MULTIPLE HAMILTONIAN STRUCTURES FOR THE ISHII'S EQUATION

Ionel Moş

Abstract.The Ishii's equation is considered and some aspects of its Poisson geometry are pointed out.

2000 Mathematics Subject Classification: 53D17, 37J35.

1. Introduction

The dynamics of Ishii's equation using an Hamilton-Poisson formulation was studied in [1]. The authors show that the system

$$
\left\{\begin{array}{l}
\dot{x_{1}}=x_{2} \tag{1}\\
\dot{x_{2}}=x_{3} \\
\dot{x_{3}}=x_{1} x_{2}
\end{array}\right.
$$

has the Hamilton-Poisson realization $\left(R^{3},\{\cdot, \cdot\}_{1}, H_{1}\right)$, where the Poisson structure $\{\cdot, \cdot\}_{1}$ is generated by the matrix

$$
\Pi_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
0 & -1 & 0 \tag{2}\\
1 & 0 & x_{1} \\
0 & -x_{1} & 0
\end{array}\right]
$$

and the Hamiltonian H_{1} is given by

$$
\begin{equation*}
H_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{3}-\frac{1}{2} x_{2}^{2}-\frac{1}{3} x_{1}^{3} . \tag{3}
\end{equation*}
$$

Also, the function $H_{2} \in C^{\infty}\left(R^{3}, R\right)$ given by

$$
\begin{equation*}
H_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{3}-\frac{1}{2} x_{1}^{2} \tag{4}
\end{equation*}
$$

is a Casimir of the configuration $\left(R^{3},\{\cdot, \cdot\}_{1}\right)$.
Next, we find new Hamilton-Poisson formulations for the system (1), write the system (1) as a multi-gradient system and construct geometric integrators that preseve some "qualitative" features (constants of motion, Poisson structure) of the system (1).

2.Multi-Hamiltonian Realization of the system (1)

Let $C^{\infty}\left(R^{3}, R\right)$ be the space of smooth real valued functions defined on R^{3} and the bracket $\{\cdot, \cdot\}_{2}$ on $C^{\infty}\left(R^{3}, R\right)$ defined by

$$
\begin{equation*}
\{f, g\}_{2}=(\nabla f)^{t} \Pi_{2}(\nabla g) \tag{5}
\end{equation*}
$$

where the matrix Π_{2} is given by

$$
\Pi_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
0 & x_{1} & x_{2} \tag{6}\\
-x_{1} & 0 & x_{3}-x_{1}^{2} \\
-x_{2} & x_{1}^{2}-x_{3} & 0
\end{array}\right] .
$$

Proposition 1. The bracket (5) defines a Poisson structure on R^{3}.
Proof. It is easy to see that the bracket (5) is bilinear, skew-symmetric and satisfies Leibniz' rule. The Jacobi identity reduces in the three dimensional case to the following single relation

$$
\pi_{12}\left(\frac{\partial \pi_{31}}{\partial x_{1}}-\frac{\partial \pi_{23}}{\partial x_{2}}\right)+\pi_{13}\left(\frac{\partial \pi_{12}}{\partial x_{1}}-\frac{\partial \pi_{23}}{\partial x_{3}}\right)+\pi_{23}\left(\frac{\partial \pi_{12}}{\partial x_{2}}-\frac{\partial \pi_{31}}{\partial x_{3}}\right)=0
$$

which is, also, easily verified.
Proposition 2. The Poisson structures $\{\cdot, \cdot\}_{1},\{\cdot, \cdot\}_{2}$ are compatible.
Proof. It is well known that $\{\cdot, \cdot\}_{1},\{\cdot, \cdot\}_{2}$ are compatible if and only if $\left[\Pi_{1}, \Pi_{2}\right]_{S}=0$, where $[\cdot, \cdot]_{S}$ is the Schouten bracket. Computing the components in local coordinates of $\left[\Pi_{1}, \Pi_{2}\right]_{S}$ given by (see [2])

$$
\left[\Pi_{1}, \Pi_{2}\right]_{S}^{i j k}=-\sum_{m=1}^{3}\left(\Pi_{2}^{m k} \frac{\partial \Pi_{1}^{i j}}{\partial x_{m}}+\Pi_{1}^{m k} \frac{\partial \Pi_{2}^{i j}}{\partial x_{m}}+\operatorname{cycle}(i, j, k)\right)
$$

we obtain the desired result.
Proposition 3. The system (1) is a bi-Hamiltonian system.
Proof. Indeed, the Poisson structures $\{\cdot, \cdot\}_{1},\{\cdot, \cdot\}_{2}$ are not constant multiples of each other, compatible and

$$
\dot{x}=\Pi_{1}(x) \cdot \nabla H_{1}(x)=\Pi_{2}(x) \cdot \nabla H_{2}(x), \quad x \in R^{3} .
$$

Remark 1. Let us observe that $\Pi_{1} \cdot \nabla H_{2}=0$ and $\Pi_{2} \cdot \nabla H_{1}=0$, so the function H_{2} is a Casimir of the configuration $\left(R^{3},\{\cdot, \cdot\}_{1}\right)$ and H_{1} is a Casimir of the configuration $\left(R^{3},\{\cdot, \cdot\}_{2}\right)$.

The fact that the Poisson structures $\{\cdot, \cdot\}_{1},\{\cdot, \cdot\}_{2}$ are compatible i.e. $a\{\cdot, \cdot\}_{1}+b\{\cdot, \cdot\}_{2}$ is a Poisson structure for all $a, b \in R$, helps us show that the system (1) may be realized as a Hamilton-Poisson system in an infinite number of different ways. More exactly, we can prove
Proposition 4. The system (1) has the following Hamilton-Poisson realizations:

$$
\left(R^{3}, \Pi_{a b}, H_{c d}\right),
$$

where $\Pi_{a b}=a \Pi_{1}+b \Pi_{2}, H_{c d}=c H_{1}-d H_{2}$ and $a, b, c, d \in R, a c-b d=1$.
Remark 2. The function $C_{a b} \in C^{\infty}\left(R^{3}, R\right)$ given by

$$
C_{a b}\left(x_{1}, x_{2}, x_{3}\right)=a\left(\frac{1}{2} x_{1}^{2}-x_{3}\right)+b\left(x_{1} x_{3}-\frac{1}{2} x_{2}^{2}-\frac{1}{3} x_{1}^{3}\right)
$$

is a Casimir of the configuration $\left(R^{3}, \Pi_{a b}\right)$.

3.The system (1) Like A multi-Gradient system

Let $H_{1}, H_{2} \in C^{\infty}\left(R^{3}, R\right)$ be the first integrals of the system (1) given by (3) and (4). Then we have

Proposition 5. The system (1) can be written as a multi-gradient system

$$
\begin{equation*}
\dot{x}=S(x) \cdot \nabla H_{1}(x) \cdot \nabla H_{2}(x), \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}, \tag{7}
\end{equation*}
$$

where S is a completely skew symmetric 3 -tensor.
Proof. If we take $S=\epsilon_{i j k}$ (the Levi-Civita 3-tensor), then, a direct computation shows us that

$$
\dot{x}_{i}=\sum_{j, k=1}^{3} S_{i j k} \frac{\partial H_{1}(x)}{\partial x_{j}} \frac{\partial H_{2}(x)}{\partial x_{k}}, \quad i=1,2,3,
$$

as required.
Let us now consider the discretization of the system (7) given by (see [3], [4]):

$$
\begin{equation*}
\frac{x^{n+1}-x^{n}}{h}=\widetilde{S}\left(x^{n}, x^{n+1}, h\right) \cdot \bar{\nabla} H_{1}\left(x^{n}, x^{n+1}\right) \cdot \bar{\nabla} H_{2}\left(x^{n}, x^{n+1}\right) \tag{8}
\end{equation*}
$$

where the discrete gradients $\bar{\nabla} H_{1}, \bar{\nabla} H_{2}$ are any solution of

$$
\left\{\begin{array}{cl}
H\left(x^{n+1}\right)-H\left(x^{n}\right) & =(\bar{\nabla} H) \cdot\left(x^{n+1}-x^{n}\right) \\
\bar{\nabla} H\left(x^{n}, x^{n+1}\right) & =\bar{\nabla} H\left(x^{n}\right)+\mathcal{O}(h)
\end{array}\right.
$$

and \widetilde{S} is a completely skew symmetric 3 -tensor that verifies

$$
\widetilde{S}\left(x^{n}, x^{n+1}, h\right)=S\left(x^{n}\right)+\mathcal{O}(h)
$$

Choosing discrete gradients $\bar{\nabla} H_{1}, \bar{\nabla} H_{2}$ as follows:

$$
\begin{aligned}
\bar{\nabla} H_{1}\left(x^{n}, x^{n+1}\right)= & \left(-\frac{1}{3}\left[\left(x_{1}^{n+1}\right)^{2}+x_{1}^{n+1} x_{1}^{n}+\left(x_{1}^{n}\right)^{2}\right]+x_{3}^{n},-\frac{1}{2}\left(x_{2}^{n+1}+x_{2}^{n}\right), x_{1}^{n+1}\right), \\
& \bar{\nabla} H_{2}\left(x^{n}, x^{n+1}\right)=\left(-\frac{1}{2}\left(x_{1}^{n+1}+x_{1}^{n}\right), 0,1\right)
\end{aligned}
$$

and $\widetilde{S}\left(x^{n}, x^{n+1}, h\right)=S\left(x^{n}\right)$ we obtain, via (8), an explicit first order numerical integrator for the system (1), given by

$$
\left\{\begin{array}{l}
\frac{x_{1}^{n+1}-x_{1}^{n}}{h+1}=\frac{1}{2}\left(x_{2}^{n+1}+x_{2}^{n}\right) \tag{9}\\
\frac{x_{2}^{n+1}-x_{2}^{n}}{h}=\frac{1}{6}\left(x_{1}^{n+1}\right)^{2}+\frac{1}{6} x_{1}^{n+1} x_{1}^{n}-\frac{1}{3}\left(x_{1}^{n}\right)^{2}+x_{3}^{n} \\
\frac{x_{3}^{n+1}-x_{3}^{n}}{h}=\frac{1}{4}\left(x_{1}^{n+1}+x_{1}^{n}\right)\left(x_{2}^{n+1}+x_{2}^{n}\right)
\end{array}\right.
$$

where h is the size step of the integrator.
Proposition 6. The integrator (9) preserves both the first integrals H_{1}, H_{2} of the system (1).
Proof. Indeed, for $i=1,2$ we have:

$$
\begin{aligned}
& \quad H_{i}\left(x_{1}^{n+1}, x_{2}^{n+1}, x_{3}^{n+1}\right)-H_{i}\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}\right)= \\
& =\bar{\nabla} H_{i}\left(x^{n}, x^{n+1}\right)^{t} \cdot\left(x^{n+1}-x^{n}\right) \\
& =h \bar{\nabla} H_{i}\left(x^{n}, x^{n+1}\right)^{t} \cdot \widetilde{S}\left(x^{n}, x^{n+1}, h\right) \cdot \bar{\nabla} H_{1}\left(x^{n}, x^{n+1}\right) \cdot \bar{\nabla} H_{2}\left(x^{n}, x^{n+1}\right) \\
& =0
\end{aligned}
$$

as required.

4.The system (1) And the midpoint Rule

The midpoint integrator for the system (1) is given by

$$
\left\{\begin{array}{l}
\frac{x_{1}^{n+1}-x_{1}^{n}}{h}=\frac{1}{2}\left(x_{2}^{n+1}+x_{2}^{n}\right) \tag{10}\\
\frac{x_{2}^{n+1}-x_{2}^{n}}{h}=\frac{1}{2}\left(x_{3}^{n+1}+x_{3}^{n}\right) \\
\frac{x_{3}^{n+1}-x_{3}^{n}}{h}=\frac{1}{4}\left(x_{1}^{n+1}+x_{1}^{n}\right)\left(x_{2}^{n+1}+x_{2}^{n}\right) .
\end{array}\right.
$$

Then, we can prove
Proposition 7. The midpoint integrator (10) preserves the first integral H_{2} given by (4).
Remark 3. Let us observe that if we modify the midpoint rule as follows:

$$
\left\{\begin{array}{l}
\frac{x_{1}^{n+1}-x_{1}^{n}}{h}=\frac{1}{2}\left(x_{2}^{n+1}+x_{2}^{n}\right) \\
\frac{x_{2}^{n+1}-x_{2}^{n}}{h}=\frac{1}{2}\left(x_{3}^{n+1}+x_{3}^{n}\right)+\Delta \\
\frac{x_{3}^{n+1}-x_{3}^{n}}{h}=\frac{1}{4}\left(x_{1}^{n+1}+x_{1}^{n}\right)\left(x_{2}^{n+1}+x_{2}^{n}\right),
\end{array}\right.
$$

where $\Delta=\frac{1}{6}\left(x_{1}^{n+1}\right)^{2}+\frac{1}{6} x_{1}^{n+1} x_{1}^{n}-\frac{1}{3}\left(x_{1}^{n}\right)^{2}+\frac{1}{2} x_{3}^{n}-\frac{1}{2} x_{3}^{n+1}$, we obtain the integrator (9), that preserves both the first integrals H_{1}, H_{2} of the system (1). The midpoint integrator lies on $H_{2}=$ const. and with Δ we "drag" it on the phase curves of the system (1), the intersection of

$$
x_{1} x_{3}-\frac{1}{2} x_{2}^{2}-\frac{1}{3} x_{1}^{3}=\text { const } .
$$

with

$$
x_{3}-\frac{1}{2} x_{1}^{2}=\text { const } .
$$

Remark 4. Unfortunately, none of these integrators preserves the Poisson structures Π_{1}, Π_{2} defined by (2), (6).
Next, using the midpoint rule, combined with splitting and composition methods, we construct an Poisson integrator for the system (1). Let us observe that the system (1) can be written as (see [5])

$$
\dot{x}=\left(\Pi_{21}(x)+\Pi_{22}(x)\right) \cdot \nabla H_{2}(x), \quad x \in R^{3},
$$

where

$$
\Pi_{21}=\left[\begin{array}{ccc}
0 & x_{1} & 0 \\
-x_{1} & 0 & x_{3}-x_{1}^{2} \\
0 & x_{1}^{2}-x_{3} & 0
\end{array}\right], \quad \Pi_{22}=\left[\begin{array}{ccc}
0 & 0 & x_{2} \\
0 & 0 & 0 \\
-x_{2} & 0 & 0
\end{array}\right] .
$$

If φ_{1}, φ_{2} are the midpoint integrators of the systems

$$
\dot{x}=\Pi_{2 i}(x) \cdot \nabla H_{2}(x), \quad i=1,2,
$$

then, the splitting midpoint integrator $\varphi=\varphi_{1} \circ \varphi_{2}$ is given by

$$
\left\{\begin{array}{l}
x_{1}^{n+1}=x_{1}^{n}+h x_{2}^{n}+h^{2} x_{3}^{n} \tag{11}\\
x_{2}^{n+1}=x_{2}^{n}+h x_{2}^{n} \\
x_{3}^{n+1}=x_{3}^{n}+h x_{1}^{n} x_{2}^{n}+h^{2} x_{1}^{n} x_{3}^{n}+h^{3} x_{2}^{n} x_{3}^{n}+\frac{h^{2}\left(x_{2}^{n}\right)^{2}}{2}+\frac{h^{4}\left(x_{3}^{n}\right)^{2}}{2}
\end{array}\right.
$$

where h is the size step of the integrator. Now, we can prove
Proposition 9. The numerical integrator (11) has the following properties:
(i) It preserves the Poisson structure Π_{1} given by (2).
(ii) It preserves the Casimir H_{2} of the configuration $\left(R^{3}, \Pi_{1}\right)$ given by (4).

Proof. (i) A direct computation gives us

$$
D \varphi(x) \cdot \Pi_{1}(x) \cdot[D \varphi(x)]^{t}=\Pi_{1}(\varphi(x)),
$$

as required.
(ii) Indeed, via (11), we have $H_{2}\left(\varphi\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}\right)\right)=H_{2}\left(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}\right)$.

Remark 5. In a similar manner we obtain a Poisson integrator for the Poisson structure Π_{2}, given by (6).

References

[1] P. Birtea, M. Puta, On Ishii's equation, C.R. Math. Acad. Sci. Paris, 341 (2005), 107-111.
[2] I. Dorfman, Dirac structures and Integrability of nonlinear evolution equations, John Wiley \& Sons, Chichester, 1993.
[3] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Springer-Verlag, 2001.
[4] R. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. Ser. A, 357, (1999), 1021-1045.
[5] I. Moş, An introduction to geometric mechanics, Cluj University Press, Cluj-Napoca, 2005.

Author:

Ionel Moş
Department of Education Sciences
West University of Timişoara
Address: Deva, 22 Decembrie, Bl. D1/5, Jud. HD
e-mail:ionelmos@yahoo.com

