THE FIXED POINT PROPERTY IN CONVEX MULTI-OBJECTIVE OPTIMIZATION PROBLEM

Zdravko Dimitrov Slavov

ABSTRACT. In this paper we study the Pareto-optimal solutions in convex multi-objective optimization with compact and convex feasible domain. One of the most important problems in multi-objective optimization is the investigation of the topological structure of the Pareto sets. We present the problem of construction of a retraction function of the feasible domain onto Paretooptimal set, if the objective functions are concave and one of them is strictly quasi-concave on compact and convex feasible domain. Using this result it is also proved that the Pareto-optimal and Pareto-front sets are homeomorphic and they have the fixed point property.

2000 Mathematics Subject Classification: 90C29

Keywords: multi-objective optimization, compact, convex, homeomorphic, fixed point.

1. INTRODUCTION

The key idea of the present paper is first to show how we can construct a retraction of the feasible domain onto Pareto-optimal set in multi-objective optimization problem. Next, using this function we will prove that the Paretooptimal and Pareto-front sets are homeomorphic and they have the fixed point property.

In a general form, the multi-objective optimization problem MOP(X, F) is to find $x \in X \subset \mathbb{R}^m$, $m \ge 1$, so as to maximize $F(x) = (f_1(x), f_2(x), ..., f_n(x))$ subject to $x \in X$, where the feasible domain X is nonempty, convex and compact, $J = \{1, 2, ..., n\}$ is the index set, $n \ge 2$, $f_i : X \to R$ is given continuous objective function for all $i \in J$.

Definitions of the Pareto-optimal solutions can be formally stated as follows:

(a) A point $x \in X$ is called Pareto-optimal solution if and only if there does not exist a point $y \in X$ such that $f_i(y) \ge f_i(x)$ for all $i \in J$ and $f_k(y) > f_k(x)$ for some $k \in J$. Denote the set of the Pareto-optimal solutions of X by Max(X, F) and it is called Pareto-optimal set. The set F(Max(X, F)) =Eff(F(X)) is called Pareto-front set or efficient set.

(b) A point $x \in X$ is called weakly Pareto-optimal solution if and only if there does not exist a point $y \in X$ such that $f_i(y) > f_i(x)$ for all $i \in J$. Denote the set of the weakly Pareto-optimal solutions of X by WMax(X, F) and it is called weakly Pareto-optimal set. The set F(WMax(X, F)) = WEff(F(X))is called weakly Pareto-front set or weakly efficient set.

One of the most important problems of optimization problem MOP(X, F) is the investigation of the structure of the Pareto-optimal set Max(X, F) and the Pareto-front set Eff(F(X)), see also [7] and [11]. Considering topological properties of the efficient set is started by [10].

As it is well-known the Pareto-optimal set Max(X, F) is nonempty, the weakly Pareto-optimal set WMax(X, F) is nonempty and compact, $Max(X, F) \subset$ WMax(X, F) and Eff(F(X)) = WEff(F(X)). It can be shown that both sets Eff(F(X)) and WEff(F(X)) lie in the boundary of the set F(X), i.e. $F(Max(X, F)) \subset \partial F(X)$ and $F(WMax(X, F)) \subset \partial F(X)$.

If the functions $\{f_i\}_{i=1}^n$ are strictly quasi-concave on X, then Max(X, F) = WMax(X, F) [7]. Therefore, under these assumptions the Pareto-optimal set Max(X, F) is compact.

Topological properties of the Pareto solutions sets (Pareto-optimal and Pareto-front) in multi-objective optimization have been discussed by several authors. Connectedness and path-connectedness are considered in [1], [8], [12], [13] and [15]. In [2], it is proved that the efficient set in strictly quasi-concave multi-objective optimization with compact feasible domain is contractible. In [5], it is proved that the Pareto solutions sets in strictly quasi-concave multi-objective optimization are contractible, if any intersection of level sets of the objective functions with the feasible domain is a compact set.

In this paper, let the functions $\{f_i\}_{i=1}^n$ be concave and a function f_{λ} of $\{f_i\}_{i=1}^n$ be strictly quasi-concave on the convex domain X. The central aim is to:

(1) construct a retraction $r: X \to Max(X, F)$.

(2) prove that Max(X, F) and Eff(F(X)) are homeomorphic and have

the fixed point property.

2. General definitions and notions

We will use \mathbb{R}^m and \mathbb{R}^n as the genetic finite-dimensional vector spaces.

In addition, we also introduce the following notations: for every two vectors $x, y \in \mathbb{R}^n, x(x_1, x_2, ..., x_n) \geq y(y_1, y_2, ..., y_n)$ means $x_i \geq y_i$ for all $i \in J$ (weakly componentwise order), $x(x_1, x_2, ..., x_n) > y(y_1, y_2, ..., y_n)$ means $x_i > y_i$ for all $i \in J$ (strictly componentwise order), and $x(x_1, x_2, ..., x_n) \succeq y(y_1, y_2, ..., y_n)$ means $x_i \geq y_i$ for all $i \in J$ and $x_k > y_k$ for some $k \in J$ or $x \geq y$ and $x \neq y$ (componentwise order).

We will use the definitions of concave, quasi-concave and strictly quasiconcave function in the usual sense:

(a) A function f is concave on X if and only if for any $x, y \in X$ and $t \in [0, 1]$, then $f(tx + (1 - t)y) \ge tf(x) + (1 - t)f(y)$.

(b) A function f is quasi-concave on X if and only if for any $x, y \in X$ and $t \in [0, 1]$, then $f(tx + (1 - t)y) \ge min(f(x), f(y))$.

(c) A function f is strictly quasi-concave on X if and only if for any $x, y \in X$, $x \neq y$ and $t \in (0, 1)$, then f(tx + (1 - t)y) > min(f(x), f(y)).

Let a function $dis : X \times X \to R_+$ be a metric (or distance) in X. In a metric space (X, dis), let τ be a topology induced by dis. In a topological space (X, τ) , for set $Y \subset X$ we recall some definitions:

(a) The set Y is called connected if and only if it is not the union of a pair of nonempty sets of τ , which are disjoint.

(b) The set Y is called path-connected (arc-connected or arcwise-connected) if and only if for every $x, y \in Y$ there exists a continuous function $p : [0, 1] \to Y$ such that p(0) = x and p(1) = y. The function p is called path.

(c) The set Y is a retract of X (or X is a retract to Y) if and only if there exists a continuous function $r: X \to Y$ such that r(X) = Y and r(x) = x for all $x \in Y$. The function r is called retraction of X to Y.

(d) A continuous function $d: X \times [0, 1] \to X$ is a deformation retraction of X onto Y if and only if d(x, 0) = x, $d(x, 1) \in Y$ and d(a, t) = a for all $x \in X$, $a \in Y$ and $t \in [0, 1]$. The set Y is called a deformation retract of X.

(e) The set Y is contractible if and only if there exist a continuous function $c: Y \times [0,1] \to Y$ and $a \in Y$ such that c(x,0) = a and c(x,1) = x for all $x \in Y$. In the other words, Y is contractible if there exists a deformation retract of Y onto a point. The function c is called contraction.

(f) The set Y is said to have a fixed point property if and only if every continuous function $f: Y \to Y$ from this set into itself has a fixed point, i.e. there is a point $x \in Y$ such that x = f(x).

Of course, the compactness, connectedness and path-connectedness of the Pareto-optimal set are related to the compactness, connectedness and pathconnectedness of the Pareto-front set, respectively.

From a more formal viewpoint, a retraction is a point-to-point mapping $r: X \to Y$ that fixes every point of Y and $r \circ r(x) = r(x)$ for all $x \in X$. Retractions are the topological analog of projection operators in other parts on mathematics.

It is clear to see that every deformation retraction is a retraction, r(x) = d(x, 1) for all $x \in X$. But in generally the converse does not hold [4].

The fixed point property of sets are preserved under retractions. This means that the following statement is true: If the set X has the fixed point property and Y is a retract of X, then the set Y has the fixed point property.

Let X and Y be topological spaces and let $h: X \to Y$ be bijective. Then h is homeomorphism if and only if h and h^{-1} are continuous. If such a homeomorphism h exists, then X and Y are called homeomorphic (or X is homeomorphic to Y). A property of topological spaces which when possessed by a spaces is also possessed by every spaces homeomorphic to it is called a topological property or a topological invariant. The fixed point property of sets are preserved under homeomorphisms.

3. Main result

Now, under our assumptions, the functions $\{f_i\}_{i=1}^n$ are concave and the function f_{λ} of $\{f_i\}_{i=1}^n$ is strictly quasi-concave on the convex domain X, we will construct the retraction and discuss some topological properties of the Pareto solutions sets.

To begin with the following definitions:

(a) Define a function $f: X \to R$ by $f(x) = \sum_{i=1}^{n} f_i(x)$ for all $x \in X$. It is clear to check that the function f is concave on X and $Argmax(f, X) \subset Max(X, F)$.

(b) Define also a point-to-set mapping $\rho : X \Rightarrow X$ by $\rho(x) = \{y \in X \mid F(y) \geq F(x)\}$. It can be shown that the set $\rho(x)$ is a nonempty, convex and compact set for all $x \in X$ and there is $x \in \rho(x)$. Hence, the point-to-set mapping ρ is convex-valued and compact-valued on X.

These definitions allow us to present a main theorem of our paper.

Theorem 1. There exists a retraction $r : X \to Max(X, F)$ such that r(X) = Max(X, F) and $r(x) = Argmax(f, \rho(x))$ for all $x \in X$.

In order to give the prove of Theorem 1, we will construct the retraction r. The idea is to transfer the multi-objective optimization problem to monoobjective optimization problem by define a unique objective function.

Now, let fix an arbitrary point $x \in X$ and denote $t_i = f_i(x)$ for $i \in J$. Consider an optimization problem with single objective function as follows: maximize f(y) subject to $y \in \rho(x)$.

In result, we get an equivalent optimization problem: maximize f(y) subject to $g_i(y) \ge 0, i \in J$ and $y \in X$, where the functions $g_i : X \to R$ satisfying $g_i(y) = f_i(y) - t_i$ for $i \in J$. Note that the objective function f and the constraint functions $\{g_i\}_{i=1}^n$ are all concave on the convex domain X, see [3].

We will show that these problems have a unique solution $x^* \in Max(X, F)$. Thus, a retraction $x^* = r(x)$ will be constructed.

At first, we will prove some lemmas.

Lemma 1. If $x \in X$, then $|Argmax(f, \rho(x))| = 1$ and $Argmax(f, \rho(x)) \subset Max(X, F)$.

Proof. Clearly, there is $|Argmax(f, \rho(x))| \ge 1$. Let choose $y_1, y_2 \in Argmax(f, \rho(x)), y_1 \neq y_2, t \in (0, 1)$ and $z = ty_1 + (1 - t)y_2$. It is known that the set $Argmax(f, \rho(x))$ is convex, therefore there is $z \in Argmax(f, \rho(x))$. Thus, we obtain $f(z) = f(y_1) = f(y_2)$.

For each $i \in J$ there is $f_i(z) \geq tf_i(y_1) + (1-t)f_i(y_2)$. By using this result we derive that $f(z) \geq tf(y_1) + (1-t)f(y_2) = f(y_1) = f(y_2)$. Since $f(z) = f(y_1) = f(y_2)$ implies $f_i(z) = tf_i(y_1) + (1-t)f_i(y_2)$ for all $i \in J$ and for all $t \in (0, 1)$. As a result, we get that $f_i(z) = f_i(y_2) + t(f_i(y_1) - f_i(y_2))$ for all $t \in (0, 1)$, therefore we find that $f_i(y_1) = f_i(y_2)$ for all $i \in J$.

Now, let fix $t \in (0, 1)$. As described above, the function f_{λ} is strictly quasiconcave, therefore we obtain $f_{\lambda}(z) > \min(f_{\lambda}(y_1), f_{\lambda}(y_2)) = f_{\lambda}(y_1) = f_{\lambda}(y_2)$. But $f_i(z) \ge tf_i(y_1) + (1-t)f_i(y_2)$ for all $i \in J$ and by using this result we derive that $f(z) > tf(y_1) + (1-t)f(y_2) = f(y_1)$. This leads to a contradiction, therefore we obtain $|Argmax(f, \rho(x))| = 1$.

Let choose an arbitrary point $y \in Argmax(f, \rho(x))$ and assume that $y \notin Max(X, F)$. From the assumption $y \notin Max(X, F)$ it follows that there exists $z \in X$ satisfying $F(x) \succeq F(y)$. As a result we derive that $z \in \rho(x)$ and f(z) > f(y). Again, this leads to a contradiction, therefore we obtain $y \in Max(X, F)$.

The lemma is proved.

Thus, we introduced the idea of the retraction.

Now, using the results of Lemma 1 we are in position to construct a function $r: X \to Max(X, F)$ such that $r(x) = Argmax(f, \rho(x))$ for all $x \in X$.

Lemma 2. If $x \in X$, $x \in Max(X, F)$ is equivalent to $\rho(x) = \{x\}$.

Proof. Let $x \in Max(X, F)$ and assume that $\rho(x) \neq \{x\}$. From both conditions $x \in \rho(x)$ and $\rho(x) \neq \{x\}$ it follows that there exists $y \in \rho(x) \setminus \{x\}$ such that $F(y) \geq F(x)$. Let choose $t \in (0, 1)$ and z = tx + (1 - t)y therefore $z \in \rho(x)$. Since $x \neq y$ implies $f_{\lambda}(z) > f_{\lambda}(x)$, which contradicts condition $x \in Max(X, F)$ therefore we obtain $\rho(x) = \{x\}$.

Conversely, let $\rho(x) = \{x\}$ and assume that $x \notin Max(X, F)$. From the assumption $x \notin Max(X, F)$ it follows that there exists $y \in X$ satisfying $F(y) \succeq F(x)$. Thus we deduce that $y \in \rho(x)$ and $x \neq y$, which contradicts condition $\rho(x) = \{x\}$ therefore we obtain $x \in Max(X, F)$.

The lemma is proved.

Applying now the previous lemma it follows that if $x \in Max(X, F)$, then x = r(x) and if $x \notin Max(X, F)$, then $x \neq x^* = r(x)$. It is easy verify direct that $r \circ r = r$.

Lemma 3. r(X) = Max(X, F).

Proof. From Lemmas 1 it follows that $r(X) \subset Max(X, F)$. Applying Lemma 2 we deduce r(Max(X, F)) = Max(X, F). This means that r(X) = Max(X, F).

The lemma is proved.

We will analyze the point-to-set mapping ρ . Using the Maximum Theorem, one of the fundamental results of optimization theory, we will show that the function r is continuous.

Lemma 4. If $\{x_k\}_{k=1}^{\infty}$, $\{y_k\}_{k=1}^{\infty} \subset X$ are pair of sequences such that $\lim_{k\to\infty} x_k = x_0 \in X$ and $y_k \in \rho(x_k)$ for all $k \in N$, then there exists a convergent subsequence of $\{y_k\}_{k=1}^{\infty}$ whose limit belongs to $\rho(x_0)$.

Proof. Since the assumption $y_k \in \rho(x_k)$ for all $k \in N$ implies $f_i(y_k) \geq f_i(x_k)$ for all $k \in N$ and all $i \in J$. From the condition $\{y_k\}_{k=1}^{\infty} \subset X$ it follows that there exists a convergent subsequence $\{q_k\}_{k=1}^{\infty} \subset \{y_k\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty}q_k = y_0 \in X$. Therefore, there exists a convergent subsequence $\{p_k\}_{k=1}^{\infty} \subset \{x_k\}_{k=1}^{\infty}$ such that $q_k \in \rho(p_k)$ and $\lim_{k\to\infty}p_k = x_0$. Thus, we find that $f_i(q_k) \geq f_i(p_k)$ for all $k \in N$ and for all $i \in J$. Taking the limit as $k \to \infty$ we obtain $f_i(y_0) \geq f_i(x_0)$ for all $i \in J$. This implies $y_0 \in \rho(x_0)$.

The lemma is proved.

Continuing with this analysis, we have the following lemma.

Lemma 5. If $\{x_k\}_{k=1}^{\infty} \subset X$ is a convergent sequence to $x_0 \in X$ and $y_0 \in \rho(x_0)$, then there exists a sequence $\{y_k\}_{k=1}^{\infty} \subset X$ such that $y_k \in \rho(x_k)$ for all $k \in N$ and $\lim_{k\to\infty} y_k = y_0$.

Proof. Let denote a distance between a point y_0 and a set $\rho(x_k)$ by $d_k = inf\{dis(y_0, x) \mid x \in \rho(x_k)\}$. As already noted, $\rho(x_k)$ is a nonempty, convex and compact set. Observe that if $y_0 \notin \rho(x_k)$, then there exists a unique $y^* \in \rho(x_k)$ such that $d_k = d(y^*, y_k)$.

There are two cases as follows:

First, if $y_0 \in \rho(x_k)$, then $d_k = 0$ and let $y_k = y_0$.

Second, if $y_0 \notin \rho(x_k)$, then $d_k > 0$ and let $y_k = y^*$.

As a result, we get a sequence $\{d_k\}_{k=1}^{\infty} \subset R_+$ and a sequence $\{y_k\}_{k=1}^{\infty} \subset X$ such that $y_k \in \rho(x_k)$ for all $k \in N$ and $d_k = dis(y_0, y_k)$. Since $lim_{k\to\infty}x_k = x_0$ implies the sequence $\{d_k\}_{k=1}^{\infty}$ is convergent and $lim_{k\to\infty}d_k = 0$. Finally, we obtain $lim_{k\to\infty}y_k = y_0$.

The lemma is proved.

Lemma 6. The point-to-set mapping ρ is continuous on X.

Proof. On one hand, from Lemma 4 it follows that the point-to-set mapping ρ is upper semi-continuous on X [9]. On the other hand, from Lemma 5 it follows that the point-to-set mapping ρ is lower semi-continuous on X [9]. This shows that the point-to-set mapping ρ is continuous on X.

The lemma is proved.

Lemma 7 [14, Theorem 9.14 - The Maximum Theorem]. Let $S \subset \mathbb{R}^n$, $\Theta \subset \mathbb{R}^m$, $g: S \times \Theta \to \mathbb{R}$ a continuous function, and $D: \Theta \Rightarrow S$ be a compactvalued and continuous point-to-set mapping. Then, the function $g^*: \Theta \to \mathbb{R}$ defined by $g^*(\theta) = \max\{g(x,\theta) \mid x \in D(\theta)\}$ is continuous on Θ , and the pointto-set mapping $D^*: \Theta \Rightarrow S$ defined by $D^*(\theta) = \{x \in D(\theta) \mid g(x,\theta) = g^*(\theta)\}$ is compact-valued and upper semi-continuous on Θ .

Lemma 8. The function r is continuous on X.

Proof. Let apply Lemma 7 for $X = S = \Theta$. Obviously, the function f is continuous on X. As mentioned before, the point-to-set mapping ρ is compact-valued and continuous on X. According to Lemma 1, from the fact $|Argmax(f,\rho(x))| = 1$, we deduce that r is upper semi-continuous point-to-point mapping. As it is well-known that every point-to-point mapping, that is upper semi-continuous, is continuous when viewed as a function. In result, the function r is continuous on X.

The lemma is proved.

We are now in the position to prove the main result of this section.

Proof of Theorem 1. From Lemmas 1, 3 and 8 it follows that there exists a continuous function $r: X \to Max(X, F)$ such that r(X) = Max(X, F) and $r(x) = Argmax(f, \rho(x))$ for all $x \in X$.

This completed the proof of our theorem.

To recall that a property P is called a topological property if and only if an arbitrary set X has this property, then Y has this property too, where Xand Y are homeomerphic.

Theorem 2. Max(x, F) is homeomorphic to Eff(F(X)).

Proof. As it is well-known every continuous image of the compact set is compact. In fact, the set X is compact and the function r is continuous on X. Therefore, the set Max(X, F) = r(X) is compact.

Since the function $F: X \to \mathbb{R}^n$ is continuous it follows that the restriction $h: Max(X, F) \to F(Max(X, F))$ of F is continuous too. Applying Lemma 2 we deduce that if $x, y \in Max(X, F)$ and $x \neq y$, then $h(x) \neq h(y)$. We derive that the function h is bijective. Consider the inverse function h^{-1} : $F(Max(X, F)) \to Max(X, F)$ of h. As proved before, the set Max(x, F) is compact, therefore h^{-1} is continuous too. Finally, we obtain that the function h is homeomorphism.

This completed the proof of our theorem.

The fixed point property is related to the notion of retraction. As showed before, if X has the fixed point property and Y is a retract of X, then Y also has fixed point property.

Theorem 3. Max(X, F) and Eff(F(X)) have the fixed point property. In the proof of this theorem, we will use the following lemmas.

Lemma 10 [14, Theorem 9.31 - Schauder's Fixed Point Theorem]. Let $f: S \to S$ be continuous function from nonempty, compact and convex set $S \subset \mathbb{R}^n$ into itself, then f has a fixed point.

Lemma 11. Max(X, F) has a fixed point property.

Proof. In fact, the set X is nonempty, compact and convex. Hence, from Lemma 10 implies that it has the fixed point property. As we have shown in Theorem 1, the set Max(X, F) is a retract of X. As described earlier, the fixed point property is preserved under retraction. Then, the set Max(X, F) has the fixed point property.

The lemma is proved.

Proof of Theorem 3. As we have proved in Lemma 11, the set Max(X, F) has the fixed point property. As mentioned before, the fixed point property is preserved under homeomorphism. Now, applying Theorem 2 we obtain that

the set Eff(F(X)) has the fixed point property too.

This completed the proof of our theorem.

References

[1] Benoist J., Connectedness of the Efficient Set for Strictly Quasi-concave Sets, Journal of Optimization Theory and Applications 96 (1998), 627-654.

[2] Benoist J., Contractibility of the Efficient Set in Strictly Quasi-concave Vector Maximization, Journal of Optimization Theory and Applications 110 (2001), 325-336.

[3] Boyd S., L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[4] Hatcher A., Algebraic Topology, Canbridge University Press, 2002.

[5] Huy N., N. Yen, Contractibility of the Solution Sets in Strictly Quasiconcave Vector Maximization on Noncompact Domains, Journal of Optimization Theory and Applications 124 (2005), 615-635.

[6] Kinoshita S., On Some Contractible Continua without Fixed Point Property, Fund. Math. (40) 1953, 96-98.

[7] Luc D., Theory of Vector Optimization, LNEMS vol. 319, Springer-Verlag, 1989.

[8] Molivert C., N. Boissard, *Structure of Efficient Sets for Strictly Quasi*convex Objectives, Journal of Convex Analysis (1) 1994, 143-150.

[9] Mukherjea A., K. Pothoven, Real and Functional Analysis, Plenum Press, 1978.

[10] Peleg B., *Topological Properties of the Efficient Point Set*, Proc. Am. Math. Soc. (35) 1972, 531-536.

[11] Sawaragi Y., H. Nakayama, T. Tanino, Theory of Multi-objective Optimization, Academic Press, 1985.

[12] Slavov Z., C. Evans, On the Structure of the Efficient Set, Mathematics and Education in Mathematics (33) 2004, 247-250.

[13] Sun E., On the Connectedness of the Efficient Set for Strictly Quasiconvex Vector Maximization Problems, Journal of Optimization Theory and Applications (89) 1996, 475-581.

[14] Sundaran R., A First Course in Optimization Theory, Cambridge University Press, 1996.

[15] Warburton A., Quasi-concave Vector Maximization: Connectedness of the Sets of Pareto-optimal and Weak Pareto-optimal Alternatives, Journal of Optimization Theory and Applications (40) 1983, 537,557.

Author:

Zdravko Dimitrov Slavov Department of Mathematics, Varna Free University, Golden Sands Resort, Varna 9007, Bulgaria e-mail:*slavovibz@yahoo.com*