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PROPAGATION OF STRESS WAVES IN ELASTIC SOLIDS

Ion Al. Crăciun

Abstract. The propagation of waves in elastic media under dynamic
loads (stress waves) are investigated. The nature of deformation, stress,
stress–strain relations, and equation of motion are some objectives of inves-
tigation. General decompositions of elastic waves are studied. Two planar
waves in an infinite isotropic elastic medium, and then time–harmonic so-
lutions of the wave equations are analyzed. Spherically symmetric waves in
three–dimensional space from a point source, radially symmetric waves in
a solid infinite cylinder of radius a, and waves propagated over the surface
of an elastic body are studied. Finally, particular solutions of the Navier
equations are given.
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1. Introduction

The field equations of physics for a given continuous medium arise from
the three conservation equations: conservation of mass, momentum, and
energy. For an elastic medium these equations of motion are called the Navier
equations. From them, a rich variety of stress waves is obtained. The first
two conservation laws are common to all media, while the energy equation
defines a particular medium through the equation of state. When we deal
with an elastic solid we are concerned with the dynamic variables: stress and
strain. The energy equation for an elastic solid yields a relation between the
stress and strain. For small–amplitude deformations there is a linear relation
between the stress and strain, which is given by Hooke’s law.

A knowledge of wave propagation in elastic solids, which we call stress
wave propagation, is very important to engineers in many fields (mechanical,
civil, aeronautical, etc), where an investigation of the dynamic effects of
various loads on engineering materials is considered.
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2. Notation and Mathematical Preliminaries

Physical quantities are mathematically represented by tensors of various or-
ders. The equations describing physical laws are tensor equations. Quantities
that are not associated with any special direction and are measured by a sin-
gle number are represented by scalars, or tensors of order zero. Tensors of
order one are vectors, which represent quantities that are characterized by a
direction as well as a magnitude. More complicated physical quantities are
represented by tensors of order greater than one.

Throughout this paper light–faced Roman or Greek letters stand for
scalars, Roman letters in boldface denote vectors, while lower case Greek
letters in boldface denote second–order tensors.

2.1 Indicial notation

A sistem of fixed rectangular Cartesian coordinates is sufficient for the pre-
sentation of the theory. In indicial notation, the coordinates axes may be
denoted by xj and the unit base vectors by ej, where j = 1, 2, 3. In the se-
quel, subscripts assume the values 1, 2, 3 unless explicitly otherwise specified.
If the components of a vector u are denoted by uj, we have

u = u1e1 + u2e2 + u3e3. (1)

Since summation of the type (1) frequently occur in the mathematical de-
scription of the mechanics of a continuum medium, we introduce the summa-
tion convention, whereby a repeated subscript implies a summation. Equa-
tion (1) may be rewritten as

u = ujej. (2)

As another example of the use of the summation convention, the scalar
product of the two vectors is expressed as

u · v = ujvj = u1v1 + u2v2 + u3v3. (3)

As opposed to the free index in uj, which may assume any one of the
values 1, 2, 3, the index j in (2) and (3) is a bound index or a dummy index,
which must assume all three values 1, 2 and 3

Quantities assume two free indices as subscripts, such as τij, denote com-
ponents of a tensor of second rank τ , and similarly three free indices define a
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tensor of rank three. A well-known special tensor of rank two is the Kronecker
delta, whose components are defined as

δij =

{
1 if i = j

0 if i 6= j.

A frequently–used special tensor of rank three is the alternating tensor,
whose components are defined as follows:

εijk =


+1 if ijk represents an even permutation of 123

0 if any two of the ijk indices are equal

−1 if ijk represents an odd permutation of 123.

By the use of the alternating tensor and the summation convention, the
components of the cross product h = u× v may be expressed as

hi = εijkujvk.

In extended notation the components of h are

h1 = u2v3 − u3v2, h2 = u3v1 − u1v3, h3 = u1v2 − u2v1.

2.2 Vector operators

Particularly significant in vector calculus is the Hamilton’s vector operator
(or nabna) denoted by ∇, which is given by

∇ = e1
∂

∂x1

+ e2
∂

∂x2

+ e3
∂

∂x3

.

When applied to the scalar field ϕ(x1, x2, x3), the vector operator ∇ yields
a vector field which is known as the gradient of the scalar field,

gradϕ = ∇ϕ =
∂ϕ

∂x1

e1 +
∂ϕ

∂x2

e2 +
∂ϕ

∂x3

e3.

In indicial notation, partial differentiation is commonly denoted by a
comma, and thus

gradϕ = ∇ϕ = ϕ,kek.
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The appearence of a single subscript in ϕ,k indicates that ϕ,k are the
components of a tensor of rank one, i. e.., a vector.

In a vector field, denoted by u(x), the components of the vector are func-
tions af spatial coordinates. The components are denoted by ui(x1, x2, x3).
Assuming that functions ui(x1, x2, x3) are differentiable, the nine partial

derivatives
∂ui

∂xj

(x1, x2, x3) can be written in indicial notation as ui,j. It can

be shown that ui,j are the components of a second–rank tensor.
When the vector operator ∇ operates on a vector in a manner analogous

to scalar multiplication, the result is a scalar field, termed the divergence of
the vector field u(x)

divu = ∇ · u = ui,i.

By taking the cross product of ∇ and u, we obtain a vector termed the
curl of u, denoted by curlu = ∇×u. If q = ∇×u, the components of q are

qi = εijkuk,j.

The Laplace operator ∇2 is obtained by taking the divergence of a gra-
dient. The Laplacian of a twice differentiable scalar field is another scalar
field,

div gradϕ = ∇ ·∇ϕ = ∇2ϕ = f,ii.

The Laplacian of a vector field is another vector field denoted by ∇2u

∇2u = ∇ ·∇u = uk,jjek.

2.3 Gauss’ Theorem

One of the most important integral theorem of tensor analysis, known as
Gauss’ theorem, relates a volume integral to a surface integral over the bound-
ing surface of the volume. Consider a convex region B of volume V, bounded
by a surface S which possesses a piecewise continuously turning tangent
plane. Such a region is said to be regular. Now let us consider a tensor field
τjkl···p, and let every component of τjkl···p be continuously differentiable in B.
Then Gauss’ theorem states∫

V

τjkl···p,idV =

∫
S

niτjkl···pdA, (4)

where ni are the components of the unit vector along the outer normal to the
surface S. If equation (4) is written with the three components of a vector u
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successively substituted for τjkl···p, and if the three resulting expressions are
added, the result is ∫

V

ui,idV =

∫
S

niuidA. (5)

Equation (5) is the well–known divergence theorem of a vector calculus
which states that the integral of the outer normal component of a vector over
a closed surface is equal to the integral of the divergence of the vector over
volume bounded by the closed surface.

2.4 Notation

The equations governing the linearized theory of elasticity are presented in
the following commonly used notation:

position (radius) vector : x(coordinates xi)

displacement vector : u(components ui)

small strain tensor : ε(components εij)

stress tensor : τ (components τij).

3. Fundamental Concepts in Elasticity

In this section we shall investigate the nature of deformation, strain, stress,
stress–strain relations, equations of motion for the stress components, and
equations of motion for the displacement.

3.1 Deformations

An elastic material is a deformable, continuous medium which suffers no
energy loss when its deformed state returns to the equilibrium state. The
deformation of any medium is a purely geometric concept. Since strain is
derived from deformation, strain is also a geometrical concept. A continuum
is a medium that has a continuous distribution of matter in the sense that
its molecular and crystalline structure is neglected. This means that we
can define mathematically a differential volume element dV that has the
same continuous properties as the material in the large. This concept of a
continuum is based on an averaging process, where we take advantage of the
large number of molecules in a differential volume element to smear out the
effects of individual molecules.

To describe a deformable continuum we consider two states of the medium
or body:
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1. The undeformed or equilibrium configuration or state;

2. The deformed configuration.

Any two neighboring points P1, P2 in the body in its undeformed state
under a deformation suffer the transformation P1 7→ P ′

1, P2 7→ P ′
2. The

distance between the two undeformed points changes in the deformed state. If
P ′

1P
′
2 < P1P2 that part of the body undergoes a compression; if P ′

1P
′
2 > P1P2

we have tension. Clearly, if there is no change we have the equilibrium state.
We use the Lagrange representation. A point in the undeformed state is
given by the coordinates X = (X1, X2, X3), where X is the radius vector.
In the deformed state, that point goes into the Eulerian coordinates given
by the radius vector x, where x = (x1, x2, x3). The displacement vector u is
defined by u = x − X. Since we use the Lagrange representation, we have
x = x(X, t), u = u(X, t), and all the dynamic and thermodynamic variables
are functions of (X, t)). We have thus defined deformation (compression or
tension) in terms of the displacement vector.

3.2 Strain Tensor

For the equilibrium state, let X = (X1, X2, X3) and for the deformed state let
x = (x1, x2, x3) be the radius vectors of an arbitrary point of the body. In the
equilibrium state a particle occupies the volume element dVX = dX1dX2dX3.
In the deformed state that particle occupies the volume element

dVx = dx1dx2dx3.

A deformation is given by the regular transformation X 7→ x, which has
a unique inverse transformation. The relation between these two volume
elements is

dVx = det(JX(x))dVa,

where det(JX(x)) is the determinant of JX(x), the Jacobian of the transfor-
mation X 7→ x. JX(·) is also called the mapping function and is given by the
matrix

JX(x) =



∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X3

∂x3

∂X2

∂x3

∂X3

 .
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The principle of conservation mass is given by

ρx dVx = ρX dVX .

The compression ratio R is defined by

R =
ρx

ρX

=
[
det(JX(x))

]−1

= det(Jx(X)).

We develop the strain tensor in the form of a matrix by considering a
curve CX in the body in the deformed state. Under the mapping X 7→ x,
this curve maps into the curve Cx in the deformed state. The two curves are
composed by the same particles. The column matrix dX has the components
dX1, dX2, dX3, while the row matrix is the transpose dX∗. We have dX =
(dX1, dX2, dX3)

∗, and similarly for dx. Let dsX be an element of arc lenght
of CX and let dsx be an element of arc length of Cx under the transformation
dX 7→ dx which is given by

dx = JX(x) dX. (6)

The magnitude of dsX is the square root of the expression

(dsX)2 = (dX)∗(dX).

Similarly, we have
(dsx)

2 = (dx)∗(dx).

The transpose of equation (6) is (dx)∗ = (dX)∗(JX(x))∗. Using this ex-
pression and equation (6), we get

(dsx)
2 = (dx)∗(dx) = (dX)∗(JX(x))∗JX(x)(dX).

Suppose the transformation X 7→ x has the property that for every curve
CX all arc lengths are unchanged in being transformed to the corresponding
curve Cx. It follows that (dx)∗(dx) = (dX)∗(dX), so that (JX(x))∗JX((X)) =
E, the 3 × 3 identity matrix. This means that JX(x) is the rotation ma-
trix yielding a rigid–body rotation (no deformation), where det(JX(x)) > 0.
Since the measure of strain can be considered as a deviation from a pure
rotation, we may take the expression (JX(x))∗JX((X)) − E as twice the
three–dimensional strain tensor. Thus, we have

ε =
1

2
((JX(x))∗JX((X)) − E), (7)
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where ε is the strain tensor. The reason for the factor of 1/2 in equation (7)
is seen when we derive the linear approximation of ε. For this approximation
we have |(dsx − dsX)/dsX | � 1, so that

(dsx)
2 − (dsX)2

(dsX)2
=

(dsx − dsX)(dsx + dsX)

(dsX)2
≈

2 dsX(dsx − dsX)

(dsX)2
= 2

dsx − dsX

dsX

.

Let εL be the linear strain tensor. We have

dsx − dsX

dsX

=
( dX
dsX

)∗
εL

( dX
dsX

)
,

where equation (7) is used for the linear strain strain tensor.

3.3 Strain as a Function of Displacement

We now obtain the strain tensor matrix ε as a function of the displacement
vector u, where u = (u1, u2, u3). We have u = x−X, the components being
ui = xi − Xi. Instead of calculating the right–hand side of (7) and setting
x = u + X to obtain ε, we introduce K = JX(u), the Jacobian of u, so that

K =



∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3

 .

It follows that J = K + E, so that the strain tensor in matrix form becomes

ε =
1

2
(K +K∗) +KK∗ = εL + εN . (8)

The linear part of relation (8) is given by the matrix

εL =



∂u1

∂X1

1

2

( ∂u1

∂X2

+
∂u2

∂X1

) 1

2

( ∂u1

∂X3

+
∂u3

∂X1

)
1

2

( ∂u2

∂X1

+
∂u1

∂X2

) ∂u2

∂X2

1

2

( ∂u2

∂X3

+
∂u3

∂X2

)
1

2

( ∂u3

∂X1

+
∂u1

∂X3

) 1

2

( ∂u3

∂X2

+
∂u2

∂X3

) ∂u3

∂X3


. (9)
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The diagonal elements of ε represent the pure or normal components of the
strain, while the off–diagonal elements are the components of the shear strain.
The strain tensor ε is represented by a symmetric matrix. This is true for
both the linear and nonlinear parts, that is for both εL and εN .

3.4 Linear Momentum and the Stress Tensor

A basic postulate in the theory of continuous media is that the mechanical
action of the material points which are situated on one side of an arbitrary
material surface within a body upon those on the other side can be completely
accounted for the prescribing a suitable surface traction on this surface. Thus
if a surface element has a unit outward normal n we introduce the surface
traction t, defining a force per unit area. The surface tractions generally
depend on the orientation of n as well as on the location x of the surface
element.

Suppose we remove from a body a closed region V + S, where S is the
boundary. The surface S is subjected to a distribution of surface tractions
t(x, t). Each mass element of the body may be subjected to a body force per
unit mass, F(x, t). According to the principle of balance of linear momentum,
the instantaneous rate of change of the linear momentum of a body is equal
to the resultant external force acting on the body at the particular instant
of time. In the linearized theory this leads to the equation∫

S

tdA+

∫
V

ρFdV =

∫
V

ρ
∂2u

∂t2
. (10)

By means of the tetrahedron argument, equation (10) subsequently leads to
the stress tensor τ with components τkl, where

tl = τklnk (11)

Equation (11) is the Cauchy stress formula. Physically τkl is the compo-
nent in the xi−direction of the traction on the surface with the unit normal
ik.

By substitution of tl = τklnk, equation (10) is rewritten in an indicial
notation as ∫

S

τklnkdA+

∫
V

ρFldV =

∫
V

ρ
∂2ul

∂t2
.
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The surface integral can be transformed into a volume integral by Gauss’
theorem, and we obtain∫

V

(∂τkl

∂xk

+ ρFl − ρ
∂2ul

∂t2

)
dV = 0.

Since V may be an arbitrary part of the body it follows that wherever
the integral is continuous, we have

∂τkl

∂xk

+ ρFl = ρ
∂2ul

∂t2
. (12)

This is Cauchy’s first law of motion and it represents the conservation of
linear momentum. These equations of motion are therefore Newton’s equa-
tions of motion for a continuum. They are the linearized equations of motion,
since the nonlinear terms for the particle acceleration, which represent the
convective terms, are neglected. Since they are linear, the Lagrangian and
Eulerian representations are the same; the difference between these two rep-
resentations appears only in the nonlinear terms. The equations of motion
are valid for any continuous medium (solid, liquid, gas) since they do not
invoke the energy equation that defines that material. Clearly, the equations
of motion give an incomplete description of the physical situation, since we
have three equations and six components of the stress tensor τ and three
components of the displacement vector u. The additional requisite equations
are given from the conservation of energy, which supplies the constitutivwe
equations; these we take as Hooke’s law for an isotropic elastic medium.

3.5 Balance of Moment of Momentum

For the linearized theory the principle of moment of momentum states∫
S

(x× t)dA+

∫
V

(x× F)dV =

∫
V

ρ
∂

∂t

(
x× ∂u

∂t

)
dV.

Simplifying the right–hand side and introducing indicial notation, this equa-
tion can be written as∫

S

εklmxltmdA+

∫
V

εklmxlFmdV =

∫
V

ρ εklmxl
∂2ul

∂t2
. (13)
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Elimination of tm from the surface integral and the use of Gauss’ theorem
result in ∫

S

εklmxlτkmnkdA =

∫
V

εklm(δlkτkm + xlτkm,k)dV.

By virtue of the first law of motion, equation (13) reduces to∫
V

εklmδlkτkmdV

or
εklmτlm = 0.

This result implies that
τlm = τml,

i. e., the stress tensor is symmetric.

4. The Navier Equations of Motion for the Displacement

In this section we derive the linear equations of motion for an elastic medium
in terms of the components of the displacement vector by using Hooke’s
law. These equations are called the Navier equations. In many problems
in elasticity it is more convenient to obtain the equations of motion for the
displacement vector and then derive the stress field from the definition of
strain and Hooke’s law.

4.1 Stress–Strain Relations

In general terms, the linear relation between the components of the stress
tensor and the components of the strain tensor is

τij = Cijklεkl,

where
Cijkl = Cjikl = Cklij = Cijlk.

Thus, 21 of the 81 components of the tensor Cijkl are independent. The
medium is elastically homogeneous if the coefficient Cijkl are constants. The
material is elastically isotropic when there are no preferred directions in the
material, and the elastic constants must be the same whatever the orientation
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of the Cartesian coordinate system in which the components of τij and εij

are evaluated. It can be shown that the constants Cijkl may be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk).

Hooke’s law then assumes the well–known form

τij = λεkkδij + 2µεij. (14)

Equation (14) contains two elastic constants λ and µ, which are known
as Lamé’s elastic constants.

The trace (sum of the diagonal elements) of the strain matrix Θ is called
dilatation. It is a measure of the relative change in volume of the body due
to a compression or dilatation. It is given by

Θ = ε11 + ε22 + ε33. (15)

Hooke’s law can be also expressed by the set of equations

τij = λδijΘ + 2µεij. (16)

Let Φ be the trace of stress matrix so that

Φ = τ11 + τ22 + τ33. (17)

We have
Φ = (3λ+ 2µ)Θ. (18)

The inverse of equation (16) is

εij =
λ

2µ(3λ+ 2µ)
Φδij +

1

2µ
τij. (19)

The Lamé constants λ, µ can be expressed in terms of the two elastic con-
stants Young’s modulus E and Poisson’s ratio σ. It can be shown that

λ =
Eσ

(1 + σ)(1− 2σ)
, µ =

E

2(1 + σ)

σ =
λ

2(λ+ µ)
, E =

µ(3λ+ 2µ)

λ+ µ
.

(20)
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4.2 Equations of Motion for the Displacements

We obtain the linear strain in tensor form from equation (9) by using the x
coordinate system instead of the Lagrangian variables X and the dispalace-
ment vector u. The ijth component of the linear strain tensor is εij = ui,j.
Since the strain tensor is symmetric, we have

εij =
1

2
(ui,j + uj,i). (21)

τkl,k = µ∇2ul + (λ+ µ)(∇ · u),l. (22)

In this way, the lth equation of motion (12) becomes

µ∇2ui + (λ+ µ)(∇ · u),i = ρ(−Fi + ui,tt). (23)

The vector form of the Navier equations of motion for the displacement
can be obtained from (23) by multiplying with the unit vector ei of the xi

axis followed by addition over i. Thus, we have

µ∇2u + (λ+ µ)∇Θ = ρ(−F + utt). (24)

Using the well known identity

∇2u = ∇(∇ · u)− curlΨ = ∇(∇ · u)−∇×Ψ,

where Ψ = curlu = ∇ × u is the curl of displacement vector u, equation
(24) becomes

−µ∇×Ψ + (λ+ 2µ)∇Θ = ρ(−F + u,tt). (25)

Ψ is called the rotation vector. Note that the vector form of the Navier
equations are independent of the coordinate system. From the form given
by (25) we now derive two types of waves: (1) longitudinal waves involving
the wave equation for the dilatation, and (2) transverse waves, involving the
rotation vector.

(1) We take the divergence of each term of equation (25) and use the fact
that ∇ ·∇×Ψ = 0. We obtain

λ+ 2µ

ρ
∇2Θ = Θ,tt −∇ · F. (26)
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Equation (26) is the vector form of the three–dimensional nonhomoge-
neous wave equation for Θ, the nonhomogeneous term being the one involving
F. We set

λ+ 2µ

ρ
= c2L.

It will be seen below that cL is the longitudinal wave velocity.
(2) Next we get the equation of motion for Ψ by taking the curl of each

term in equation (25). We use the fact that ∇×Θ = 0 and obtain

µ

ρ
∇2Ψ = Ψ,tt −∇× F.

We set
µ

ρ
= c2T ,

where cT is the velocity of the rotational vector, which, we shall shall show,
is the velocity of a transverse wave.

5. Propagation of Plane Elastic Waves

In this section we study the plane waves in an infinite isotropic elastic
medium. A plane wave is defined as one whose wave front is a planar surface
normal to the direction of the propagating wave. If the wave front is normal
to x1 axis, then the displacement vector is a function of coordinate x1 and
time t, and all derivatives with respect to x2 and x3 in equation (24) are zero.
For simplicity we set F = 0. Since the dilatation becomes Θ = u1,1, we see
that the three scalar equations in (24) become

c2Lu1,11 = u1,tt

c2Tu2,11 = u2,tt

c2Tu3,11 = u3,tt.

(27)

The first equation of (27) is the one–dimensional wave equation for the
displacement component u1 in the direction of wave propagation x1. This
gives a longitudinal wave, so that cL is indeed the longitudinal wave velocity.
The second equation of (27) is the wave equation for u2. The direction of wave
propagation is still x1, so that u2 = u2(x1, t) gives particle vibrations in the
plane of the wave front (the x2 direction), which is normal to x1. This means
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I. Al. Crăciun - Propagation of Stress Waves in Elastic Solids

that we hve a transverse wave, and cT is indeed the transverse wave veloc-
ity. Similarly for the third equation, where u3(x1, t) shows transverse wave
propagation with the same velocity cT . From their definitions it is seen that
the velocity of longitudinal waves is always greater than that of transverse
waves.

6. General decomposition of Elastic Waves

By using the definitions of cL and cT we can write the vector Navier equation
(24) in the form

c2T∇2u + (c2L − c2T )∇(∇ · u) = u,tt, (28)

where, again, F = 0. We now split equation (28) into two vector equations
by decomposing the dispalacement vector as follows:

u = uL + uT . (29)

We shal show that uL represents a longitudinal wave and uT a transverse
wave. A longitudinal wave is rotationless, which means that

∇× uL = 0.

It follows from vector analysis that a scalar function of space and time
exists such that

uL = gradφ = ∇φ =
∂φ

∂x1

e1 +
∂φ

∂x2

e2 +
∂φ

∂x3

e3, (30)

where φ is called the scalar potential. On the other hand, uT satisfies the
equation

divuT = 0. (31)

This clearly means that a transverse wave suffers no change in volume
(an equivoluminal wave) but is rotational, so that

u = ∇×ψ, (32)

where ψ is the vector potential.
Using equations (30) and (32), equation (29) becomes

u = ∇φ+ ∇×ψ. (33)
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I. Al. Crăciun - Propagation of Stress Waves in Elastic Solids

Equation (32) tells us that the displacement vector can be decomposed
into an irotational vector and an equivoluminal vector.

We now insert equation (29) into (28), take the divergence of each term,
and use equation (31). We obtain

∇ · (c2L∇2uL − uL,tt) = 0.

Since ∇×uL = 0 and ∇·( ) = 0, it follows that the terms in parantheses
are also zero, yielding

c2L∇2uL − uL,tt = 0. (34)

Equation (34) is the vector wave equation for the displacement repre-
senting longitudinal wave (irrotational waves), since the wave velocity is cL.
Since uL = ∇φ, it is clear that the scalar potential φ also satisfies the wave
equation with the same velocity.

Similarly, inserting equation (29) into (28), taking the curl of each term,
and using the fact that ∇× uL = 0, we obtain

∇× (c2T∇2uT − uT,tt) = 0.

Since ∇ · ( ) = 0, it follows that

c2T∇2uT − uT,tt = 0. (35)

Equation (35) is the vector wave equation for uT , whose solutions yield
transverse, equivoluminal, rotational waves. It follows that the vector poten-
tial ψ also staisfies this wave equation.

Sometimes it is easier to solve the wave equations in terms of the scalar
and vector potentials. Then the displacement can be obtained from equation
(33).

7. Characteristic Surfaces for Planar Waves

The wave front of a planar wave is a plane normal to the direction of wave
propagation. Let the normal to the wave front be ν = (l,m, n), where l,m, n
are the direction cosines of ν. Let the radius vector x = x1e1 +x2e2 +x3e3 be
directed from the origin to aby point on the wave front. The scalar product
ν · x is the projection of x on the wave front.

All solutions of the wave equations (34) and (35) are of the form

uL = f(ν · x + ct) + g(ν · x− ct),

uT = F(ν · x + ct) + G(ν · x− ct),
(36)
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where f , g, F and G are arbitrary functions of the indicated arguments
which are called the phases of the waves, (ν · x + ct), and (ν · x − ct) are
called the phases of the waves. The functions f(ν · x + ct), F(ν · x + ct)
represent progressing waves, while g(ν · x − ct) and G(ν · x − ct) are the
regressing waves. It is also true that there are no solutions that are not of
the form given by equations (36). If we set ν · x − ct = const., we obtain
a characteristic surface; this is a planar wave front that progress into the
medium in the direction normal to the wave front with a wave velocity equal
to c. Setting ν · x + ct = const. yields a characteristic surface that regresses
in the direction oposite to that of the normal to the wave front. Inserting
u = uL + uT , where uL and uT are given in (36), into equation (24), and
setting then x = y = z = 0, yields the following quadratic equation for c2 :

(ρ c2 − µ)(ρ c2 − λ− 2µ) = 0. (37)

The roots of equation (37) are c2 = c2L, c
2
T . This substantiates the fact

that, in any direction ν, there are two planar waves, one longitudinal and
the other transverse.

8. Time–Harmonic Solutions of the Reduced Wave Equations

We now investigate time–harmonic solutions to the wave equations for longi-
tudinal and transverse waves. These are waves whose time–dependent parts
are of the form e±iωt.

We write the displacement vector u in the form

u = Re [U(x1, x2, x3) e
±iωt], (38)

where Re[ ] is the real part of the bracket. In equation (38), u stands for
either a longitudinal or a transverse wave. Substituting equation (38) into
equations (34) and (35) and factoring out the exponentials yields

∇2UL + k2
LUL = 0,

∇2UT + k2
TUT = 0,

(39)

where kL and kT are the wave numbers for the longitudinal and transverse
waves, respectively, and are given by

kL =
ω

cL
, kT =

ω

cT
.
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Equations (39) are called the reduced wave equations for UL and UT ,
respectively. The reduced wave equations are of eliptic type. Let U stands
for UL and UT . Solutions of the reduced wave equation ∇2U + k2U = 0 are
of the form

U = Ū eik(ν ·x),

where Ū is a constant vector. Combining this solution of the reduced wave
equation with the time–dependent solution given by equation (38) yields the
time–harmonic solutions

u = Re [Ū eik(ν ·x±ct)], (40)

where c = ω/k.
The minus sign in the phase gives a progressing travelling wave and the

plus sign a regressing wave, ω is the same for both a longitudinal and trans-
verse waveform, while c and k depend on the waveform.

The time–harmonic solutions expressed by equations (40) are special case
of the general solution given by (36). Note that we have the same phase of
the progressing and regressing waves, given by (ν · x± ct), so that planes of
constant phase yield the traveling wave fronts.

9. Spherically Symmetric Waves

Spherically symmetric waves are produced in three–dimensional space from
a point source. For simplicity we consider the wave equation for the generic
scalar f(r, t), which may stand for the components of u, the scalar potential
φ, or the components of the vector potential ψ. Setting r2 = x2

1 +x2
2 +x2

3 and
neglecting angular dependence, we get the wave equation for f in spherical
coordinates:

c2
[
f,rr +

(
2

r

)
f,r

]
= f,tt. (41)

We get time–harmonic solutions of equation (41) by setting

f(r, t) = g(r)e−iωt. (42)

Inserting equation (42) into (41) yields

d2g

dr2
+

(
2

r

)
dg

dr
+ k2g = 0, k =

ω

c
.
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This ordinary differential equations for g may be rewritten as

d2(rg)

dr
+ k2(rg) = 0. (43)

Note that equation (43) is a second order ordinary differential equation for
rg where the first–derivative term is absent. Setting w = rg gives w′′+k2w =
0, so that the general solution of equation (43) is

g(r) =
1

r
)e± ikr.

Multiplying this solution by the time–dependent part given by equation
(42) yelds time–harmonic solutions of the spherical wave equation as a linear
combination of terms of the form

1

r
ei(kr−ct),

1

r
ei(kr+ct) (44)

The first expression of equation (44) represents an outgoing attenuated
spherical wave (emanating from the point source), while the second expres-
sion represents an incoming wave (from infiniti where the amplitude is zero)
going toward the source. Note that there is a singularity at the source.
The phase of the wave is (kr ∓ ct). Setting the phase (k + ct) equal to a
constant and varying time generates an outgoing spherical wave front, and
setting (k − ct) equal to a constant generates an incoming wave; these are
the characteristic surfasces.

We may obtain a more general solution to the spherical wave equation
(41) by writing it as

c2(rf),rr = (rf),tt.

Therefore the general solution for the spherical wave equation is

f(r, t) =
1

r
F (r − ct) +

1

r
G(r + ct), (45)

where F and G are arbitrary functions of their arguments to be specifically
determined by the boundary and initial conditions. The argument of F is the
phase (r−ct) and thus represent an outgoing wave, while the argument ofG is
(r+ ct) and represents an incoming wave. All solutions of the spherical wave
equation are of the form given by equation (45), and there are no solutions
that are not of those forms.
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10. Curvilinear Orthogonal Coordinates

In this section we digress by investigating the transformations from Cartesian
to curvilinear orthogonal coordinates and then specialize to the transforma-
tion to cylindrical coordinates.

Let (q1, q2, q3) be coordinates of a point in any system. The Cartesian
coordinates x1, x2, x3 will be functions of these coordinates, so that the set
of functions

x1 = x1(q1, q2, q3), x2 = x2(q1, q2, q3), x3 = x3(q1, q2, q3), (46)

is a regular transformation, which can be written as x = x(q). Consequently,
there is the inverse transformation

q1 = q1(x1, x2, x3), q2 = q2(x1, x2, x3), q3 = q3(x1, x2, x3).

The three equations qi = ci, where ci are constants, represent three families of
surfaces whose lines of intersection form three families of curved lines. These
lines of intersection will be used as the coordinate lines in our curvilinear
coordinate system. Thus, the position of a point in space can be defined by
the values of three coordinates q1, q2 and q3. The local coordinate directions
at a point are tangent to the three coordinate lines intersecting at the point.

The Jacobian matrix of transformation (46) is a 3× 3 matrix whose kth
column has the elements xk,i. This matrix will be denoted by Jq(x).

The differentials dxi are now expanded in terms of (dq1, dq2, dq3), so that

dxi =
∂xi

∂q1
dq1 +

∂xi

∂q2
dq2 +

∂xi

∂q3
dq3, i = 1, 2, 3. (47)

In the matrix form, equations (47) can be written as

dx∗ = dq∗
(
Jq(x)

)∗
,

where dx∗ is the transpose matrix of the one column matrix dx whose com-
ponents are dx1, dx2, dx3. Similarly, for dq∗. Let ds be an element of length.
It follows that

ds2 =
3∑

i=1

3∑
j=1

gijdqidqj, (48)
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where

gij = gji =
3∑

k=1

∂xk

∂qi
· ∂xk

∂qj
(49)

are called the metric coefficients.
The quadratic form (48) can be written as

ds2 = dq∗
(
Jq(x)

)∗
Jq(x)dq.

If we consider the element of length dsi, where i = 1, 2, 3, that corresponds
to a change from qi to qi + dqi, we have

ds1 =
√
g11 dq1, ds2 =

√
g22 dq2, ds3 =

√
g33 dq3.

To shorten the notation we introduce the scale factors

h1 =
√
g11, h2 =

√
g22, h3 =

√
g33,

which are in general functions of the coordinates qj.
For an orthogonal system of coordinates the surfaces q1 = const, q2 =

const, q3 = const intersect each other at right angles, and all gij, with i 6= j,
are equal to zero. We choose an orthonormal right–handed basis whose unit
vectors e1, e2 and e3 are respectively directed in the sense of increase of the
coordinates q1, q2 and q3. The following well-known relations hold

ei · ej = δij,

ei × ej = ek, (50)

where in (50) the indices i, j and k are in cyclic order. A major difference
between curvilinear coordinates and Cartesian coordinates is that the coor-
dinates q1, q2 and q3 are not necessarily measured in lengths. This difference
manifests itself in the appearence of scale factors in the relation between the
infinitesimal displacement vector dx and the infinitesimal variations dq1, dq2
and dq3, namely,

dx = e1h1dq1 + e2h2dq2 + e3h3dq3. (51)

The scale factors hi are in general functions of the coordinates qj.
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All equations in Cartesian coordinates which do not involve space deriva-
tives and which pertain to properties at a point carry over unchanged into
curvilinear coordinates. If space derivatives are involved, however, equations
do not directly carry over, since the differential operators such as gradient,
divergence, curl, and the Laplacian assume different forms.

We consider first the gradient operator ∇. When applied to a scalar ϕ it
gives a vector ∇ϕ, with components which we call f1, f2 and f3. Thus

∇ϕ = f1e1 + f2e2 + f3e3. (52)

The increment of ϕ due to a change of position dx is

dϕ = ∇ϕ · dx = h1f1dq1 + h2f2dq2 + h3f3dq3, (53)

where (51) has been used. The increment dϕ can also be written as

dϕ =
∂ϕ

∂q1
dq1 +

∂ϕ

∂q2
dq2 +

∂ϕ

∂q3
dq3, (54)

whence it can be concluded that

∇ =
e1

h1

∂

∂q1
+

e2

h2

∂

∂q2
+

e3

h3

∂

∂q3
. (55)

If the operation (55) is applied to the scalar function ϕ, then from (53) and

(54) it results that fi in (52) is equal to
1

hi

∂ϕ

∂qi
, so that the gradient of the

scalar function ϕ gives

gradϕ = ∇ϕ =
1

h1

∂ϕ

∂q1
e1 +

1

h2

∂ϕ

∂q2
e2 +

1

h3

∂ϕ

∂q3
e3. (56)

Let us consider an other vector function F which in the q orthogonal
system is expressed by

F = F1e1 + F2e2 + F3e3. (57)

where (F1, F2, F3) are the components of F along the axes of the q system
depending of q1, q2 and q3.

The divergence of F in this orthogonal system of coordinates is

∇ · F =
1

h1h2h3

[
∂(h2h3F1)

∂q1
+
∂(h3h1F2)

∂q2
+
∂(h1h2F3)

∂q3

]
, (58)
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while the curl of the same vector is given by

∇× F =
1

h2h3

[
∂(h3F3)

∂q2
− ∂(h2F2)

∂q3

]
e1+

+
1

h3h1

[
∂(h1F1)

∂q3
− ∂(h3F3)

∂q1

]
e2+

+
1

h1h2

[
∂(h2F2)

∂q1
− ∂(h1F1)

∂q2

]
e3.

(59)

Note that the expression (59) of the vector ∇× F can be write in the form
of a determinant, namely,

∇× F =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1e1 h2e2 h3e3

∂

∂q1

∂

∂q2

∂

∂q3

h1u1 h2u2 h3u3

∣∣∣∣∣∣∣∣∣∣
. (60)

The Laplacian operator of a scalar function can easily be derived by using
(58) and (55). Thus

∇2ϕ = ∇ ·∇ϕ =
1

h1h2h3

3∑
n=1

∂

∂qn

[
h1h2h3

h2
n

∂ϕ

∂qn

]
. (61)

In cylindrical coordinate we choose

q1 = r, q2 = θ, q3 = z.

The corresponding scale factors and unit base vectors are

h1 = 1, h2 = r, h3 = 1

e1 = er, e2 = eθ, e3 = ez.
(62)

The relations between the cylindrical coordinates (r, θ, z) and the Carte-
sian coordinates (x1, x2, x3) are

x1 = r cos θ,

x2 = r sin θ,

x3 = z.

(63)
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I. Al. Crăciun - Propagation of Stress Waves in Elastic Solids

In this case, r is the length of the projection on the plane (x1, x2) of the
radius vector, θ is the angle between this projected radius vector and x1 axis
measured in the trigonometric sense, and z is the axis of the cylinder which
is the same as x3 axis. Cartesian coordinate x1 and x2 are in a plane normal
to the z axis. Here, q1 = r, q2 = θ, and q3 = z.

The Jacobian matrix of transformation (63) is given by

Jq(x) =

 cos θ sin θ 0

−r sin θ r cos θ 0

0 0 1

 . (64)

Starting with equations (49), (63), and (64) we find that the cylindrical
coordinates system is orthogonal and

ds1 = dr, ds2 = r dθ, ds3 = dz. (65)

Let the components of a vector F be Fr, Fθ, Fz in the r, θ, and z directions,
respectively. Following (58), (59), and (62), we have:

∇ · F =
1

r

[
∂(r Fr)

∂r
+
∂Fθ

∂θ
+ r

∂Fz

∂z

]
; (66)

∇× F =

[
1

r

∂Fz

∂θ
− ∂Fθ

∂z

]
er+

+

[
∂Fr

∂z
− ∂Fz

∂r

]
eθ +

1

r

[
∂(rFθ)

∂r
− ∂Fr

∂θ

]
ez,

(67)

where er is the unit vector of the projected radius vector on the plane (x1, x2),
eθ is a unit vector tangent in the point (r, θ, z) to the circle of r radius and
the centre in the point (0, 0, z), belonging to the plane parallel with (x1, x2)
passing throught this point, and ez is the unit vector of x3 axis. These three
unit vectors stand for e1, e2, and e3 in equation (57), and the set {er, eθ, ez}
forms a right–handed orthogonal basis in the three–dimensional space.

If u = urer +uθeθ +uzez is the displacement vector refered to cylindrical
coordinates system, then the dilatation ∇u = Θ, the gradient of Θ, and the
rotation vector Ψ = ∇× u are given by

∇ · u = Θ =
1

r

[
∂(r ur)

∂r
+
∂uθ

∂θ
+ r

∂uz

∂z

]
, (68)
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∇Θ =
∂Θ

∂r
er +

1

r

∂Θ

∂θ
eθ +

∂Θ

∂z
ez, (69)

Ψ = ∇× u =

[
1

r

∂uz

∂θ
− ∂uθ

∂z

]
er+

+

[
∂ur

∂z
− ∂uz

∂r

]
eθ +

1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
ez.

(70)

From (70) we derive that the components of the vector Ψ are

Ψr =
1

r

∂uz

∂θ
− ∂uθ

∂z

Ψθ =
∂ur

∂z
− ∂uz

∂r
,

Ψθ =
1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
.

(71)

Our aim is to use the metric coefficients for the cylindrical coordinate
system along with the above expressions for the vector and scalar functions to
derive the Navier equations in the form given by equation (25) into cylindrical
coordinates.

11. The Navier Equations in Cylindrical Coordinates

Using equations (68), (69), (70), and (59), where F = Ψ, the Navier equations
(25), divided by ρ, become in extended form

c2L
∂Θ

∂r
− c2T

[
1

r

∂Ψz

∂θ
− ∂Ψθ

∂z

]
=

∂2ur

∂t2
,

c2L
1

r

∂Θ

∂θ
− c2T

[
∂Ψr

∂z
− ∂Ψz

∂r

]
=

∂2uθ

∂t2
,

c2L
∂Θ

∂z
− c2T

1

r

[
∂(rΨθ)

∂r
− ∂Ψr

∂θ

]
=

∂2uz

∂t2
.

(72)

For longitudinal waves without rotation, the rotation vector Ψ vanishes
and equation (72) reduces to the wave equation for the dilatation Θ. For
transverse waves, Θ vanishes and equation (72) becomes the wave equation
for Ψ.

12. Radially Symmetric Waves
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We now investigate the propagation of radially symmetric waves in a solid
infinite cylinder of radius a. Some authors ([?], [?] etc) take the following
approach. They solve the Navier equations (72) for the dilatation and ro-
tation components. From them they obtain the displacement and rotation.
Then they apply the results to an infinite cylinder with free–surface boundary
conditions.

The approach to be used here is to take advantage of the fact that an
elastic medium has no internal friction, so that scalar and vector potentials
exist. We shall make use of this fact by solving the wave equations for these
potentials in cylindrical coordinates, and from these solutions we obtain the
displacement vector, the stress components, etc.

Radially symmetric waves in a solid cylinder are symmetric about the
cylinder axis z, so that the angular displacement component uθ vanishes and
the other components do not depend on the angle θ. Each particle of the
cylinder oscillates in the (r, z) plane. It turns out that the rotation vector
Ψ = ∇ × u has a nonzero angular component that is independent of θ.
We consider an infinite train of time–harmonic waves of a single frequency
along a solid infinite cylinder such that the displacement is a simple harmonic
function of z. The cylindrical coordinates are (r, θ, z), where where θ is the
angle that the radius vector r makes with the x axis. The x, y coordinates
are in a plane normal to the cylinder axis z. The displacement vector is
u = (ur, 0, uz), where the components are functions of (r, z, t). We see that

the rotation vector has the form ∇ × u = (0,
∂ur

∂z
− ∂uz

∂r
, 0) = (0,Ψθ, 0),

where Ψθ is also a function of (r, z, t).
In our axisymmetric case, the relation between the components of the

displacement vector to the scalar and vector potentials (33) become

ur =
∂φ

∂r
− ∂ψ

∂z
,

uz =
∂φ

∂z
+

1

r

∂

∂r

(
r
∂ψ

∂r

)
=
∂φ

∂z
+
∂2ψ

∂r2
+

1

r

∂ψ

∂r
.

(73)

The wave equations for the potentials φ and ψ in axisymmetric cylindrical
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coordinates become

c2L

[
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2

]
=

∂2φ

∂t2

c2T

[
∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2

]
=

∂2ψ

∂t2
.

(74)

The only nonzero components of the stress tensor are

τrr = λ

(
ur

r
+
∂ur

∂r
+
∂uz

∂z

)
+ 2µ

∂ur

∂r
,

τrz = µ

(
∂ur

∂z
+
∂uz

∂r

)
,

(75)

since the cylinder is axisymmetric so that the angular components of the
stress tensor vanish.

The boundary conditions are on a free surface, which means that on that
on the surface r = a we have

τrr = 0, τzz = 0, at r = a. (76)

To solve for the potentials we take time harmonic solutions. Furthermore,
since the wave front propagates in the z direction, we assume the potentials
are harmonic in z. Therefore we can separate the r−dependent parts of the
potentials and write them in the form

φ = AF (r)ei(kz±ωt), ψ = BG(r)ei(kz±ωt), (77)

where A and B are constants and F and G are functions of r to be deter-
mined. Note that the same phase kz ± ωt is used for the scalar and vector
potentials. At any instant t, potentials φ and ψ are periodic functions of z
with wavelength Λ, where Λ = 2π/k. The quantity k = 2π/Λ, which counts
the number of wavelength over 2π is termed the wavenumber. At any po-
sition the potentials φ and ψ are time–harmonic with time period T, where
T = 2π/ω. The circular frequency ω is given by ω = k · c.

Inserting equations (77) into the appropriate wave equations (74) yields

d2F

dr2
+

1

r

dF

dr
+ β2F = 0,

d2G

dr2
+

1

r

dG

dr
+ γ2G = 0,

(78)
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where

β2 =
ω2

c2L
− k2, γ2 =

ω2

c2T
− k2. (79)

The solutions of equation (78) that has no singularity at r = 0 is Bessel’s
functions of order zero, so that the potentials become, for progressing wave
fronts,

φ = AJ0(βr)e
i(kz−ωt), ψ = BJ0(γr)e

i(kz−ωt) (80)

Using (80), equation (73) for the displacement components become

ur =

[
A
d

dr
J0(βr) + ikB

d

dr
J0(γr)

]
ei(kz−ωt)

uz = [ikAJ0(βr) + γ2BJ0(γr)] e
i(kz−ωt).

(81)

Starting with (69) and (81) we derive that the divergence of the displace-
ment vector in the case of radially symmetric waves is given by

Θ = ∇ · u = −ω
2

c2L
AJ0(βr) e

i(kz−ωt). (82)

Using now the constitutive equations (75), the expressions of ur and uθ

given in (81), and equation (82) we find that the components τrr, τrz of the
stress tensor are

τrr =

{[
2µ
d2

dr2
J0(βr)− λ

ω2

c2L
J0(βr)

]
A+ 2µikB

d2

dr2
J0(γr)

}
ei(kz−ωt),

τrz = µ

[
2ikA

d

dr
J0(βr) +

(
ω2

c2L
− 2k2

)
B
d

dr
J0(γr)

]
ei(kz−ωt).

(83)
To satisfy the boundary conditions (76) we must to have[
2µ
d2

dr2
J0(βr)

∣∣∣
r=a

− λ
ω2

c2L
J0(βa)

]
A + 2µik

d2

dr2
J0(γr)

∣∣∣
r=a

B = 0,

2ik
d

dr
J0(βr)

∣∣∣
r=a

A +

(
ω2

c2T
− 2k2

)
d

dr
J0(γr)

∣∣∣
r=a

B = 0.

(84)
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The system (84) is a set of two algebraic homogeneous equations for the
constants A and B. Therefore, for nontrivial solutions thwe determinant must
equal zero, yielding∣∣∣∣∣∣∣∣∣∣

2µ
d2

dr2
J0(βr)

∣∣∣
r=a

− λ
ω2

c2L
J0(βa) 2µik

d2

dr2
J0(γr)

∣∣∣
r=a

2ik
d

dr
J0(βr)

∣∣∣
r=a

(
ω2

c2T
− 2k2

)
d

dr
J0(γr)

∣∣∣
r=a

∣∣∣∣∣∣∣∣∣∣
. (85)

This is the period equation. It is difficult to discuss this equation in its
general form, other than to perform numerical analyses for special cases. But
if we have a thin cylinder, than the radius a is small, therefore βa and γa will
be small enough to neglect fourth–order terms. This is seen by expanding
the Bessel function

J0(x) = 1− 1

2
x2 +

1

64
x4 − · · · , (86)

where x stands for βa or γa. Using equation (86) in the expansion of equation
(85) and keeping only the quadratic terms, we get the required approxima-
tion for the period equation. From this we obtain an approximation for the
longitudinal wave speed:

cL =
ω

k
=

√
E

ρ

(
1− 1

4
σ2k2a2

)
, (87)

where E is the Young’s modulus and σ is the Poisson’s ratio of the cylinder.

13. Waves Propagated over the Surface of an Elastic Body

Lord Rayleigh investigated a type of surface wave runing along the planar
interface between air and an isotropic elastic solid in which the amplitude of
the wave damps off exponentially as it penetrates the solid. It was anticipated
by Lord Rayleigh that solutions of this type might approximate the behaviour
of seismic waves observed during earthquakes [Proceedings of the London
Mathematical Society, vol. 17 (1887), or Scientific Papers, vol. 2, p. 441].

When such surface waves are studied by the Rayleigh’s treatment, it is
considered that the (x, y) plane bounded by the free surface y = 0 has air
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in its upper plane y > 0 and an isotropic elastic solid in the lower plane
y < 0. We assume that monochromatic progressing waves (single frequency)
are propagated in the positive x direction as a result of forces applied in the
solid at some distance from the surface (for example, the forces that pro-
duce earthquakes). Since the nature of the disturbing force is not specified,
there are infinitely many solutions to these wave equations. However, using
Rayleigh’s approach we obtain solutions that are exponentially damped.

We assume that all the dependent variables are functions of (x, y, t) and
that the displacement vector u = (u, v, 0). The rotation vector Ψ has the form

Ψ = (0, 0,Ψ), where Ψ =
∂v

∂x
− ∂u

∂y
. The two–dimensional wave equations for

the scalat potential φ and the component Ψ of the vector potential Ψ are

c2L

(∂2φ

∂x2
+
∂2φ

∂y2

)
=

∂2φ

∂t2
,

c2T

(∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
=

∂2Ψ

∂t2
.

(88)

The boundary conditions at y = 0 are of type of a free surface, so that
the shear stress τxy and the normal stress τyy vanish on the x axis. In this
case, Hooke’s law gives us

τxy = 2µεxy, τyy = λΘ + 2µεyy, Θ = εxx + εyy, (89)

for two–dimensional stress and strain. The components u, v, and w of dis-
placement vector u become

u =
∂φ

∂x
+
∂Ψ

∂y
, v =

∂φ

∂y
− ∂Ψ

∂x
, w = 0. (90)

The strain tensor has the nonzero components

εxx =
∂u

∂x
=
∂2φ

∂x2
+

∂2Ψ

∂x∂y
,

εxy =
1

2

(∂v
∂x

+
∂u

∂y

)
=

∂2φ

∂x∂y
+

1

2

(
− ∂2Ψ

∂x2
+
∂2Ψ

∂y2

)
,

εyy =
∂v

∂y
=
∂2φ

∂y2
− ∂2Ψ

∂y∂x
.

(91)
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Inserting equations (91) into (89) yields the boundary conditions for the
components of the stress tensor at y = 0 :

2
∂2φ

∂x∂y
(x, 0)− ∂2Ψ

∂x2
(x, 0) +

∂2Ψ

∂y2
(x, 0) = 0,

λ∇2φ(x, 0) + 2µ
(∂2φ

∂y2
(x, 0)− ∂2Ψ

∂y∂x
(x, 0)

)
= 0.

(92)

The problem is to find time–harmonic solutions to (88) that exponen-
tially decay with y, are progressing waves in the x direction, and satisfy the
boundary conditions (92). To this end we take the potentials in the form

φ(x, y) = Ae−ayeik(x−ct), Ψ(x, y) = Be−byeik(x−ct), a > 0, b > 0, (93)

where A is the amplitude of the scalar potential, B is the amplitude of the
vector potential, and a and b are the decay constants, which are determined
from the wave equations. Note that the wave number k and the frequency ω
are the same for each potential. Inserting equations (93) into (88) yields

a2 − k2

[
1−

( c

cL

)2
]

= 0,

b2 − k2

[
1−

( c

cT

)2
]

= 0.

(94)

The wave velocity c is not equal to cL or cT . However, if a = 0 then
c = cL, or if b = 0 then c = cT . But neither a nor b can vanish.

To satisfy the boundary conditions we insert equation (93) into equation
(92) and obtain

−2iakA+ (b2 + k2)B = 0,

[2µa2 + λ(a2 − k2)]A+ 2iµbkB = 0.
(95)

Equations (95) are a pair of homogeneous algebraic equations for the
complex constants A and B. As usual, we set the determinant equal to zero
in order to have nontrivial solutions for A and B. We get

4µabk2 − (b2 + k2)
[
2µa2 + λ(a2 − k2)

]
= 0. (96)
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Eliminating a and b from equation (96) by appealing to (94) we derive
that equation (96) becomes a cubic in (c/cT )2, which can be put in the form

s3 − 8s2 + 8(3− 2r)s− 16(1− r) = 0, (97)

where

s =

(
c

cT

)2

, r =

(
cT
cL

)2

.

Using the approximation λ = µ (Poisson’s condition), we get r = 1/3 and
equation (97) becomes

(s− 4)(3s2 − 12s+ 8) = 0. (98)

The roots of equation (98) are

s1 = 4, s2 = 2 +
2
√

3

3
, s3 = 2− 2

√
3

3
.

It is easily seen that the only root that yields positive values for a and
b is s = 2 − 2

√
3/3. We thereby obtain the following relationship between c

and cT :
c =

√
scT = 0.9194 cT .

For the case of an incompressible body we have Θ = 0. This gives r = 0, so
that the velocity of a Rayleigh wave becomes

c =
√
scT = 0.9553 cT .

We have seen that in either case c is slightly less than the velocity of an
equivoluminal wave.

We note that c is independent of frequency. This means that there is no
dispersion, that is the wave shape is maintained. Having determined c in
terms of cT and cL, we can then calculate the decay constants a and b, which
determine the rate at which the potentials attenuate with depth (note that
y is positive downward). From the definition of the wave number k, both a
and b are proportional to ω and a > b. This means that for a given frequency,
irrotational waves attenuate faster than equivoluminal waves. We also see
that waves of higher frequency are attenuated more rapidly than those of
lower frequency.
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Seismographic signatures often depict waves similar in structure to Rayleigh
waves. However, seismograph records of distant eartquakes indicate disper-
sion, which means dependence of c on ω. This arises mainly because of the
inhomogeneity of the earth, and also because of the viscoelastic properties of
the earth.

14. Special cases

As we know, the vector Navier equation (24) is satisfied with a vector of the
form

u = ∇φ+ ∇×Ψ, (99)

where the potentials φ and Ψ have to satisfy the wave equations (suppose
that F = 0)

c2L∇2φ =
∂2φ

∂t2
, c2T∇2Ψ =

∂2Ψ

∂t2
. (100)

A class of particular solutions of the Navier equation (24) can be generated
by seeking solutions of (100) of the form

φ = Ae−ay+i(x−ωt), Ψ = e2e
−by+i(x−ωt), (101)

where A, e2, a > 0, and b > 0 are constants. It is seen that in this case
the displacement vector (99) has the form u = (u, v, 0), and u and v are
independent of z. The functions φ and Ψ in (101) are solutions of (100) if

a =

√
1 +

ω2

c2L
, b =

√
1 +

ω2

c2T
.

Since we have a two–dimensional problem it results that only the third
component of the vector B is nonzero. Putting B3 = B, we follow to deter-
mine the constants A and B from adequate boundary conditions.

When the gradient and curl are expressed in cylindrical coordinates (r, θ, z),
then for axially symmetric problems,

ur =
∂φ

∂r
− ∂Ψ

∂z
, uθ = 0, uz =

∂φ

∂z
+
∂Ψ

∂r
+

1

r
Ψ, (102)

and the functions φ and Ψ must to satisfy the following differential equations

c2L∇2φ =
∂2φ

∂t2
, c2T∇2Ψ =

∂2Ψ

∂t2
, (103)
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where ∇2 is the Laplace’s operator in cylindrical coordinates which in axially
symmetric case has the form

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+
∂2

∂z2
.

Particular solutions of equations (103) may be seeking of the form

φ = F (r)ei(z−ωt), Ψ = G(r)ei(z−ωt),

where F and G are solutions of the following ordinary differential equations

F ′′(r) +
1

r
F (r) +

(
ω2

c2L
− 1

)
F (r) = 0,

G′′(r) +
1

r
G(r) +

(
ω2

c2T
− 1

)
G(r) = 0.

(104)

The solutions of equations (104) may be expressed with Bessel’s function
of order zero

F (r) = J0(β1r), G(r) = J0(γ1r), (105)

where

β1 =

√
ω2

c2L
− 1, γ1 =

√
ω2

c2T
− 1.

If we have to solve a boundary value problem in axially symmetric case,
then the functions φ and Ψ must to be of the form

φ = AF (r)ei(z−ωt), Ψ = BG(r)ei(z−ωt), (106)

where F (r) and G(r) are given in equation (105), and A and B are constants
which will be determined from boundary conditions.
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