLS) estimator is the most basic estimation procedure in econo-
metrics.

In this paper we will present the ordinary linear regression model and
discussed how to estimate linear regression models by using the method
of least squares. Also, we present some properties of the optimal estimators
(OLS estimators) in the case of the linear regression model as well as some
measures of the amount of information associated to these estimators.

Keywords and Phrases: Econometrics, regression model, regressand, re-
gressors, linear model, ordinary least squares, OLS estimator, measure of the
information, Fisher’s information.

2000 Mathematics Subject Classifications: 62H10, 62H12, 62J05, 94A17.

1. The classical linear regression model

The most elementary type of regression model is the multiple linear
regression model, which can be expressed by the following equation

Yt = β0 + β1xt1 + β2xt2 + ... + βkxtk + ut, t = 1, n (1.1)

where subscript t is used to index the observation of a sample and n represents
the sample size. The relation (1.1) links the observations on a dependent
and the explanatory (independent) variables for each observation in terms of
(k +1) unknown parameters, β0, β1,β2, ..., βk , and an unobserved error
term, ut.In the context of econometrics, equation (1.1) is usually thought of
as a model of economic behaviors. The variable Yt typically represents the
response of economic agents to a collection of ”stimulus” variables xt.
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Remark 1.1.If we wish to make sense of the regression model (1.1), then,
we must make some assumptions about the properties of the error term ut.
Precisely what those assumptions are will vary from case to case. In all cases,
thought, it is assumed that ut is a random variable.

Before to present the assumptions that comprise the classical linear model,
we introduce the vector and matrix notation. Thus, the matrix form for the
classical linear regression model (then when β0 = 0) is represented by

Y = Xβ + u, (1.2)

where

Y= [Y1 Y2 ... Yn]ᵀ , dim Y =n× 1; Y− the vector of observations on

(1.3)

the explained variable;

X=


Xᵀ

1

Xᵀ
2

...
Xᵀ

n

 =


x11 x12 ... x1k

x21 x22 ... x2k

... ... ... ...
xn1 xn2 ... xnk

 =
[

X1, X2, ..., Xk

]
, (1.4)

dim X = n× k; X− the matrix of observations on the explanatory variables

which is assumed to be ”fixed” or deterministic;

Xᵀ
i = [xi1, xi2, ..., xik], dim Xᵀ

i = 1× k, i = 1, n; (1.5)

Xj = [x1j, x2j, ..., xnj]
ᵀ, dim Xj = n× 1, j = 1, k; (1.6)

and the column vectors β and u have the forms

β =
[

β1 β2 ... βk

]T
, dim β = k × 1; β−the vector of parameters

(1.7)

to be estimated;

u =
[

u1 u2 ... un

]T
= Y −Xβ, dim u = n× 1;u− the vector of errors.

(1.8)

When a regression model is written in the form (1.2), then the separate
columns of the matrix X are called regressors, and the column vector Y is
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called the regressand. Also, we observe that the element xtj ∈ X represents
the tth observation on the jth regressor, j = 1, k, t = 1, n. The (n×1)−vector
Y and (n× k)−matrix X are sometimes called the data vector and the
data matrix.

Remark 1.2. The classical linear regression model with nonstochas-
tic regressor variables is characterized by the following assumptions
(denoted by A1j, j = 1, 7):

A11) E(ui) = 0, i = 1, n, that is, E(u) = 0;

A12)

 V ar(ui) = E(u2
i ) = σ2, i = 1, n, that is, V ar(u) = E(uuT ) =

= σ2In, where : In is an n× n identity matrix, V ar(u) is
the variance− covariance matrix of disturbances (errors);

A13)


Errors ui, i = 1, n− are random variables independently
and identically distributed, that is, ui ∼ IID(0, σ2), i = 1, n;
or u ∼IID(0, σ2In);

A14)

{
The regressors Xj and the errors ui are independently,

that is, cov(Xj, ui) = 0, i− fixed, i = 1, n; ∀j, j = 1, k;

A15)

The X matrix is nonsingular and its columns vector Xj,

j = 1, k are linearly independent, that is,

rank (XTX) = rank X =k ⇒ (XTX)−1 − exists.

A16)
The errors are nonautocorrelated, that is, E(uius) = 0,
i, s = 1, n; i 6= s,

A17)


Obtionally, we will sometimes assume that the errors
are normally, independently, and identically distributed,
that is, ui ∼ IIN(0, σ2), i = 1, n or u ∼IIN(0, σ2In).

(1.9)
Remark 1.3. Using the assumption A11), it follows that

E(Y) = Xβ = β1X1 + β2X2 + ...+βkXk (1.10)

and the statistics

Ŷ = Ê(Y)= Xβ̂= β̂1X1 + β̂2X2 + ...+β̂kXk (1.11)

represents an absolute correct estimator for the expected value E(Y),
where we denoted by

β̂ =
[

β̂1 β̂2 ...β̂k

]ᵀ
, dim β̂ = k × 1 (1.12)
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the best estimator for the column vector of parameters β.

2. The method of least squares

The method of least squares is the standard technique for extracting an
estimator of β from a sample (data) of n observations. According to the
principle of the least-squares method, the problem to determine the best
vector estimator β̂, for the unknown vector parameter β, is the same with
the problem to minimize the criterion function S(β) = S(β1, ..., βk),
where

S(β) = SSR(β) =
n∑

i=1

[Yi − E(Yi)]
2 =

n∑
i=1

u2
i , (2.1)

and

u2
i = [Yi − E(Yi)]

2 = [Yi − (β1xi1 + β2xi2 + ... + βkxik)]
2, i = 1, n (2.2)

represents the squares deviations (errors).
The ordinary least squares (or OLS) estimator, for this linear re-

gression model, is defined as the value that minimizes the sum of the
squared errors, that is,

β̂ = arg min
β

S(β). (2.2a)

Because the criterion function (2.1) can be rewritten as

S(β) = (Y −Xβ)T (Y −Xβ) =

= (YT−(Xβ)T )(Y −Xβ) =

= (YT−βTXT )(Y −Xβ) =

= YTY − βTXTY −YTXβ + βTXTXβ =

= YTY − 2βTXTY + βTXTXβ =

= ‖Y −Xβ‖2 ,
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then when we have in view the equality

βTXTY = YTXβ, (2.3)

(that is, the scalar βTXTY equals its transpose YTXβ), it follows that the
final form of the criterion function will be

S(β) = YTY − 2βTXTY + βTXTXβ = (2.4)

= ‖Y −Xβ‖2 , (2.4a)

that is, the OLS estimator must to be chosen such that: it to minimize
the Euclidian distance between Y and Xβ.

Because, in this last relation, the term YTY does not depend on β, the
first-order conditions, for minimization of the criterion function S(β), can
be write as

∂S(β)

∂β
=

∂

∂β
[YTY − 2YTXβ + βTXTXβ] =

=
∂

∂β
[YTY]− ∂

∂β
[2YTXβ]+

∂

∂β
[βTXTXβ] =

= −2YTX + 2βTXTX = 0 (2.5)

or in the form
(XTX)β̂ = XTY (2.6)

which, evidently, represents just the system of the normal equations of
least squares.

Then, because the coefficient matrix XTX is positive definite, (that is,
XTX is nonsingular), from (2.6) we obtain the vector solution as

β̂=
[

β̂1 β̂2 ...β̂k

]ᵀ
= (XTX)−1XTY. (2.7)

or as

β̂ =
SXY

SXX

, (2.8)

where

SXX =
1

n
XTX =

1

n

n∑
i=1

XT
i Xi, SXY =

1

n
XTY =

1

n

n∑
i=1

XT
i Yi. (2.8a)
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Viewed as a function of the sample (Y,X), this optimal solution is

sometimes called the OLS estimator and, for any given sample (Y,X), the
value of this OLS estimator will be an OLS estimate.

In the next, to verify that β̂ corresponds to a minimum point for the
function S(β), we check the second-order sufficient condition

∂2S(β)

∂β2
= 2XTX. (2.9)

Because rank(XTX) = k (that is, the matrix XTX has full rank), it

follows that this matrix is positive definite, so β̂ is in fact a minimizer and
we have

Smin(β) = S(β̂) =
n∑

i=1

[Yi − (β̂1xi1 + β̂2xi2 + ... + β̂kxik)︸ ︷︷ ︸
=ûi

]2 =
n∑

i=1

û2
i =

= (Y −Xβ̂)T (Y −Xβ̂) = ûT û =‖ û2 ‖ , (2.10)

where
û = u(β̂)= Y −Xβ̂ (2.11)

represents the vector of residuals (or the vector of least-squares resid-

uals) u = Y −Xβ, evaluated at β̂, and it is often denoted by û.
The vector

Ŷ = Xβ̂ (2.12)

is referred to as the vector of fitted values.
Remark 2.1. Because the relation (2.6) can be written as

XT (Y −Xβ̂) = 0 (2.13)

or in the form of the scalar product as

XT
j (Y −Xβ̂) = (Xj,Y −Xβ̂) = (Xj, û) = 0, i = 1, k, (2.13a)

it follows that the vector û = Y −Xβ̂ is orthogonal to all of the regressors
Xj that represent the explanatory variables. For this reason, equations like
(2.13) or (2.13a) are often referred to as orthogonality conditions.
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I. Mihoc, C.I. Fătu - Some measures of amount of information for the ...

3. Informational characterization of the simple linear
regression model

3.1. The model and its OLS estimator

The most elementary type of regression model is the simple linear re-
gression model, can be obtained from the model (1.1) if we consider k = 1,
namely

Yt = β0 + β1xt + ut, t = 1, n, (3.1.1)

which can easily be written in matrix notation

Y = Xβ + u (3.1.2)

where

Y=
[

Y1Y2...Yn

]ᵀ
, dim Y =n× 1; (3.1.3)

X=[X0 X1]=

[
1 1 ... 1
x1 x2 ... xn

]ᵀ

, dim X =n× 2, (3.1.3a)

dim Xj = n× 1, j = 0, 1;

u =
[

u1 u2 ... un

]
ᵀ, dim u =n× 1; β =

[
β0

β1

]
, dim β =2× 1. (3.1.4)

The typical row of the equation (3.1.2) is

Yt= Xtβ+ut =
1∑

i=0

βixi + ut, Xt = [x0 xt], t = 1, n, (3.1.2a)

where we have used Xt to denote the tth row of the matrix X.
Since

XTX =

[
1 1 ... 1
x1 x2 ... xn

]
1 x1

1 x2

... ...
1 xn

 =

 n
n∑

i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

 (3.1.5)
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I. Mihoc, C.I. Fătu - Some measures of amount of information for the ...

and

XTY =


n∑

i=1

Yi

n∑
i=1

xiYi

 , (3.1.5a)

the the system of the normal equations has the form
nβ0 + β1

n∑
i=1

xi =
n∑

i=1

Yi,

β0

n∑
i=1

xi + β1

n∑
i=1

x2
i =

n∑
i=1

xiYi

(3.1.6)

or the matrix form
(XTX)β̂ = XTY, (3.1.7)

where

β̂=

[
β̂0

β̂1

]
. (3.1.7a)

If the matrix XTX)−1 exist (that is, if rank X = 2), then the matrix
solution has the form

β̂ =

[
β̂0

β̂1

]
= (XTX)−1XTY =


Y − β̂x

n∑
i=1

Yi(xi−x)

n∑
i=1

(xi−x)2

 , (3.1.8)

and, from here, it follows

β̂0 = Y − β̂1x (3.1.9)

β̂1 =
SxY

Sxx

, (3.1.10)

where

Sxx =
1

n

n∑
i=1

(xi − x)2; (3.1.10a)
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SxY =
1

n

n∑
i=1

(xi − x)(Yi − Y ); (3.1.10b)

x =
1

n

n∑
i=1

xi; Y =
1

n

n∑
i=1

Yi. (3.1.10c)

3.2. The statistical properties of the OLS estimator

In the next we will recall and examine some statistical properties of ordi-
nary least squares (OLS) estimator which depend upon the assumptions
which were specified in the Remark 1.3 (see [5]).

Theorem 3.2.1. The estimators β̂0 and β̂1 are linear functions of the
dependent variables Y1, Y2, ..., Yn , that is,

β̂1 =
n∑

i=1

ciYi, ci =
(xi − x)

nSxx

, ci − real constants, i = 1, n (3.2.1)

β̂0 =
n∑

i=1

diYi, di =
1

n
− x

(xi − x)

nSxx

, di − real constants, i = 1, n. (3.2.2)

Theorem 3.2.2. The estimators β̂0 and β̂1 are unbiased estimators
for the unknown parameters β0 and β1, that is, we have M(β̂1) = β1,

D2(β̂1) =
σ2

nSxx

→ 0, n →∞
(3.2.3)

and

{
a) E(β̂0) = β0,

b) V ar(β̂0) = σ2

n

[
1 + x2

Sxx

]
→ 0, dacă n →∞.

(3.2.4)

More, when n → ∞, the statistics β̂0 and β̂1 represent absolute correct
estimators for the unknown parameter β0 and β1.
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Theorem 3.2.3.The estimators β̂0 and β̂1 are correlated (and therefore
dependent) unless x = 0, that is

Cov(β̂0, β̂1) = − σ2x

nSxx

, if x 6= 0. (3.2.5)

Theorem 3.2.4.The unbiased estimator for the unknown parameter
σ2 is represented by the statistic

σ̂2 =
1

n− 2

n∑
i=1

[
Yi − (β̂0 + β̂1xi)

]2

= (3.2.6)

=
‖ û ‖2

n− 2
, (3.2.6a)

where n is the number of the observations, k = 2 represents the number of
the parameters estimated in the model and

‖ û ‖2= ûT û = (Y −Xβ̂)ᵀ(Y −Xβ̂) =
n∑

i=1

[
Yi − (β̂0 + β̂1xi)

]2

=
n∑

i=1

û2
i

(3.2.6b)
represents the sum of squared residuals, or SSR.

Theorem 3.2.5.If the disturbances (errors) ui, i = 1, n are random vari-
able independently, identically and distributed normally, then the maximum-
likelihood estimators, denoted by β∗0 and β∗1 , for the unknown parameters β0

and β1, are the same as the least squares estimators β̂0 and β̂1.

Remark 3.2.1. In the preceding expressions given the variances for
the least squares estimators in terms of σ2.Usually the value of σ2 will be
unknown, and we will need to make use of the sample observations to estimate
σ2.

Theorem 3.2.6.In the hypothesis of the Theorem 3.2.5, then when the
parameter σ2 is unknown, the maximum-likelihood estimator (the ML esti-
mator), denoted by (σ2)∗, is different from the unbiased estimator for σ2 and
we have
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(σ2)∗ =
‖ û ‖2

n
6= ‖ û ‖2

n− 2
= σ̂2. (3.2.7)

3.3. Fisher’s information measures

Let Z be a continuous random variable with the probability density func-
tion f(z; θ),where θ = (θ1, θ2, ..., θk), θ ∈ Dθ, Dθ ⊆ Rk, k ≥ 1, Dθ− the pa-
rameter space ( which, sometimes, is called the set of admissible values of
θ). To each value of θ, θ ∈ Dθ, we have one member f(z; θ) of the family
which will be denoted by the symbol {f(z; θ); θ ∈ Dθ}.

In the next we wish to estimate a specified function of θ, g(θ), with the
help of statistic

t = t(Z1, Z2, ..., Zn), (3.3.1)

where Sn(Z) = (Z1, Z2, ..., Zn) is a random sample of size n and Z1, Z2, ..., Zn

are sample random variables statistically independent and identically dis-
tributed as the random variable Z, that is, we have

f(z; θ) = f(zi; θ); i = 1, n, θ ∈ Dθ. (3.3.2)

Let

Ln(z1, z2, ..., zn; θ1, θ2, ..., θk) = Ln(z; θ1, θ2, ..., θk) =
n∏

i=1

f(zi; θ1, θ2, ..., θk)

(3.3.3)
be the maximum-likelihood function of θ = (θ1, θ2, ..., θk) of the random
sample Sn(Z) = (Z1, Z2, ..., Zn)where z =(z1, z2, ..., zn).

Lemma 3.3.1.If W is an k − dimensional random vector as

W = (W1, W2, ...,Wk)
ᵀ (3.3.4)

and its components have the forms

Wj =
∂ ln Ln(z; θ1, θ2, ..., θk)

∂θj

, j = 1, k, (3.3.5)

then, we have

E(Wj) = E

(
∂ ln Ln(z; θ1, θ2, ..., θk)

∂θj

)
= 0, j = 1, k. (3.3.6)
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Proof. Indeed, since the maximum-likelihood function Ln(z; θ1, θ2, ..., θk)
is a probability density function then, if are satisfied some regularity condi-
tions, the equality ∫

Rn

Ln(z; θ1, θ2, ..., θk)dz =1, (3.3.7)

implies the following relations

∂

∂θj

∫
Rn

Ln(z; θ1, θ2, ..., θk)dz

 =

∫
Rn

∂

∂θj

[Ln(z; θ1, θ2, ..., θk)]dz = (3.3.7a)

=

∫
Rn

∂

∂θj

[ln Ln(z; θ1, θ2, ..., θk)] Ln(z; θ1, θ2, ..., θk)dz = (3.3.7b)

= E

{
∂ ln Ln(z; θ1, θ2, ..., θk)

∂θj

}
= E(Wj) = 0, j = 1, k, (3.3.7c)

which represents just the equalities (3.3.6).

Lemma 3.3 2. The maximum-likelihood function (3.3.3), when k = 1,
has the following property

E

{[
∂ ln Ln(z; θ)

∂θ

]2
}

= −E

{
∂2 ln Ln(z; θ)

∂θ2

}
. (3.3.8)

Proof. First, using the Lemma 3.3.1, we obtain the relation

E

[
∂

∂θ
(ln Ln(z; θ))

]
=

∫
Rn

∂

∂θ
(ln Ln(z; θ)) Ln(z; θ)dz = 0 (3.3.9)

which, making use of (3.3.9), implies the relations

∂

∂θ

[∫
Rn

∂ ln Ln(z; θ)

∂θ
Ln(z; θ)dz

]
=

∫
Rn

∂

∂θ

[
∂ ln Ln(z; θ)

∂θ
Ln(z; θ)

]
dz =
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=

∫
Rn

∂2 ln Ln(z; θ)

∂θ2
Ln(z; θ)dz +

∫
Rn

[
∂ ln Ln(z; θ)

∂θ

]2

Ln(z; θ)dz =

= E

[
∂2 ln Ln(z; θ)

∂θ2

]
+ E

[
∂ ln Ln(z; θ)

∂θ

]2

= 0 (3.3.10)

and, hence, it follows just the relation (3.3.8).
Using these two lemmas we can to present the next definitions.

Definition 3.3.1.The quantity

I1(θ) = E

{[
∂ ln f(z; θ)

∂θ

]2
}

=

+∞∫
−∞

[
∂ ln f(z; θ)

∂θ

]2

f(z; θ)dz = (3.3.11)

= −
+∞∫
−∞

[
∂2 ln f(z; θ)

∂θ2

]
f(z; θ)dz = −E

{[
∂2 ln f(z; θ)

∂θ2

]}
(3.3.11a)

represents the Fisher information which measures the information about
the unknown parameter θ which is contained in an observation of the random
variable Z.

Definition 3.3.2. The quantity In(θ), defined by the relation

In(θ) = E

{[
∂ ln Ln(z; θ)

∂θ

]2
}

=

∫
Rn

[
∂ ln Ln(z; θ)

∂θ

]2

Ln(z; θ)dz = (3.3.12)

= −
∫

Rn

[
∂2 ln Ln(z; θ)

∂θ2

]
Ln(z; θ)dz = −E

{[
∂2 ln Ln(z; θ)

∂θ2

]}
,

(3.3.12a)

represents the Fisher information measure which measures the information
about unknown parameter θ contained in a random sample Sn(Z) = (Z1, Z2, ..., Zn).

Remark 3.3.1. Because the sample random variables Z1, Z2, ..., Zn are
independent and identically distributed, with the probability density function
f(z; θ), θ ∈ Dθ, we get

In(θ) =

∫
Rn

[
∂ ln Ln(z; θ)

∂θ

]2

Ln(z; θ)dz =

∫
Rn

[
∂Ln(z;θ)

∂θ

Ln(z; θ)

]2

Ln(z; θ)dz =
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= n

+∞∫
−∞

[
∂ ln f(z; θ)

∂θ

]2

f(z; θ)dz = −n

+∞∫
−∞

[
∂2 ln f(z; θ)

∂θ2

]
f(z; θ)dz (3.3.13)

Definition 3.3.3. The Fisher information matrix (or the information
matrix), denoted by I(Z; θ), when θ = (θ1, θ2, ..., θk), has the form

I(Z; θ) =


I

(1,1)
n (θ) I

(1,2)
n (θ) ... I

(1,k)
n (θ)

I
(2,1)
n (θ) I

(2,2)
n (θ) ... I

(2,k)
n (θ)

... ... ... ...

I
(k,1)
n (θ) I

(k,2)
n (θ) ... I

(k,k)
n (θ)

 (3.3.14)

where the generic element of the information matrix, in the ijth position, is

I(i,j)
n (θ)=E

[
∂ ln Ln(z; θ)

∂θi

× ∂ ln Ln(z; θ)

∂θj

]
= (3.3.15)

= −E

[
∂2 ln Ln(z; θ)

∂θi∂θj

]
, i = 1, k; j = 1, k. (3.3.15a)

Theorem 3.3.1.The informational matrix I(Z; θ) has the following
property

I(X; θ) = KW(θ), (3.3.16)

where

KW(θ) =


Cov(W1, W1) Cov(W1, W2) ... Cov(W1, Wk)
Cov(W2, W1) Cov(W2, W2) ... Cov(W2, Wk)
... ... ... ...
Cov(Wk, W1) Cov(Wk, W2) ... Cov(Wk, Wk)

 , (3.3.17)

is the covariance matrix associated with the real random vector W = (W1, W2, ...,Wk)
which was defined above.

Proof. To prove this theorem we will use the relations (3.3.6), the Defini-
tion 3.3.3, as well as, the relations (3.3.15). Thus, we obtain

I(i,j)
n (θ) =E

[
∂ ln Ln(z; θ)

∂θi

× ∂ ln Ln(z; θ)

∂θj

]
=
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= E

{[
∂ ln Ln(z; θ)

∂θi

− E

(
∂ ln Ln(z; θ)

∂θi

)]
×

×
[
∂ ln Ln(z; θ)

∂θj

− E

(
∂ ln Ln(z; θ)

∂θj

)]}
=

= Cov

(
∂ ln Ln(z; θ)

∂θi

,
∂ ln Ln(z; θ)

∂θj

)
=

= Cov(Wi, Wj) = Kij, i, j = 1, k.

Therefore, I
(i,i)
n (θ), where

I
(i,i)
n (θ) = Cov(Wi, Wi) = E(W 2

i ) = V ar(Wi) =

= −E
(

∂2 ln Ln(z;θ)

∂θ2
i

)
= −

∫
Rn

(
∂2 ln Ln(z;θ)

∂θ2
i

)
Ln(z; θ)dz,

(3.3.18)

represents the Fisher information measure concerning the unknown parame-
ter θi, i = 1, k, obtaining using the sample vector Sn(Z) = (Z1, Z2, ..., Zn).

Analogous, the quantities I
(i,j)
n (θ), where

I
(i,j)
n (θ) = Cov(Wi, Wj) = M

[
∂lnLn(z;θ)

∂θi
× ∂lnLn(z;θ)

∂θj

]
=

= −M
[

∂2lnLn(z;θ)
∂θi∂θj

]
= −

∫
Rn

(
∂2Ln(z;θ)

∂θi∂θj

)
Ln(z; θ)dz,

(3.3.19)

represents the Fisher information measure concerning the unknown vector
parameter (θi, θj), i, j = 1, k, i 6= j, obtaining using the sample vector S(Z) =
(Z1, Z2, ...., Zn).

3.4.Fisher’s information measures for the simple linear
regression model

In the next we will present an informational characterization for the sim-
ple linear regression model using the Fisher information measure.

First of all, we recall that all assumptions, denoted by A1j, j = 1, 7, from
the Remark 1.3, are satisfied and, more, the hypothesis of the Theorem 3.2.4
are satisfied. In these conditions the dependent variable Y, from the simple
linear regression model

Y = β0 + β1x + u, (3.4.1)
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is a random variable which follows a normal distribution with

E(Y ) = mY = β0 + β1x, V ar(Y ) = σ2, σ2 ∈ R+, (3.4.1a)

where β0 and β1 are the components of the unknown parameter vector
θ = β = (β0,β1)

ᵀ, β0, β1 ∈ R.
The probability density function associated to Y is as

f(y; mY , σ2) =
1√
2πσ

exp

{
− [y − (β0 + β1x)]2

2σ2

}
. (3.4.2)

The likelihood function of β0,β1 (when σ2 is known) of the random sample
Sn(Y ) = (Y1, Y2, ..., Yn) has the form

Ln(y1, y2, ..., yn; β0, β1) = Ln(y; β0, β1) =
n∏

i=1

f(yi; β0, β1) =

=

(
1√
2πσ

)n

exp

{
− 1

2σ2

n∑
i=1

[yi − (β0 + β1xi)]
2

}
(3.4.3)

because the sample random variables Y1, Y2, ..., Yn are normally, statistically
independent and identically distributed.

Theorem 3.4.1.The Fisher information matrix concerning the unknown
vector parameter β = (β0, β1), obtaining using the sample vector Sn(Y) =
(Y1, Y2, ..., Yn), will be as

In(β0, β1) = n.I1(β0, β1), (3.4.4)

where

I1(β0, β1) =
1

σ2

(
1 x
x Sxx + x2

)
(3.4.4a)

Proof. To proof this theorem we shall use the relation of the definition
(3.3.14) for the information matrix which, in our case, has the following form

In(β0, β1) =

[
I

(0,0)
n (β0, β1) I

(0,1)
n (β0, β1)

I
(1,0)
n (β0, β1) I

(1,1)
n (β0, β1)

]
, (3.4.5)

and its elements follows to be establish.
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For this, we consider the log of the likelihood function associated with
the likelihood function (3.4.3), namely

L∗ = L∗(β0, β1, σ
2) = loge Ln(β0, β1, σ

2) =

= −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

[yi − (β0 + β1xi)]
2 (3.4.6)

for which the second-order derivatives are as follows

∂2 L∗

∂β2
1

= − 1

σ2

n∑
i=1

x2
i

∂2 L∗

∂β2
0

= − n

σ2

∂2 L∗

∂β0∂β1

= − 1

σ2

n∑
i=1

xi,

. (3.4.6a)

Now, using these second-order derivatives, as well as, the relations (3.3.18)
and (3.3.19), we obtain just the elements of the information matrix (3.3.4a).
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