ABOUT AN INTERMEDIATE POINT PROPERTY IN SOME QUADRATURE FORMULAS

Ana Maria Acu

Abstract. In this paper we study a property of the intermediate point from the quadrature formula of the Gauss-Jacobi type, the quadrature formula obtained in the paper [3] by using connection between the monospline function and the numerical integration formula, and the generalized meanvalue formula of N. Ciorănescu.

2000 Mathematics Subject Classification: 26D15, 65D30.

1. Introduction

In the specialized literature there are a lot of mean-value theorems. In [1] and [8] the authors studied the property above for the intermediate point from the quadrature formula of Gauss type.

The generalized quadrature formula of Gauss-Jacobi type has the form ([9])

$$
\begin{equation*}
\int_{a}^{b}(b-x)^{\alpha}(x-a)^{\beta} f(x) d x=\sum_{k=0}^{m} B_{m, k} f\left(\gamma_{k}\right)+\mathcal{R}_{m}[f] \tag{1}
\end{equation*}
$$

the nodes $\gamma_{k}, k=\overline{0, m}$, with appears in (1) are given by

$$
\gamma_{k}=\frac{b-a}{2} a_{k}+\frac{b+a}{2}
$$

where $a_{k}, k=\overline{0, m}$ are the zeros of the Jacobi polynomial, $J_{m+1}^{(\alpha, \beta)}$ and

$$
B_{m, k}=\frac{1}{2} \frac{(b-a)^{\alpha+\beta+1}(2 m+\alpha+\beta+2) \Gamma(m+\alpha+1) \Gamma(m+\beta+1)}{(m+1)!\Gamma(m+\alpha+\beta+2) J_{m}^{(\alpha, \beta)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(\alpha, \beta)}(x)\right]_{x=a_{k}}}
$$

For $f \in C^{2 m+2}[a, b]$ the rest term is given by

$$
\mathcal{R}_{m}[f]=(b-a)^{2 m+\alpha+\beta+3} \frac{f^{(2 m+2)}(\xi)}{(2 m+2)!} \cdot \frac{(m+1)!\Gamma(m+\alpha+2) \Gamma(m+\beta+2) \Gamma(m+\alpha+\beta+2)}{\Gamma(2 m+\alpha+\beta+3) \Gamma(2 m+\alpha+\beta+4)},
$$

$$
a<\xi<b .
$$

For $\alpha=\beta=0$ we have so-called Gauss-Legendre quadrature formula. If $f \in C^{2 m+2}[a, b]$, then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{align*}
\int_{a}^{x} f(t) d t & =\frac{(x-a)}{m+1} \sum_{k=0}^{m} \frac{1}{J_{m}^{(0,0)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(0,0)}(x)\right]_{x=a_{k}}} \cdot f\left(\frac{x-a}{2} a_{k}+\frac{x+a}{2}\right) \\
& +\frac{(x-a)^{2 m+3}[(m+1)!]^{4}}{(2 m+3)[(2 m+2)!]^{3}} f^{(2 m+2)}\left(c_{x}\right) \tag{2}
\end{align*}
$$

Theorem 1. [1] If $f \in C^{2 m+4}[a, b]$ and $f^{(2 m+3)}(a) \neq 0$, then for the intermediate point c_{x} which appears in formula (2) we have $\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2}$.

In this paper we want to study the property of the intermediate point from the quadrature formula of Gauss type with weight function $w(x)=(b-x)(x-a)$.

In recent years a number of authors have considered generalization of some known and some new quadrature rules. For example, P. Cerone and S.S. Dragomir in [5] give a generalization of the midpoint quadrature rule:

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\sum_{k=0}^{m-1}\left[1+(-1)^{k}\right] \frac{(b-a)^{k+1}}{2^{k+1}(k+1)!} f^{(k)}\left(\frac{a+b}{2}\right)+(-1)^{m} \int_{a}^{b} K_{m}(t) f^{(m)}(t) d t \tag{3}
\end{equation*}
$$

where

$$
K_{m}(t)= \begin{cases}\frac{(t-a)^{m}}{m!}, & t \in\left[a, \frac{a+b}{2}\right] \\ \frac{(t-b)^{m}}{m!}, & t \in\left(\frac{a+b}{2}, b\right]\end{cases}
$$

If $f \in C^{m}[a, b]$ and m is even, then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{equation*}
\int_{a}^{x} f(t) d t=\sum_{k=0}^{m-2}\left[1+(-1)^{k}\right] \frac{(x-a)^{k+1}}{2^{k+1}(k+1)!} f^{(k)}\left(\frac{a+x}{2}\right)+\frac{(x-a)^{m+1}}{2^{m}(m+1)!} f^{(m)}\left(c_{x}\right) \tag{4}
\end{equation*}
$$

In [2] was studied the following property of intermediate point from the quadrature formula (4)

Theorem 2.[2] If $f \in C^{2 m}[a, b], m$ is even and $f^{(m+1)}(a) \neq 0$, then for the intermediate point c_{x} that appears in formula (4), it follows:

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2} .
$$

In this paper we want to give a property of intermediate point from a quadrature formula with the weight function $w:[a, b] \rightarrow(0, \infty), w(x)=$ $(b-x)(x-a)$.
N. Ciorănescu demonstrated in [6] that the following formula is valid

$$
\begin{equation*}
\int_{a}^{b} f(x) p_{m}(x) w(x) d x=\frac{f^{(m)}\left(c_{b}\right)}{m!} \int_{a}^{b} x^{m} p_{m}(x) w(x) d x \tag{5}
\end{equation*}
$$

where $f \in C^{m}[a, b]$ and $\left(p_{n}\right)_{n \geq 0}$ is a sequence of orthogonal polynomials on $[a, b]$, in respect to a weight function $w:[a, b] \rightarrow(0, \infty)$.

In [4], the authors study a property of the intermediate point from the mean-value formula of N . Ciorănescu.

Theorem 3. [4] If $f \in C^{m+1}[a, b]$ and $f^{(m+1)}(a) \neq 0$, then the intermediate point of the mean-value formula (5) satisfies the relation:

$$
\lim _{b \rightarrow a} \frac{c_{b}-a}{b-a}=\frac{1}{m+2}
$$

In this paper we give a property of the intermediate point from the generalized mean-value formula of N. Ciorănescu.

2. An intermediate point property in the quadrature formulas of Gauss-Jacobi type

Let

$$
\begin{align*}
\int_{a}^{b}(b-x)(x-a) f(x) d x & =\frac{(b-a)^{3}}{m+3} \sum_{k=0}^{m} \frac{1}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} f\left(\frac{b-a}{2} a_{k}+\frac{b+a}{2}\right) \\
& +(b-a)^{2 m+5} \frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} f^{(2 m+2)}(\xi) \tag{6}
\end{align*}
$$

A. M. Acu - About an intermediate point property in some...
be the quadrature formula of Gauss-Jacobi type (1), which $\alpha=\beta=1$.
If $f \in C^{2 m+2}[a, b]$, then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{align*}
\int_{a}^{x}(x-t)(t-a) f(t) d t & =\frac{(x-a)^{3}}{m+3} \sum_{k=0}^{m} \frac{1}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} f\left(\frac{x-a}{2} a_{k}+\frac{x+a}{2}\right) \\
& +(x-a)^{2 m+5} \frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} f^{(2 m+2)}\left(c_{x}\right) \tag{7}
\end{align*}
$$

In this section we give a property of the intermediate point, c_{x}, from the quadrature formula of Gauss-Jacobi type (7). Here we prove a lemma which help us in proving our theorem.

Lemma 1. If $a_{k}, k=\overline{0, m}$ are the zeroes of the Jacobi polynomials, $J_{m+1}^{(1,1)}$, then the following relations hold:

$$
\begin{align*}
\sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{i-3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} & =\frac{m+3}{i(i-1)}, \text { for } i=\overline{3,2 m+4}, \tag{8}\\
\sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+2}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} & =\frac{m+3}{(2 m+3)(2 m+4)(2 m+5)} \tag{9}\\
& \cdot\left[(2 m+3)-\frac{(m+1)!^{4}(m+2)^{2}(m+3)}{2(2 m+2)!^{2}(2 m+3)}\right], \\
\sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} & =\frac{1}{2^{2 m+3}\left\{\frac{2^{2 m+2}}{2 m+5}\right.} \\
& \left.-\frac{2^{2 m}(m+1)!^{4}(m+2)(m+3)^{2}}{(2 m+2)!^{2}(2 m+3)(2 m+5)}\right\} . \tag{10}
\end{align*}
$$

Proof. If we choose $a=0, b=1$ and $f(t)=t^{i-3}, i=\overline{3,2 m+5}$ in the quadrature formula (6), then we obtain the relations (8) and (9).

If we choose $a=-1, b=1$ and $f(t)=t^{i}, i=\overline{0,2 m+2}$ in the quadrature formula (6), then we obtain the following relations:

$$
\begin{align*}
\sum_{k=0}^{m} \frac{a_{k}^{i}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} & \left.=\frac{m+3}{4(i+1)(i+3)}\left[1+(-1)^{i}\right], i=\overline{0,2 m+1} 11\right) \\
\sum_{k=0}^{m} \frac{a_{k}^{2 m+2}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} & =\frac{m+3}{2(2 m+3)(2 m+5)} \tag{12}\\
& \cdot\left[1-2^{2 m+1} \frac{(m+1)!^{4}(m+2)(m+3)}{(2 m+2)!^{2}(2 m+3)}\right]
\end{align*}
$$

By using the following formulas (see [10]):

$$
\begin{aligned}
& J_{2 m}^{(\alpha, \alpha)}(x)=\frac{\Gamma(2 m+\alpha+1) \Gamma(m+1)}{\Gamma(m+\alpha+1) \Gamma(2 m+1)} J_{m}^{\left(\alpha,-\frac{1}{2}\right)}\left(2 x^{2}-1\right), \\
& J_{2 m+1}^{(\alpha, \alpha)}(x)=\frac{\Gamma(2 m+\alpha+2) \Gamma(m+1)}{\Gamma(m+\alpha+1) \Gamma(2 m+2)} x J_{m}^{\left(\alpha, \frac{1}{2}\right)}\left(2 x^{2}-1\right), \\
& \frac{d}{d x}\left\{J_{m}^{(\alpha, \beta)}(x)\right\}=\frac{1}{2}(m+\alpha+\beta+1) J_{m-1}^{(\alpha+1, \beta+1)}(x),
\end{aligned}
$$

we obtain

$$
\begin{gather*}
J_{2 m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{2 m+1}^{(1,1)}(x)\right]_{x=a_{k}}=\frac{2(2 m+1)^{2}}{m+1} J_{m}^{\left(1,-\frac{1}{2}\right)}\left(2 a_{k}^{2}-1\right) J_{m}^{\left(2,-\frac{1}{2}\right)}\left(2 a_{k}^{2}-1\right), \tag{13}\\
J_{2 m+1}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{2 m+2}^{(1,1)}(x)\right]_{x=a_{k}}=\frac{2(2 m+5)(2 m+3)}{(m+2)} \cdot a_{k}^{2} \tag{14}\\
\cdot J_{m}^{\left(1, \frac{1}{2}\right)}\left(2 a_{k}^{2}-1\right) J_{m}^{\left(2, \frac{1}{2}\right)}\left(2 a_{k}^{2}-1\right) .
\end{gather*}
$$

From the identity

$$
J_{m}^{(\alpha, \beta)}(x)=(-1)^{m} J_{m}^{(\beta, \alpha)}(-x)
$$

it follows that

$$
\begin{equation*}
a_{k}+a_{m-k}=0 \tag{15}
\end{equation*}
$$

where $a_{k}, k=\overline{0, m}$ are the zeroes of Jacobi polynomial of degree $m+1$, $J_{m+1}^{(1,1)}$.

From (13), (14) and (15) we obtain

$$
\sum_{k=0}^{m} \frac{a_{k}^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}}=0
$$

$$
\begin{aligned}
& \text { therefore } \\
& \sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}}=\frac{1}{2^{2 m+3}}\left[\sum_{k=0}^{m} \frac{a_{k}^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}}\right. \\
& +\sum_{k=0}^{m} \sum_{i=0}^{2 m+2}\binom{2 m+3}{i} \frac{a_{k}^{i}}{\left.J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}\right]} \\
& =\frac{1}{2^{2 m+3}} \sum_{i=0}^{2 m+2}\binom{2 m+3}{i} \sum_{k=0}^{m} \frac{a_{k}^{i}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}}
\end{aligned}
$$

and by using (11) and (12) it follows the relation (10).
Theorem 4. If $f \in C^{2 m+6}[a, b]$ and $f^{(2 m+3)} \neq 0$, then for the intermediate point c_{x} which appears in formula (7) we have

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2} \tag{16}
\end{equation*}
$$

Proof. Let us consider $F, G:[a, b] \rightarrow \mathrm{R}$ defined by

$$
\begin{align*}
F(x) & =\int_{a}^{x}(x-t)(t-a) f(t) d t \\
& -\frac{(x-a)^{3}}{m+3} \sum_{k=0}^{m} \frac{1}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} f\left(\frac{x-a}{2} a_{k}+\frac{x+a}{2}\right) \\
& -(x-a)^{2 m+5} \frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} f^{(2 m+2)}(a), \tag{17}\\
G(x) & =(x-a)^{2 m+6} .
\end{align*}
$$

We have that F and G are $(2 m+6)$ times derivable on $[a, b]$,

$$
\begin{aligned}
& G^{(i)}(x) \neq 0, i=\overline{1,2 m+5} \quad \text { any } \quad x \in(a, b], \\
& G^{(i)}(a)=0, i=\overline{1,2 m+5} .
\end{aligned}
$$

A. M. Acu - About an intermediate point property in some...

We observe that $F(a)=F^{\prime}(a)=F^{\prime \prime}(a)=0$.
For $i=\overline{3,2 m+4}$ we have
$F^{(i)}(a)=(i-2) f^{(i-3)}(a)-\frac{i(i-1)(i-2)}{m+3} \sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{i-3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} \cdot f^{(i-3)}(a)$
and by using relation (8) we obtain $F^{(i)}(a)=0$.
From relations (9) and (17) we obtain

$$
\begin{aligned}
F^{(2 m+5)}(a) & =(2 m+3) f^{(2 m+2)}(a)-\frac{(2 m+3)(2 m+4)(2 m+5)}{m+3} \\
& \cdot \sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+2}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} \cdot f^{(2 m+2)}(a) \\
& -\frac{(m+1)!^{4}(m+2)^{2}(m+3)}{2(2 m+2)!^{2}(2 m+3)} f^{(2 m+2)}(a)=0 .
\end{aligned}
$$

By using successive l'Hospital rule and

$$
\begin{aligned}
F^{(2 m+6)}(a)= & (2 m+4) f^{(2 m+3)}(a)-2(2 m+4)(2 m+5) \\
& \cdot \sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}} \cdot f^{(2 m+3)}(a), \\
G^{(2 m+6)}(a)= & (2 m+6)!
\end{aligned}
$$

we obtain

$$
\begin{gather*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\lim _{x \rightarrow a} \frac{F^{(2 m+6)}(x)}{G^{(2 m+6)}(x)}=\frac{f^{(2 m+3)}(a)}{(2 m+6)!} \tag{18}\\
{\left[(2 m+4)-2(2 m+4)(2 m+5) \cdot \sum_{k=0}^{m} \frac{\left(\frac{a_{k}+1}{2}\right)^{2 m+3}}{J_{m}^{(1,1)}\left(a_{k}\right) \frac{d}{d x}\left[J_{m+1}^{(1,1)}(x)\right]_{x=a_{k}}}\right]}
\end{gather*}
$$

A. M. Acu - About an intermediate point property in some...
but

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)} & =\lim _{x \rightarrow a}(x-a)^{2 m+5} \frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} \frac{f^{(2 m+2)}\left(c_{x}\right)-f^{(2 m+2)}(a)}{(x-a)^{2 m+6}} \\
& =\lim _{x \rightarrow a} \frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} \cdot \frac{f^{(2 m+2)}\left(c_{x}\right)-f^{(2 m+2)}(a)}{c_{x}-a} \cdot \frac{c_{x}-a}{x-a}
\end{aligned}
$$

namely
$\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{(m+1)!^{4}(m+2)(m+3)}{4(2 m+2)!^{3}(2 m+3)^{2}(2 m+5)} \cdot f^{(2 m+3)}(a) \cdot \lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}$.
From (10), (18) and (19) it follows that the intermediate point c_{x} which appears in formula (7) verifies the property (16).

3. An intermediate point property in a quadrature formula

 WITH WEIGHT FUNCTION $w(x)=(b-x)(x-a)$In [3] was studied the following quadrature formula

$$
\int_{a}^{b} w(t) f(t) d t=\sum_{k=0}^{m-1}\left[(-1)^{k}+1\right] \cdot \frac{(b-a)^{k+3}}{2^{k+2}(k+1)!(k+3)} f^{(k)}\left(\frac{a+b}{2}\right)+\mathcal{R}[f],
$$

where $f \in C^{m}[a, b], w(t)=(b-t)(t-a)$,

$$
\mathcal{R}[f]=(-1)^{m} \int_{a}^{b} M_{n}(t) f^{(m)}(t) d t
$$

and

$$
M_{m}(t)=\left\{\begin{array}{l}
(b-a) \frac{(t-a)^{m+1}}{(m+1)!}-2 \frac{(t-a)^{m+2}}{(m+2)!}, t \in\left[a, \frac{a+b}{2}\right) \\
(a-b) \frac{(t-b)^{m+1}}{(m+1)!}-2 \frac{(t-b)^{m+2}}{(m+2)!}, t \in\left[\frac{a+b}{2}, b\right]
\end{array} .\right.
$$

If $f \in C^{m}[a, b]$ and m is even, then for any $x \in(a, b]$ there is $c_{x} \in(a, x)$ such that

$$
\begin{align*}
\int_{a}^{x}(x-t)(t-a) f(t) d t & =\sum_{k=0}^{m-2}\left[(-1)^{k}+1\right] \cdot \frac{(x-a)^{k+3}}{2^{k+2}(k+1)!(k+3)} f^{(k)}\left(\frac{a+x}{2}\right) \\
& +\frac{(x-a)^{m+3}}{2^{m+1}(m+1)!(m+3)} f^{(m)}\left(c_{x}\right) \tag{20}
\end{align*}
$$

In the above condition we have the following theorem
Theorem 5. If $f \in C^{2 m+2}[a, b], m$ is even and $f^{(m+1)}(a) \neq 0$, then for the intermediate point c_{x} that appears in formula (20), it follows:

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2}
$$

Proof. Let $F, G:[a, b] \rightarrow \mathrm{R}$ definite as follows

$$
\begin{aligned}
F(x) & =\int_{a}^{x}(x-t)(t-a) f(t) d t-\sum_{k=0}^{m-2}\left[(-1)^{k}+1\right] \cdot \frac{(x-a)^{k+3}}{2^{k+2}(k+1)!(k+3)} f^{(k)}\left(\frac{a+x}{2}\right) \\
& -\frac{(x-a)^{m+3}}{2^{m+1}(m+1)!(m+3)} f^{(m)}(a), \\
G(x) & =(x-a)^{m+4} .
\end{aligned}
$$

We observe that $F(a)=F^{\prime}(a)=F^{\prime \prime}(a)=0$. For $i=\overline{3, m+2}$ we have

$$
\begin{aligned}
F^{(i)}(a)= & f^{(i-3)}(a)\left\{(i-2)-\frac{i(i-1)(i-2)}{2^{i-1}}\right. \\
& \left.\cdot \sum_{k=0}^{i-3}\left[(-1)^{k}+1\right]\binom{i-3}{k} \frac{1}{(k+1)(k+3)}\right\}=0 .
\end{aligned}
$$

We find

$$
\begin{aligned}
F^{(m+3)}(a)= & f^{(m)}(a)\left\{(m+1)-\frac{(m+1)(m+2)(m+3)}{2^{m+2}}\right. \\
& \left.\cdot \sum_{k=0}^{m-2}\left[(-1)^{k}+1\right]\binom{m}{k} \frac{1}{(k+1)(k+3)}-\frac{m+2}{2^{m+1}}\right\}=0
\end{aligned}
$$

and

$$
\begin{aligned}
F^{(m+4)}(a) & =f^{(m+1)}(a)\left\{(m+2)-\frac{(m+2)(m+3)(m+4)}{2^{m+3}}\right. \\
& \left.\cdot \sum_{k=0}^{m-2}\left[(-1)^{k}+1\right]\binom{m+1}{k} \frac{1}{(k+1)(k+3)}\right\} \\
& =\frac{(m+2)(m+4)}{2^{m+2}} f^{(m+1)}(a) .
\end{aligned}
$$

We have that F and G are $(m+4)$ times derivable on $[a, b], F^{(i)}(a)=G^{(i)}(a)=$ 0 , for $i=\overline{0, m+3}$ and $G^{(i)}(x) \neq 0, i=\overline{1, m+3}$ any $x \in(a, b]$. By using successive l' Hospital rule we obtain

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\lim _{x \rightarrow a} \frac{F^{m+4}(x)}{G^{m+4}(x)}=\frac{1}{2^{m+2}(m+1)!(m+3)} f^{(m+1)}(a) \tag{21}
\end{equation*}
$$

but

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{F(x)}{G(x)}=\frac{1}{2^{m+1}(m+1)!(m+3)} f^{(m+1)}(a) \lim _{x \rightarrow a} \frac{c_{x}-a}{x-a} . \tag{22}
\end{equation*}
$$

From relation (21) and (22) we have

$$
\lim _{x \rightarrow a} \frac{c_{x}-a}{x-a}=\frac{1}{2} .
$$

4. An intermediate point property from the mean-value Formula of N. Ciorănescu

The polynomial

$$
P_{s, m}(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0},
$$

which satisfies the orthogonality conditions

$$
\int_{a}^{b}\left[P_{s, m}(x)\right]^{2 s+1} x^{k} w(x) d x=0, \quad k=0,1, \cdots, m-1
$$

is called s-orthogonal polynomial with respect to the weight function $w:[a, b] \rightarrow(0, \infty)$.

The following equality is the generalized mean-value formula of N. Ciorănescu (see [9])

$$
\begin{equation*}
\int_{a}^{b} f(x) P_{s, m}^{2 s+1}(x) w(x) d x=\frac{f^{(m)}\left(c_{b}\right)}{m!} \int_{a}^{b} x^{m} P_{s, m}^{2 s+1}(x) w(x) d x \tag{23}
\end{equation*}
$$

We observe that for $s=0$ we obtain the mean-value formula of N. Ciorănescu (5).

We construct the functions $\left(V_{k}\right)_{k=0, m}$ as follows

$$
\begin{gathered}
V_{0}(x)=w(x) P_{s, m}^{2 s+1}(x) \\
V_{j}(x)=\int_{a}^{x} V_{j-1}(x) d x, j=\overline{1, m}
\end{gathered}
$$

Here we prove a lemma which help us in proving our theorem.
Lemma 2. We have the following equalities

$$
\begin{align*}
& V_{j}(a)=0, V_{j}(b)=0, \quad \text { for any } \quad j=\overline{1, m} \tag{24}\\
& \int_{a}^{b} f(x) P_{s, m}^{2 s+1}(x) w(x) d x=(-1)^{m} \int_{a}^{b} f^{(m)}(x) V_{m}(x) d x \tag{25}
\end{align*}
$$

Proof. We have $V_{j}(a)=0$, for any $j=\overline{1, m}$.

$$
V_{1}(b)=\int_{a}^{b} V_{0}(x) d x=\int P_{s, m}^{2 s+1}(x) w(x) d x=0
$$

For every $k \in\{2,3, \ldots, m\}$ we have

$$
\begin{aligned}
V_{k}(b) & =\int_{a}^{b} V_{k-1}(x) d x=\int_{a}^{b}\left[\frac{x^{k-1}}{(k-1)!}\right]^{(k-1)} V_{k-1}(x) d x \\
& =\left.\sum_{\nu=0}^{k-2}(-1)^{k-\nu-2}\left[V_{k-1}(x)\right]^{(k-\nu-2)}\left[\frac{x^{k-1}}{(k-1)!}\right]^{(\nu)}\right|_{a} ^{b} \\
& +(-1)^{k-1} \int_{a}^{b}\left[V_{k-1}(x)\right]^{(k-1)} \frac{x^{k-1}}{(k-1)!} d x \\
& =\left.\sum_{\nu=0}^{k-2}(-1)^{k-\nu-2} V_{\nu+1}(x) \frac{x^{k-\nu-1}}{(k-\nu-1)!}\right|_{a} ^{b}+\frac{(-1)^{k-1}}{(k-1)!} \int_{a}^{b} V_{0}(x) x^{k-1} d x \\
& =\frac{(-1)^{k-1}}{(k-1)!} \int_{a}^{b} x^{k-1} P_{s, m}^{2 s+1}(x) w(x) d x=0
\end{aligned}
$$

We have

$$
\begin{aligned}
\int_{a}^{b} f(x) P_{s, m}^{2 s+1}(x) w(x) d x & =\left.\sum_{\nu=0}^{m-1}(-1)^{m-\nu-1} f^{(m-\nu-1)}(x) V_{m-\nu}(x)\right|_{a} ^{b} \\
& +(-1)^{m} \int_{a}^{b} f^{(m)}(x) V_{m}(x) d x
\end{aligned}
$$

and by using relation (24) we obtain the equality (25).

Theorem 6. If $f \in C^{m+1}[a, b]$ and $f^{(m+1)}(a) \neq 0$, then the intermediate point of the mean-value formula (23) satisfies the relation:

$$
\begin{equation*}
\lim _{b \rightarrow a} \frac{c_{b}-a}{b-a}=\frac{1}{m+2} \tag{26}
\end{equation*}
$$

Proof. From (23) and (25) we can written

$$
\begin{align*}
\int_{a}^{b} f(x) P_{s, m}^{2 s+1}(x) w(x) d x & =\frac{f^{(m)}\left(c_{b}\right)}{m!} \int_{a}^{b} x^{m} P_{s, m}^{2 s+1}(x) w(x) d x \\
& =(-1)^{m} f^{(m)}\left(c_{b}\right) \int_{a}^{b} V_{m}(x) d x \tag{27}
\end{align*}
$$

From relations (25) and (27) we obtain

$$
\int_{a}^{b} f^{(m)}(x) V_{m}(x) d x=f^{(m)}\left(c_{b}\right) \int_{a}^{b} V_{m}(x) d x
$$

We consider the functions

$$
\begin{aligned}
& F(b)=\int_{a}^{b} f^{(m)}(x) V_{m}(x) d x-f^{(m)}(a) \int_{a}^{b} V_{m}(x) d x \\
& G(b)=(b-a)^{m+2}
\end{aligned}
$$

Since

$$
\begin{aligned}
& F^{(k)}(b)=\sum_{\nu=0}^{k-1}\binom{k-1}{\nu} f^{(m+k-1-\nu)}(b) V_{m-\nu}(b)-f^{(m)}(a) V_{m-k+1}(b), \\
& F^{(m+1)}(b)=\sum_{\nu=0}^{m-1}\binom{m}{\nu} f^{(2 m-\nu)}(b) V_{m-\nu}(b)+\left[f^{(m)}(b)-f^{(m)}(a)\right] V_{0}(b),
\end{aligned}
$$

by using successive l'Hospital rule, we have

$$
\begin{equation*}
\lim _{b \rightarrow a} \frac{F(b)}{G(b)}=\frac{f^{(m+1)}(a)}{(m+2)!} V_{0}(a), \tag{28}
\end{equation*}
$$

but

$$
\begin{align*}
\lim _{b \rightarrow a} \frac{F(b)}{G(b)} & =\lim _{b \rightarrow a} \frac{f^{(m)}\left(c_{b}\right) \int_{a}^{b} V_{m}(x) d x-f^{(m)}(a) \int_{a}^{b} V_{m}(x) d x}{(b-a)^{m+2}} \\
& =\frac{V_{0}(a)}{(m+1)!} f^{(m+1)}(a) \cdot \lim _{b \rightarrow a} \frac{c_{b}-a}{b-a} . \tag{29}
\end{align*}
$$

From (28) and (29) it follows that the intermediate point c_{b} from the generalized mean-value formula of N . Ciorănescu verifies the property (26).

References

[1] A.M. Acu, An intermediate point property in the quadrature formulas of Gauss-Jacobi type, Advances in Applied Mathematical Analysis, Vol. 1, Nr.1, 2006.
[2] A.M. Acu, An intermediate point property in the quadrature formulas , Advances in Applied Mathematical Analysis, (to appear)
[3] A.M. Acu, Monosplines and inequalities for the remaider term of quadrature formulas, General Mathematics, Vol. 15, No. 1, 2007, 81-92.
[4] D.Acu, P. Dicu, About some properties of the intermediate point in certain mean-value formulas, General Mathematics, Vol. 10, No. 1-2, 2002, 51-64.
[5] P. Cerone and S.S.Dragomir, Trapezoidal-type Rules from an Inequalities Point of View,Handbook of Analytic-Computational Methods in Applied Mathematics, Editor: G. Anastassiou, CRC Press, New York, (2000),65-134.
[6] N. Ciorănescu, La généralisation de la premiére formule de la moyenne, L'einsegment Math., Genéve, 37 (1938), 292-302.
[7] P. Dicu, An intermediate point property in some of classical generalized formulas of quadrature, General Mathematics, Vol. 12, No. 1, 2004, 61-70.
[8] P. Dicu, An intermediate point property in the quadrature formulas of type Gauss, General Mathematics, Vol. 13, No. 4, 2005, 73-80.
[9] D.D. Stancu, G. Coman, P.Blaga, Analiza numerica si Teoria aproximarii, Vol.II, Presa Universitara Clujeana, Cluj-Napoca, 2002.
[10] G. Szegö , Orthogonal Polynomials, American Mathematical Society, Colloquium Publication, Volume 23, 1939.
A. M. Acu - About an intermediate point property in some...

Author:

Ana Maria Acu
Department of Mathematics
University "Lucian Blaga" of Sibiu
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
email:acuana77@yahoo.com

