# THE ROBSON CUBICS FOR MATRIX ALGEBRAS WITH INVOLUTION 

Tsetska Rashkova

Abstract. J.C. Robson has investigated the ideal $I_{n}$ of all polynomials in the free associative algebra $R\langle x\rangle$ over a noncommutative ring $R$ generated by $x$ and the $n^{2}$ entries of an $n \times n$ matrix $\alpha=\left(a_{i j}\right)$, which are satisfied by $\alpha$. He proved that $I_{n}$ is finitely generated and found that four so called Robson cubics generate the ideal for $n=2$. The paper considers the ideal $I_{2}$ for matrix algebras with involution over a noncomutative ring and over a field of characteristic zero. The subspaces of the symmetric and skew-symmetric elements are studied separately and the explicit form of the Robson cubics is given in the considered cases. Some results are given for $n=3$ as well.

2000 Mathematics Subject Classification: 16R50, 16R10.

## 1. Introduction

The Cayley-Hamilton theorem and the corresponding trace identity play a fundamental role in proving classical results about the polynomial and trace identities of the $n \times n$ matrix algebra $M_{n}(K)$ over a field $K$.

Accordingly, the importance of matrices over noncommutative rings is an evidence in the theory of PI-algebras and other branches of algebra as well (mainly structure theory of semisimple rings and quantum matrices).

The Cayley-Hamilton theorem has been extended by R. Paré and W. Schelter who have shown [2] that for any integer $n$ an $n \times n$ matrix over a possibly noncommutative ring satisfies a monic polynomial with coefficients in that ring.
J.C. Robson has investigated in $[6,7,8]$ the ideal $I_{n}$ of all polynomials (including nonmonics) in the free associative algebra $R\langle x\rangle$ over a noncommutative ring $R$ generated by $x$ and the $n^{2}$ entries of an $n \times n$ matrix $\alpha=\left(a_{i j}\right)$, which are satisfied by $\alpha$.

Those polynomials we call the laws over $R$ of a noncommutative $n \times n$ matrix $\alpha$. These are not polynomial identities since the entries of $\alpha$ are allowed as coefficients in the laws and they vary with the choice of $\alpha$. Of course, using the matrix units $\left\{e_{i j}\right\}$, one can eliminate these coefficients. Considering $n=2$ we can replace $a_{i j}$ by $\left(e_{1 i} \alpha e_{j 1}+e_{2 i} \alpha e_{j 2}\right)$. This converts the law into a generalized polynomial identity in a single variable, with coefficients in $M_{2}(\mathbf{Z})$. It is a trivial generalized polynomial identity, since $M_{2}(\mathbf{Z})$ is itself a $2 \times 2$ matrix ring.

The general case considers the ideal of laws of a single $n \times n$ matrix extension over $\mathbf{Z} /(\mathrm{m})$ for some integer $m$, zero or not. The proof in [2] of the existence of a monic polynomial in $I_{n}$ is inductive on $n$. In fact, given a monic polynomial of degree $d$ in $I_{n}$, it gives a monic polynomial of degree $(d+1)^{2}$ in $I_{n+1}$. For $1 \times 1$ matrices there is no problem, $I_{1}=\left(\alpha-a_{11}\right)$. Therefore, there is a monic polynomial $p$ of degree 4 in $I_{2}$. Writing

$$
\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for the generic $2 \times 2$ matrix, the polynomial is

$$
p=\left((\alpha)^{2}-a \alpha-\alpha d-a d-c b\right)\left((\alpha)^{2}-a \alpha-\alpha d+a d-b c\right)
$$

We recall that for

$$
\alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

the ring over which we work is the free $\mathbf{Z}$-algebra $R=\mathbf{Z}\langle a, b, c, d\rangle$ and the polynomials are elements of $R\langle x\rangle$, which denotes the $\mathbf{Z}$-algebra freely generated by $a, b, c, d$ and $x$.

A polynomial is in $I_{n}$ if and only if all its homogeneous parts (i.e. parts each of whose terms has the same total degree as measured by the number of $x$ 's and $a_{i j}$ 's in it) are in $I_{n}$, and so it is only necessary to look at homogeneous polynomials in $I_{n}$. Robson has shown that $I_{n}$ is an insertive ideal (meaning that its homogeneous elements are closed under inner multiplication by a constant $a_{i j}$ in some fixed position) and as such is finitely generated ([7] and [6, Theorem 2.3]).

Proposition 1 [6, Theorem 3.5] Let $\alpha-x .1$ denote the $n \times n$ matrix

$$
\left(\begin{array}{cccc}
a_{11}-x & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-x & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{2 n} & \ldots & a_{n n}-x
\end{array}\right)
$$

The ideal $I_{n}$ has a finite set of generators each of which is a polynomial in the entries of $\alpha-x .1$.

The minimal degree of polynomials in $I_{n}$ remains unknown. However, for the case $n=2$, Robson [6, Proposition 3.2] has found four polynomials of degree 3 (least possible) in $I_{2}$ and, knowing Proposition 3.5 of [8], has conjectured in [8] that these generate $I_{2}$ as an insertive ideal.

Proposition 2 [6, Proposition 3.2] The set of homogeneous polynomials of degree 3 in $I_{2}$ is generated over $\mathbf{Z} /(m)$ for some integer $m$ by the four polynomials

$$
\begin{align*}
r_{a}(x) & =x^{3}-a x^{2}-x^{2} a-x d x-x c b+c x b-c b x+a d x \\
& +x d a+a x a+a c b-c a b+c b a-a d a \\
& =(x-a)(x-d)(x-a)-c b(x-a) \\
& +c(x-a) b-(x-a) c b, \\
r_{b}(x) & =b x^{2}-x b x+x^{2} b-x a b-d x b+d b x+x b a-b x a \\
& -b d x+b d a-d b a+d a b-b c b \\
& =b(x-d)(x-a)-(x-d) b(x-a) \\
& +(x-d)(x-a) b-b c b,  \tag{1}\\
r_{c}(x) & =c x^{2}-x c x+x^{2} c-x d c-a x c+a c x+x c d-c x d \\
& -c a x+c a d-a c d+a d c-c b c \\
& =c(x-a)(x-d)-(x-a) c(x-d) \\
& +(x-a)(x-d) c-c b c, \\
r_{d}(x) & =x^{3}-d x^{2}-x^{2} d-x a x-x b c+b x c-b c x+d a x \\
& +x a d+d x d+d b c-b d c+b c d-d a d \\
& =(x-d)(x-a)(x-d)-b c(x-d) \\
& +b(x-d) c-(x-d) b c .
\end{align*}
$$

The polynomials $r_{b}(x)$ and $r_{c}(x)$ are not monic.
Pearson showed in [4, Corollary] that these four Robson cubics do indeed generate $I_{2}$ as an insertive ideal.

To illustrate the concept of insertive, we give some notation.
Let $w \in R\langle x\rangle$ have length $m$ and $0 \leq t \leq m$. We can write $w=w_{1} w_{2}$, where $w_{1}$ has length $t$. Let denote

$$
\mu(m, t ; g) w=w_{1} g w_{2}
$$

Thus we see that if we inner multiply $r_{a}$ by the constant $b$ between the first and second letters of each word we get

$$
\begin{aligned}
\mu(3,1 ; b) r_{a} & =(x-a) b(x-d)(x-a)-c b b(x-a) \\
& +c b(x-a) b-(x-a) b c b
\end{aligned}
$$

and it is easily checked that this polynomial is also in $I_{2}$. Considering ( $* *$ ) we could write

$$
p=r_{a}(x)(x-d)-\mu(3,2 ; b) r_{b}
$$

Another example of a polynomial in $I_{2}$, given in [6], is

$$
q=(b x-x b-b d+d b)(b x-x b-b a+a b) .
$$

It could be written as $q=\mu(3,2 ; b) r_{b}-r_{b} b$.

## 2. Robson cubics for $2 \times 2$ matrices with involution

We specify the generators of $I_{2}$ in some special cases of an algebra with involution $*$ (an automorphism of order 2).

Proposition 3 [5, Proposition 1] Considering the symmetric elements of $M_{2}(F, t)$ with noncommutative entries the Robson cubics for them are

$$
\begin{aligned}
r_{a}(x) & =(x-a)(x-d)(x-a)-b^{2}(x-a) \\
& +b(x-a) b-(x-a) b^{2} \\
& =\left[(x-a)(x-d)-b^{2}\right](x-a)+[b(x-a)-(x-a) b] b, \\
r_{b}(x) & =b(x-d)(x-a)-(x-d) b(x-a) \\
& +(x-d)(x-a) b-b^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =[b(x-d)-(x-d) b](x-a)+\left[(x-d)(x-a)-b^{2}\right] b, \\
r_{c}(x) & =b(x-a)(x-d)-(x-a) b(x-d) \\
& +(x-a)(x-d) b-b^{3} \\
& =[b(x-a)-(x-a) b](x-d)+\left[(x-a)(x-d)-b^{2}\right] b, \\
r_{d}(x) & =(x-d)(x-a)(x-d)-b^{2}(x-d) \\
& +b(x-d) b-(x-d) b^{2} \\
& =\left[(x-d)(x-a)-b^{2}\right](x-d)+[b(x-d)-(x-d) b] b .
\end{aligned}
$$

Theorem 1 Considering the skew-symmetric elements of $M_{2}(F, t)$ with noncommutative entries the Robson cubics for them are

$$
\begin{aligned}
& r_{a}(x)=x^{3}+b^{2} x-b x b+x b^{2}=\left(x^{2}+b^{2}\right) x-(b x-x b) b, \\
& r_{b}(x)=b x^{2}-x b x+x^{2} b+b^{3}=b\left(x^{2}+b^{2}\right)-x(b x-x b) .
\end{aligned}
$$

Proof. For the skew-symmetric elements of $M_{2}(F, t)$ over a field $F$ we have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{t}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)=\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right),
$$

giving $b=-c, a=0=d$. Considering the entries to be noncommutative and substituting in (1) we get

$$
\begin{aligned}
r_{a}(x) & =x^{3}+b^{2} x-b x b+x b^{2} \\
r_{b}(x) & =b x^{2}-x b x+x^{2} b+b^{3} \\
r_{c}(x) & =-b x^{2}+x b x-x^{2} b-b^{3}=-r_{b}(x), \\
r_{d}(x) & =x^{3}+b^{2} x-b x b+x b^{2}=r_{a}(x)
\end{aligned}
$$

Theorem 2 Let's consider $M_{2}(F, *)$, where * is the symplectic involution and its symmetric elements but with noncommutative entries. The Robson cubics for them turn into one first degree polynomial, namely

$$
r(x)=x-a .
$$

Proof. We consider the symmetric elements of $M_{2}(F, *)$ for $*$ being the symplectic involution. The equality

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

gives $b=c=0, a=d$. Then (1) shows

$$
\begin{aligned}
& r_{a}(x)=(x-a)^{3}, \\
& r_{b}(x)=r_{c}(x)=0, \\
& r_{d}(x)=(x-a)^{3} .
\end{aligned}
$$

The degree of the polynomial $r_{a}(x)$ is really 1, i.e. $r(x)=x-a$.
Proposition 4 [5, Proposition 6] Let's consider $M_{2}(F, *)$, where $*$ is the symplectic involution and its skew-symmetric elements but with noncommutative entries. The Robson cubics for them are

$$
\begin{aligned}
r_{a}(x) & =(x-a)(x+a)(x-a)-c b(x-a) \\
& +c(x-a) b-(x-a) c b \\
& =[(x-a)(x+a)-c b](x-a)+[c(x-a)-(x-a) c] b, \\
r_{b}(x) & =b(x+a)(x-a)-(x+a) b(x-a) \\
& +(x+a)(x-a) b-b c b \\
& =[b(x+a)-(x+a) b](x-a)+[(x+a)(x-a)-b c] b, \\
r_{c}(x) & =c(x-a)(x+a)-(x-a) c(x+a) \\
& +(x-a)(x+a) c-c b c \\
& =[c(x-a)-(x-a) c](x+a)+[(x-a)(x+a)-c b] c, \\
r_{d}(x) & =(x+a)(x-a)(x+a)-b c(x+a) \\
& +b(x+a) c-(x+a) b c \\
& =[(x+a)(x-a)-b c](x+a)+[b(x+a)-(x+a) b] c .
\end{aligned}
$$

In [1] D. La Mattina and P. Misso study some associative algebras with involution investigating their polynomial growth. We will consider here some of these algebras.

The first case will be a noncommutative one.
Let $R$ be a noncommutative ring and

$$
M 1(R)=\left\{\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right) ; a, b \in R\right\}
$$

Theorem 3 A law for a matrix of $M 1(R)$ is $r=(x-a)^{2}$. For a scalar matrix $r(x)=x-a$.

Proof. Direct computations.
Remark 1 We point that over a field $F$ of characteristic zero the Robson cubics (1) for $M_{2}(F, *)$ turn into one second degree polynomial given by the Cayley-Hamilton theorem, namely

$$
r(x)=(x-a)(x-d)-b c
$$

Really in this case (1) gives

$$
\begin{aligned}
r_{a}(x) & =(x-a)(x-d)(x-a)-b c(x-a) \\
r_{b}(x) & =b(x-d)(x-a)-b^{2} c \\
r_{c}(x) & =c(x-a)(x-d)-b c^{2} \\
r_{d}(x) & =(x-d)(x-a)(x-d)-b c(x-d)
\end{aligned}
$$

The Cayley-Hamilton theorem for a $2 \times 2$ matrix $A$ means that $A^{2}-\operatorname{tr} \mathrm{A} . A+$ $\operatorname{det} A . E=0$. If $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ we have $\alpha^{2}-(a+d) \alpha+a d-b c=0$. This equation could be written as $r(x)=(x-a)(x-d)-b c=(x-d)(x-a)-b c=0$. Thus $r_{a}(x)=r(x)(x-a), r_{d}(x)=r(x)(x-d), r_{b}(x)=b r(x)$ and $r_{c}(x)=c r(x)$.

## 3. LaWs for $3 \times 3$ matrices

Now we give some evidence in the case $n=3$ for a field $F$. The first study of the noncommutative case was done in [3]. The results there provide further evidence of the tantalizing complexity of even these small matrices.

We start with the matrix algebra $M_{3}(F)$ over a field $F$ of characteristic zero. We try to find some of the polynomials of the algebra $F\langle x\rangle$ generated by $x$ and the 9 entries of a $3 \times 3$ matrix $\alpha$, which are satisfied by $\alpha$.

Using the Newton's formulas [9, p.18] the Cayley-Hamilton theorem gives that for a matrix $A \in M_{3}(F)$

$$
\begin{equation*}
A^{3}-\alpha_{1} A^{2}+\alpha_{2} A-\alpha_{3} E=0 \tag{2}
\end{equation*}
$$

We have

$$
\begin{align*}
\alpha_{1} & =\operatorname{tr} A \\
2 \alpha_{2} & =\alpha_{1} \operatorname{tr} A-\operatorname{tr} A^{2}=\operatorname{tr}^{2} A-\operatorname{tr} A^{2}  \tag{3}\\
3 \alpha_{3} & =\alpha_{2} \operatorname{tr} A-\alpha_{1} \operatorname{tr} A^{2}+\operatorname{tr} A^{3} .
\end{align*}
$$

Theorem 4 For a skew-symmetric matrix

$$
A=\left(\begin{array}{rrr}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right) \in M_{3}(F, t)
$$

we have

$$
r_{s s}(x)=x^{3}+\left(a^{2}+b^{2}+c^{2}\right) x \in F\langle x\rangle .
$$

Proof: We see that $\operatorname{tr} A=0, \operatorname{tr} A^{2}=-2\left(a^{2}+b^{2}+c^{2}\right)$ and $\operatorname{tr} A^{3}=0$. Thus we get

$$
\begin{gathered}
A^{3}-\frac{1}{2}\left(\operatorname{tr} A^{2}\right) A-\frac{1}{3}\left(\operatorname{tr} A^{3}\right) E=0, \text { i.e. } \\
r_{s s}(x)=x^{3}+\left(a^{2}+b^{2}+c^{2}\right) x .
\end{gathered}
$$

Remark 2 For a symmetric matrix $A=\left(a_{i j}\right) \in M_{3}(F, t)$ the corresponding polynomial is too long to be written. We give only parts of its coefficients, i.e.

$$
\begin{aligned}
\operatorname{tr} A & =a_{11}+a_{22}+a_{33} \\
\operatorname{tr} A^{2} & =2\left(a_{11}^{2}+a_{22}^{2}+a_{33}^{2}+a_{12}^{2}+a_{13}^{2}+a_{23}^{2}\right), \\
\operatorname{tr} A^{3} & =a_{11}^{3}+a_{22}^{3}+a_{33}^{3}+6 a_{12} a_{13} a_{23} \\
& +3 a_{12}^{2}\left(a_{11}+a_{22}\right)+3 a_{13}^{2}\left(a_{11}+a_{33}\right)+3 a_{23}^{2}\left(a_{22}+a_{33}\right) .
\end{aligned}
$$

In [1] three $3 \times 3$ matrix algebras are considered.
Let

$$
M 2(F)=\left\{\left(\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right) ; a, b, c \in F\right\}
$$

The algebra $M 2(F)$ is endowed with the involution

$$
\left(\begin{array}{rrr}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right)^{*}=\left(\begin{array}{rrr}
a & -b & c \\
0 & a & -b \\
0 & 0 & a
\end{array}\right)
$$

Theorem 5 A law for $M 2(F)$ is $r(x)=(x-a)^{3}$. For the symmetric elements of $(M 2(F), *)$ we have $r_{s}(x)=(x-a)^{2}$ and for the skew-symmetric elements $r_{s s}(x)=x^{3}$.

Proof. For a matrix $A \in M 2(F)$ we get $\operatorname{tr} A=3 a, \operatorname{tr} A^{2}=3 a^{2}$ and $\operatorname{tr} A^{3}=3 a^{3}$. Thus (2) and (3) give $\alpha_{1}=3 a, \alpha_{2}=3 a^{2}, \alpha_{3}=a^{3}$ and

$$
r(x)=x^{3}-3 a x^{2}+3 a^{2} x-a^{3}=(x-a)^{3} .
$$

In the symmetric case $(b=0)$ we get really $r_{s}(x)=(x-a)^{2}$ while in the skew-symmetric one ( $a=c=0$ ) we have $r_{s s}(x)=x^{3}$.

Let

$$
M 3(F)=\left\{\left(\begin{array}{ccc}
a & b & c \\
0 & 0 & d \\
0 & 0 & a
\end{array}\right) ; a, b, c, d \in F\right\}
$$

The algebra $M 3(F)$ is endowed with the involution

$$
\left(\begin{array}{rrr}
a & b & c \\
0 & 0 & d \\
0 & 0 & a
\end{array}\right)^{*}=\left(\begin{array}{rrr}
a & -b & c \\
0 & 0 & -d \\
0 & 0 & a
\end{array}\right)
$$

Theorem 6 A law for $M 3(F)$ is $r(x)=(x-a)^{2} x$. For the symmetric elements of $(M 3(F), *)$ we have $r_{s}(x)=(x-a)^{2}$ and for the skew-symmetric elements $r_{s s}(x)=x^{3}$.

Proof. For a matrix $A \in M 3(F)$ we get $\operatorname{tr} A=2 a, \operatorname{tr} A^{2}=2 a^{2}$ and $\operatorname{tr} A^{3}=2 a^{3}$. Thus (2) and (3) give $\alpha_{1}=2 a, \alpha_{2}=a^{2}, \alpha_{3}=0$ and

$$
r(x)=x^{3}-2 a x^{2}+a^{2} x=(x-a)^{2} x .
$$

In the symmetric case $(b=c=d=0)$ we get really $r_{s}(x)=(x-a)^{2}$ while in the skew-symmetric one ( $a=c=0$ ) we have $r_{s s}(x)=x^{3}$.

At the end we consider

$$
M 4(F)=\left\{\left(\begin{array}{ccc}
0 & b & c \\
0 & a & d \\
0 & 0 & 0
\end{array}\right) ; a, b, c, d \in F\right\}
$$

The algebra $M 4(F)$ is endowed with the involution

$$
\left(\begin{array}{rrr}
0 & b & c \\
0 & a & d \\
0 & 0 & 0
\end{array}\right)^{*}=\left(\begin{array}{rrr}
0 & -b & c \\
0 & a & -d \\
0 & 0 & 0
\end{array}\right)
$$

Theorem 7 A law for $M 4(F)$ is $r(x)=(x-a) x^{2}$. For the symmetric elements of $(M 4(F), *)$ we have $r_{s}(x)=(x-a) x$ and for the skew-symmetric elements $r_{s s}(x)=x^{3}$.

Proof. For a matrix $A \in M 4(F)$ we get $\operatorname{tr} A=a, \operatorname{tr} A^{2}=a^{2}$ and $\operatorname{tr} A^{3}=a^{3}$. Thus (2) and (3) give $\alpha_{1}=a, \alpha_{2}=0, \alpha_{3}=0$ and

$$
r(x)=x^{3}-a x^{2}=(x-a) x^{2} .
$$

In the symmetric case $(b=d=0)$ we get $r_{s}(x)=(x-a) x$. In the skewsymmetric case ( $a=c=0$ ) we have $r_{s s}(x)=x^{3}$.

Remark 3 If we consider $M 3(F)$ and $M 4(F)$ with involution defined by reflecting a matrix along its secondary diagonal the corresponding laws are really cubics, i.e.

$$
\operatorname{deg} r(x)=\operatorname{deg} r_{s}(x)=\operatorname{deg} r_{s s}(x)=3
$$

In [8] J.C. Robson found laws of degree 7 for $M_{3}(R)$ over a noncommutative ring $R$. They are four and each of them has 1156 terms.

Acknowledgement: The paper is partially supported by Grant MM1503/2005 of the Bulgarian Foundation for Scientific Research.

## References

[1] La Mattina D. and P. Misso, Algebras with involution and linear codimension growth, J. Algebra, 305, (2006), 270-291.
[2] R. Paré and W. Schelter, Finite extensions are integral, J. Algebra, 53, 1978), 477-479.
[3] Pearson K.R., Degree 7 monic polynomials satisfied by a $3 \times 3$ matrix over a noncommutative ring, Communs. Algebra, v.10, n.19, (1982), 20432073.
[4] Pearson K.R., The Robson cubics generate all polynomials satisfied by the general $2 \times 2$ matrix,Communs. Algebra, v.10, n.19, (1982), 2075-2084.
[5] Rashkova Ts., Robson cubics for second order matrix algebras with involution, Proceedings of the Union of Scientists - Ruse, b.5, v.6, (2006), 20-23.
[6] Robson J.C., Polynomials satisfied by matrices, J. Algebra, 55, (1978), 509-520.
[7] Robson J.C., Well quasi-ordered sets and ideals in free semigroups and algebras, J. Algebra, 55, (1978), 521-535.
[8] Robson J.C., Generators of the polynomials satisfied by matrices, Proc. of NATO Conf. Antwerp (1978), ed. F.V.Oystaeyen, Marcel Dekker, (1980), 243-255.
[9] Rowen L.H., Polynomial Identities in Ring Theory, Academic Press, 1980.

## Author:

Tsetska Grigorova Rashkova,
Department of Algebra and Geometry
University of Ruse "Angel Kanchev",
Bulgaria, 7017 Ruse, Studentska Str. 8 email:tsrashkova@ru.acad.bg

