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Abstract. In this paper we study the Pareto-optimal solutions in convex
multi-objective optimization with compact and convex feasible domain. One
of the most important problems in multi-objective optimization is the investi-
gation of the topological structure of the Pareto sets. We present the problem
of construction of a retraction function of the feasible domain onto Pareto-
optimal set, if the objective functions are concave and one of them is strictly
quasi-concave on compact and convex feasible domain. Using this result it is
also proved that the Pareto-optimal and Pareto-front sets are homeomorphic
and they have the fixed point property.
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1. Introduction

The key idea of the present paper is first to show how we can construct
a retraction of the feasible domain onto Pareto-optimal set in multi-objective
optimization problem. Next, using this function we will prove that the Pareto-
optimal and Pareto-front sets are homeomorphic and they have the fixed point
property.

In a general form, the multi-objective optimization problem MOP (X, F ) is
to find x ∈ X ⊂ Rm, m ≥ 1, so as to maximize F (x) = (f1(x), f2(x), ..., fn(x))
subject to x ∈ X, where the feasible domain X is nonempty, convex and
compact, J = {1, 2, ..., n} is the index set, n ≥ 2, fi : X → R is given
continuous objective function for all i ∈ J .
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Definitions of the Pareto-optimal solutions can be formally stated as fol-
lows:

(a) A point x ∈ X is called Pareto-optimal solution if and only if there does
not exist a point y ∈ X such that fi(y) ≥ fi(x) for all i ∈ J and fk(y) > fk(x)
for some k ∈ J . Denote the set of the Pareto-optimal solutions of X by
Max(X, F ) and it is called Pareto-optimal set. The set F (Max(X,F )) =
Eff(F (X)) is called Pareto-front set or efficient set.

(b) A point x ∈ X is called weakly Pareto-optimal solution if and only if
there does not exist a point y ∈ X such that fi(y) > fi(x) for all i ∈ J . Denote
the set of the weakly Pareto-optimal solutions of X by WMax(X, F ) and it is
called weakly Pareto-optimal set. The set F (WMax(X, F )) = WEff(F (X))
is called weakly Pareto-front set or weakly efficient set.

One of the most important problems of optimization problem MOP (X,F )
is the investigation of the structure of the Pareto-optimal set Max(X, F ) and
the Pareto-front set Eff(F (X)), see also [7] and [11]. Considering topological
properties of the efficient set is started by [10].

As it is well-known the Pareto-optimal set Max(X, F ) is nonempty, the
weakly Pareto-optimal set WMax(X, F ) is nonempty and compact, Max(X, F ) ⊂
WMax(X, F ) and Eff(F (X)) = WEff(F (X)). It can be shown that both
sets Eff(F (X)) and WEff(F (X)) lie in the boundary of the set F (X), i.e.
F (Max(X, F )) ⊂ ∂F (X) and F (WMax(X, F )) ⊂ ∂F (X).

If the functions {fi}n
i=1 are strictly quasi-concave on X, then Max(X, F ) =

WMax(X, F ) [7]. Therefore, under these assumptions the Pareto-optimal set
Max(X, F ) is compact.

Topological properties of the Pareto solutions sets (Pareto-optimal and
Pareto-front) in multi-objective optimization have been discussed by several
authors. Connectedness and path-connectedness are considered in [1], [8], [12],
[13] and [15]. In [2], it is proved that the efficient set in strictly quasi-concave
multi-objective optimization with compact feasible domain is contractible. In
[5], it is proved that the Pareto solutions sets in strictly quasi-concave multi-
objective optimization are contractible, if any intersection of level sets of the
objective functions with the feasible domain is a compact set.

In this paper, let the functions {fi}n
i=1 be concave and a function fλ of

{fi}n
i=1 be strictly quasi-concave on the convex domain X. The central aim is

to:
(1) construct a retraction r : X → Max(X, F ) .
(2) prove that Max(X, F ) and Eff(F (X)) are homeomorphic and have
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the fixed point property.

2. General definitions and notions

We will use Rm and Rn as the genetic finite-dimensional vector spaces.
In addition, we also introduce the following notations: for every two vectors

x, y ∈ Rn, x(x1, x2, ..., xn) ≥ y(y1, y2, ..., yn) means xi ≥ yi for all i ∈ J (weakly
componentwise order), x(x1, x2, ..., xn) > y(y1, y2, ..., yn) means xi > yi for all
i ∈ J (strictly componentwise order), and x(x1, x2, ..., xn) � y(y1, y2, ..., yn)
means xi ≥ yi for all i ∈ J and xk > yk for some k ∈ J or x ≥ y and x 6= y
(componentwise order).

We will use the definitions of concave, quasi-concave and strictly quasi-
concave function in the usual sense:

(a) A function f is concave on X if and only if for any x, y ∈ X and
t ∈ [0, 1], then f(tx + (1− t)y) ≥ tf(x) + (1− t)f(y).

(b) A function f is quasi-concave on X if and only if for any x, y ∈ X and
t ∈ [0, 1], then f(tx + (1− t)y) ≥ min(f(x), f(y)).

(c) A function f is strictly quasi-concave on X if and only if for any x, y ∈
X, x 6= y and t ∈ (0, 1), then f(tx + (1− t)y) > min(f(x), f(y)) .

Let a function dis : X × X → R+ be a metric (or distance) in X. In a
metric space (X, dis), let τ be a topology induced by dis. In a topological
space (X, τ), for set Y ⊂ X we recall some definitions:

(a) The set Y is called connected if and only if it is not the union of a pair
of nonempty sets of τ , which are disjoint.

(b) The set Y is called path-connected (arc-connected or arcwise-connected)
if and only if for every x, y ∈ Y there exists a continuous function p : [0, 1] → Y
such that p(0) = x and p(1) = y. The function p is called path.

(c) The set Y is a retract of X (or X is a retract to Y ) if and only if there
exists a continuous function r : X → Y such that r(X) = Y and r(x) = x for
all x ∈ Y . The function r is called retraction of X to Y .

(d) A continuous function d : X× [0, 1] → X is a deformation retraction of
X onto Y if and only if d(x, 0) = x, d(x, 1) ∈ Y and d(a, t) = a for all x ∈ X,
a ∈ Y and t ∈ [0, 1]. The set Y is called a deformation retract of X.

(e) The set Y is contractible if and only if there exist a continuous function
c : Y × [0, 1] → Y and a ∈ Y such that c(x, 0) = a and c(x, 1) = x for all
x ∈ Y . In the other words, Y is contractible if there exists a deformation
retract of Y onto a point. The function c is called contraction.
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(f) The set Y is said to have a fixed point property if and only if every
continuous function f : Y → Y from this set into itself has a fixed point, i.e.
there is a point x ∈ Y such that x = f(x).

Of course, the compactness, connectedness and path-connectedness of the
Pareto-optimal set are related to the compactness, connectedness and path-
connectedness of the Pareto-front set, respectively.

From a more formal viewpoint, a retraction is a point-to-point mapping
r : X → Y that fixes every point of Y and r ◦ r(x) = r(x) for all x ∈ X.
Retractions are the topological analog of projection operators in other parts
on mathematics.

It is clear to see that every deformation retraction is a retraction, r(x) =
d(x, 1) for all x ∈ X. But in generally the converse does not hold [4].

The fixed point property of sets are preserved under retractions. This
means that the following statement is true: If the set X has the fixed point
property and Y is a retract of X, then the set Y has the fixed point property.

Let X and Y be topological spaces and let h : X → Y be bijective. Then h
is homeomorphism if and only if h and h−1 are continuous. If such a homeomor-
phism h exists, then X and Y are called homeomorphic (or X is homeomorphic
to Y ). A property of topological spaces which when possessed by a spaces is
also possessed by every spaces homeomorphic to it is called a topological prop-
erty or a topological invariant. The fixed point property of sets are preserved
under homeomorphisms.

3. Main result

Now, under our assumptions, the functions {fi}n
i=1 are concave and the

function fλ of {fi}n
i=1 is strictly quasi-concave on the convex domain X, we

will construct the retraction and discuss some topological properties of the
Pareto solutions sets.

To begin with the following definitions:
(a) Define a function f : X → R by f(x) = Σn

i=1fi(x) for all x ∈ X. It
is clear to check that the function f is concave on X and Argmax(f, X) ⊂
Max(X, F ).

(b) Define also a point-to-set mapping ρ : X ⇒ X by ρ(x) = {y ∈ X |
F (y) ≥ F (x)}. It can be shown that the set ρ(x) is a nonempty, convex and
compact set for all x ∈ X and there is x ∈ ρ(x). Hence, the point-to-set
mapping ρ is convex-valued and compact-valued on X.
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These definitions allow us to present a main theorem of our paper.
Theorem 1. There exists a retraction r : X → Max(X, F ) such that

r(X) = Max(X,F ) and r(x) = Argmax(f, ρ(x)) for all x ∈ X.
In order to give the prove of Theorem 1, we will construct the retraction

r. The idea is to transfer the multi-objective optimization problem to mono-
objective optimization problem by define a unique objective function.

Now, let fix an arbitrary point x ∈ X and denote ti = fi(x) for i ∈ J .
Consider an optimization problem with single objective function as follows:
maximize f(y) subject to y ∈ ρ(x).

In result, we get an equivalent optimization problem: maximize f(y) sub-
ject to gi(y) ≥ 0, i ∈ J and y ∈ X, where the functions gi : X → R satisfying
gi(y) = fi(y) − ti for i ∈ J . Note that the objective function f and the
constraint functions {gi}n

i=1 are all concave on the convex domain X, see [3].
We will show that these problems have a unique solution x∗ ∈ Max(X, F ).

Thus, a retraction x∗ = r(x) will be constructed.
At first, we will prove some lemmas.
Lemma 1. If x ∈ X, then | Argmax(f, ρ(x)) |= 1 and Argmax(f, ρ(x)) ⊂

Max(X, F ).
Proof. Clearly, there is | Argmax(f, ρ(x)) |≥ 1. Let choose y1, y2 ∈

Argmax(f, ρ(x)), y1 6= y2, t ∈ (0, 1) and z = ty1 + (1− t)y2. It is known that
the set Argmax(f, ρ(x)) is convex, therefore there is z ∈ Argmax(f, ρ(x)).
Thus, we obtain f(z) = f(y1) = f(y2).

For each i ∈ J there is fi(z) ≥ tfi(y1) + (1 − t)fi(y2). By using this
result we derive that f(z) ≥ tf(y1) + (1 − t)f(y2) = f(y1) = f(y2). Since
f(z) = f(y1) = f(y2) implies fi(z) = tfi(y1) + (1 − t)fi(y2) for all i ∈ J and
for all t ∈ (0, 1). As a result, we get that fi(z) = fi(y2) + t(fi(y1)− fi(y2)) for
all t ∈ (0, 1), therefore we find that fi(y1) = fi(y2) for all i ∈ J .

Now, let fix t ∈ (0, 1). As described above, the function fλ is strictly quasi-
concave, therefore we obtain fλ(z) > min(fλ(y1), fλ(y2)) = fλ(y1) = fλ(y2).
But fi(z) ≥ tfi(y1) + (1 − t)fi(y2) for all i ∈ J and by using this result we
derive that f(z) > tf(y1)+(1− t)f(y2) = f(y1). This leads to a contradiction,
therefore we obtain | Argmax(f, ρ(x)) |= 1.

Let choose an arbitrary point y ∈ Argmax(f, ρ(x)) and assume that y 6∈
Max(X, F ). From the assumption y 6∈ Max(X, F ) it follows that there exists
z ∈ X satisfying F (x) � F (y). As a result we derive that z ∈ ρ(x) and f(z) >
f(y). Again, this leads to a contradiction, therefore we obtain y ∈ Max(X, F ).

The lemma is proved.
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Thus, we introduced the idea of the retraction.
Now, using the results of Lemma 1 we are in position to construct a function

r : X → Max(X, F ) such that r(x) = Argmax(f, ρ(x)) for all x ∈ X.
Lemma 2. If x ∈ X, x ∈ Max(X, F ) is equivalent to ρ(x) = {x}.
Proof. Let x ∈ Max(X,F ) and assume that ρ(x) 6= {x}. From both

conditions x ∈ ρ(x) and ρ(x) 6= {x} it follows that there exists y ∈ ρ(x) \ {x}
such that F (y) ≥ F (x). Let choose t ∈ (0, 1) and z = tx + (1 − t)y therefore
z ∈ ρ(x). Since x 6= y implies fλ(z) > fλ(x), which contradicts condition
x ∈ Max(X, F ) therefore we obtain ρ(x) = {x}.

Conversely, let ρ(x) = {x} and assume that x 6∈ Max(X, F ). From the
assumption x 6∈ Max(X, F ) it follows that there exists y ∈ X satisfying F (y) �
F (x). Thus we deduce that y ∈ ρ(x) and x 6= y, which contradicts condition
ρ(x) = {x} therefore we obtain x ∈ Max(X, F ).

The lemma is proved.
Applying now the previous lemma it follows that if x ∈ Max(X, F ), then

x = r(x) and if x 6∈ Max(X, F ), then x 6= x∗ = r(x). It is easy verify direct
that r ◦ r = r.

Lemma 3. r(X) = Max(X,F ).
Proof. From Lemmas 1 it follows that r(X) ⊂ Max(X, F ). Applying

Lemma 2 we deduce r(Max(X, F )) = Max(X, F ). This means that r(X) =
Max(X, F ).

The lemma is proved.
We will analyze the point-to-set mapping ρ. Using the Maximum Theorem,

one of the fundamental results of optimization theory, we will show that the
function r is continuous.

Lemma 4. If {xk}∞k=1, {yk}∞k=1 ⊂ X are pair of sequences such that
limk→∞xk = x0 ∈ X and yk ∈ ρ(xk) for all k ∈ N , then there exists a
convergent subsequence of {yk}∞k=1 whose limit belongs to ρ(x0).

Proof. Since the assumption yk ∈ ρ(xk) for all k ∈ N implies fi(yk) ≥
fi(xk) for all k ∈ N and all i ∈ J . From the condition {yk}∞k=1 ⊂ X it
follows that there exists a convergent subsequence {qk}∞k=1 ⊂ {yk}∞k=1 such
that limk→∞qk = y0 ∈ X. Therefore, there exists a convergent subsequence
{pk}∞k=1 ⊂ {xk}∞k=1 such that qk ∈ ρ(pk) and limk→∞pk = x0. Thus, we find
that fi(qk) ≥ fi(pk) for all k ∈ N and for all i ∈ J . Taking the limit as k →∞
we obtain fi(y0) ≥ fi(x0) for all i ∈ J . This implies y0 ∈ ρ(x0).

The lemma is proved.
Continuing with this analysis, we have the following lemma.
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Lemma 5. If {xk}∞k=1 ⊂ X is a convergent sequence to x0 ∈ X and
y0 ∈ ρ(x0), then there exists a sequence {yk}∞k=1 ⊂ X such that yk ∈ ρ(xk) for
all k ∈ N and limk→∞yk = y0.

Proof. Let denote a distance between a point y0 and a set ρ(xk) by dk =
inf{dis(y0, x) | x ∈ ρ(xk)}. As already noted, ρ(xk) is a nonempty, convex and
compact set. Observe that if y0 6∈ ρ(xk), then there exists a unique y∗ ∈ ρ(xk)
such that dk = d(y∗, yk).

There are two cases as follows:
First, if y0 ∈ ρ(xk), then dk = 0 and let yk = y0.
Second, if y0 6∈ ρ(xk), then dk > 0 and let yk = y∗.
As a result, we get a sequence {dk}∞k=1 ⊂ R+ and a sequence {yk}∞k=1 ⊂ X

such that yk ∈ ρ(xk) for all k ∈ N and dk = dis(y0, yk). Since limk→∞xk = x0

implies the sequence {dk}∞k=1 is convergent and limk→∞dk = 0. Finally, we
obtain limk→∞yk = y0.

The lemma is proved.
Lemma 6. The point-to-set mapping ρ is continuous on X.
Proof. On one hand, from Lemma 4 it follows that the point-to-set map-

ping ρ is upper semi-continuous on X [9]. On the other hand, from Lemma 5
it follows that the point-to-set mapping ρ is lower semi-continuous on X [9].
This shows that the point-to-set mapping ρ is continuous on X.

The lemma is proved.
Lemma 7 [14, Theorem 9.14 - The Maximum Theorem]. Let S ⊂ Rn,

Θ ⊂ Rm, g : S ×Θ → R a continuous function, and D : Θ ⇒ S be a compact-
valued and continuous point-to-set mapping. Then, the function g∗ : Θ → R
defined by g∗(θ) = max{g(x, θ) | x ∈ D(θ)} is continuous on Θ, and the point-
to-set mapping D∗ : Θ ⇒ S defined by D∗(θ) = {x ∈ D(θ) | g(x, θ) = g∗(θ)}
is compact-valued and upper semi-continuous on Θ.

Lemma 8. The function r is continuous on X.
Proof. Let apply Lemma 7 for X = S = Θ. Obviously, the function

f is continuous on X. As mentioned before, the point-to-set mapping ρ is
compact-valued and continuous on X. According to Lemma 1, from the fact
| Argmax(f, ρ(x)) |= 1, we deduce that r is upper semi-continuous point-to-
point mapping. As it is well-known that every point-to-point mapping, that
is upper semi-continuous, is continuous when viewed as a function. In result,
the function r is continuous on X.

The lemma is proved.
We are now in the position to prove the main result of this section.
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Proof of Theorem 1. From Lemmas 1, 3 and 8 it follows that there exists
a continuous function r : X → Max(X, F ) such that r(X) = Max(X, F ) and
r(x) = Argmax(f, ρ(x)) for all x ∈ X.

This completed the proof of our theorem.
To recall that a property P is called a topological property if and only if

an arbitrary set X has this property, then Y has this property too, where X
and Y are homeomerphic.

Theorem 2. Max(x, F ) is homeomorphic to Eff(F (X)).
Proof. As it is well-known every continuous image of the compact set is

compact. In fact, the set X is compact and the function r is continuous on X.
Therefore, the set Max(X, F ) = r(X) is compact.

Since the function F : X → Rn is continuous it follows that the restriction
h : Max(X, F ) → F (Max(X, F )) of F is continuous too. Applying Lemma
2 we deduce that if x, y ∈ Max(X, F ) and x 6= y, then h(x) 6= h(y). We
derive that the function h is bijective. Consider the inverse function h−1 :
F (Max(X, F )) → Max(X, F ) of h. As proved before, the set Max(x, F ) is
compact, therefore h−1 is continuous too. Finally, we obtain that the function
h is homeomorphism.

This completed the proof of our theorem.
The fixed point property is related to the notion of retraction. As showed

before, if X has the fixed point property and Y is a retract of X, then Y also
has fixed point property.

Theorem 3. Max(X, F ) and Eff(F (X)) have the fixed point property.
In the proof of this theorem, we will use the following lemmas.
Lemma 10 [14, Theorem 9.31 - Schauder’s Fixed Point Theorem]. Let

f : S → S be continuous function from nonempty, compact and convex set
S ⊂ Rn into itself, then f has a fixed point.

Lemma 11. Max(X, F ) has a fixed point property.
Proof. In fact, the set X is nonempty, compact and convex. Hence, from

Lemma 10 implies that it has the fixed point property. As we have shown in
Theorem 1, the set Max(X,F ) is a retract of X. As described earlier, the
fixed point property is preserved under retraction. Then, the set Max(X,F )
has the fixed point property.

The lemma is proved.
Proof of Theorem 3. As we have proved in Lemma 11, the set Max(X,F )

has the fixed point property. As mentioned before, the fixed point property is
preserved under homeomorphism. Now, applying Theorem 2 we obtain that
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the set Eff(F (X)) has the fixed point property too.
This completed the proof of our theorem.
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