SOME MECHANICAL SYSTEMS AND THEIR EQUILIBRIUM STATES

Dorin Wainberg ${ }^{1}$

Abstract

In the first part of the paper some theoretical results (including the Lyapunov-Malkin theorem) are presented, followed in the second part by some of its applications in geometrical mechanics.

2000 Mathematics Subject Classification: 70E50
Keywords and phrases: equilibrium states, stability.

1. Theoretical aspects

To explain the stability concept, we need some basic notions and results from the theory of dynamical systems.

The lows of Dynamics are usually presented as equations of motion, which we will write as differential equations:

$$
\begin{equation*}
\dot{x}=f(x) \tag{1.1}
\end{equation*}
$$

where

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

is a variable describing the state of the system. The function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is smooth of x, and

$$
\dot{x}=\frac{d x}{d t} .
$$

[^0]The set of all allowed x forms the state space of (1.1). When the time advances, the system's state is changed.

Definition 1.1 An point $x_{e} \in \mathbb{R}^{n}$ is called equilibrium point for the system (1.1) if:

$$
f\left(x_{e}\right)=0 .
$$

Remark. It is clear that the constant function

$$
x(t)=x_{e}
$$

is a solution for (1.1) and from the existence and uniqueness theorem it results that does not exists other solution containing x_{e}. So the unique trajectory starting at x_{e} is x_{e} itself, i.e. x_{e} does not changes in time.

Definition 1.2. Let x_{e} be an equilibrium state for (1.1). We will say that x_{e} is nonlinear stable (or Lyapunov stable) if for any neighborhood U of x_{e} there exists a neighborhood V of $x_{e}, V \subset U$ such that any solution $x(t)$, initially in V (i.e. $x(0) \in V$), never leaves U.

Definition 1.3. If V in Definition 2 can be chosen such that

$$
\lim _{t \rightarrow \infty} x(t)=x_{e}
$$

then x_{e} is called asymptotically stable.
Definition 1.4. An equilibrium state x_{e} that is not stable is called unstable.

Let us consider the following system of differential equations of order one:

$$
\left\{\begin{array}{l}
\dot{x}=A x+X(x, y) \tag{1.2}\\
\dot{y}=B y+Y(x, y)
\end{array}\right.
$$

where $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}, A$ and B are constant matrices such that all eigenvalues of A are of nonzero real parts and all eigenvalues of B are of zero real parts, and the functions X, Y satisfy the following conditions:
i) $X(0,0)=0$,
ii) $d X(0,0)=0$,
iii) $Y(0,0)=0$,
iv) $d Y(0,0)=0$.

We will take now the particular case of (1.2) in which the matrix B is O_{n}. The equations (1.2) become:

$$
\left\{\begin{array}{l}
\dot{x}=A x+X(x, y) \tag{2.3}\\
\dot{y}=Y(x, y)
\end{array}\right.
$$

Theorem 1.1. (Lyapunov-Malkin) Under the above conditions, if all eigenvalues of A have negative real parts and $X(x, y)$ and $Y(x, y)$ vanish when $x=0$, then the equilibrium state

$$
x=0, y=0
$$

of the system (??) is nonlinear stable with respect to (x, y) and asymptotically stable with respect to X.

For the proof of this basic result see Zenkov, Bloch and Marsden [6].

2. Applications of Lyapunov-Malkin Theorem

Example 2.1. (Volterra model with two controls on axes $O x_{1}$ and $O x_{2}$) The Volterra model equations with two controls on axes $O x_{1}$ and $O x_{2}$ are writing in the following form:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1} x_{2} \tag{2.1}\\
\dot{x}_{2}=x_{2} x_{3}-x_{1} x_{2}+u_{1} \\
\dot{x}_{3}=-x_{1} x_{3}+u_{2}
\end{array}\right.
$$

The controls u_{1} and u_{2} will be written as:

$$
\begin{aligned}
& u_{1}\left(x_{1}, x_{2}, x_{3}\right)=\alpha x_{2} \\
& u_{2}\left(x_{1}, x_{2}, x_{3}\right)=\beta x_{3}
\end{aligned}
$$

where $\alpha, \beta \in, \alpha, \beta<0$. Then the dynamics described by (2.1) takes the following form:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1} x_{2} \tag{2.2}\\
\dot{x}_{2}=x_{2} x_{3}-x_{1} x_{2}+\alpha x_{2} \\
\dot{x}_{3}=-x_{1} x_{3}+\beta x_{3}
\end{array}\right.
$$

If we consider:

$$
\begin{aligned}
& x=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right], y=x_{1}, \\
& X(x, y)=\left[\begin{array}{c}
x_{2} x_{3}-x_{1} x_{2} \\
-x_{1} x_{3}
\end{array}\right], \\
& Y(x, y)=x_{1} x_{2}
\end{aligned}
$$

then the system (2.2) can be written in the following equivalent form:

$$
\left\{\begin{array}{l}
\dot{x}=A x+X(x, y) \tag{2.3}\\
\dot{y}=Y(x, y)
\end{array}\right.
$$

where:

$$
A=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right]
$$

Now we must verify the conditions from the Lyapunov-Malkin theorem for system (2.3). We have successively:

$$
\text { i) } \begin{aligned}
X(0,0) & =\left[\begin{array}{c}
x_{2} x_{3}-x_{1} x_{2} \\
-x_{1} x_{3}
\end{array}\right]_{(0,0,0)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
Y(0,0) & =\left[x_{1} x_{2}\right]_{(0,0,0)}=0
\end{aligned}
$$

ii) $X(0, y)=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad(\forall) y \in R$, $Y(0, y)=0, \quad(\forall) y \in R$.
iii) $\left.\frac{D X}{D x}\right|_{(0,0)}=\left[\begin{array}{ll}\frac{\partial\left(x_{2} x_{3}-x_{1} x_{2}\right)}{\partial x_{2} x_{3}} & \frac{\partial\left(x_{2} x_{3}-x_{1} x_{2}\right)}{\partial x_{3}} \\ \frac{\partial\left(-x_{1} x_{3}\right)}{\partial x_{2}} & \frac{\partial\left(-x_{1} x_{3}\right)}{\partial x_{3}}\end{array}\right]_{(0,0,0)}$
$=\left[\begin{array}{cc}x_{3}-x_{1} & x_{2} \\ 0 & -x_{1}\end{array}\right]_{(0,0,0)}=\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$,
$\left.\frac{D X}{D y}\right|_{(0,0)}=\left[\frac{\frac{\partial\left(x_{2} x_{3}-x_{1} x_{2}\right)}{\partial x_{1}}}{\frac{\partial\left(-x_{1} x_{3}\right)}{\partial x_{1}}}\right]_{(0,0,0)}$
$=\left[\begin{array}{l}-x_{2} \\ -x_{3}\end{array}\right]_{(0,0,0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,
$\left.\frac{D Y}{D x}\right|_{(0,0)}=\left[\begin{array}{ll}\frac{\partial\left(x_{1} x_{2}\right)}{\partial x_{2}} & \frac{\partial\left(x_{1} x_{2}\right)}{\partial x_{3}}\end{array}\right]_{(0,0,0)}$
$=\left[\begin{array}{ll}x_{1} & 0\end{array}\right]_{(0,0,0)}=\left[\begin{array}{ll}0 & 0\end{array}\right]$,

$$
\left.\frac{D Y}{D y}\right|_{(0,0)}=\left[x_{2}\right]_{(0,0,0)}=[0] .
$$

iv) The characteristic polynomial of A is

$$
P_{A}(x)=\operatorname{det}\left[\begin{array}{cc}
\alpha-x & 1 \\
0 & \beta-x
\end{array}\right]=(\alpha-x)(\beta-x)
$$

and it has negative roots. So we have the eigenvalues of the matrix A, $x_{1}=\alpha<0, x_{2}=\beta<0$.

We can conclude, by Lyapunov-Malkin theorem, that:
Proposition 2.1. The equilibrium state $(0,0,0)$ for the system (2.2) is nonlinear stable.

Example 2.2. (The ball-plate poblem) The equations for the ball-plate problem with two controls on axes $O p_{2}$ şi $O p_{3}$ are given by:

$$
\left\{\begin{array}{l}
\dot{p}_{1}=-p_{2} p_{3} \tag{2.4}\\
\dot{p}_{2}=p_{1} p_{3}+u_{2} \\
\dot{p}_{3}=u_{3}
\end{array}\right.
$$

The controls u_{2} and u_{3} will be written as:

$$
\left\{\begin{array}{l}
u_{2}\left(p_{1}, p_{2}, p_{3}\right)=m p_{3} \\
u_{3}\left(p_{1}, p_{2}, p_{3}\right)=-m p_{2}+3 m p_{3}
\end{array}\right.
$$

where $e<0, e \in R$. Then the dynamics described by (2.4) takes the following form:

$$
\left\{\begin{array}{l}
\dot{p}_{1}=-p_{2} p_{3} \tag{2.5}\\
\dot{p}_{2}=p_{1} p_{3}+m p_{3} \\
\dot{p}_{3}=-e p_{2}+3 m p_{3}
\end{array}\right.
$$

where $m<0, m \in R$. Now we consider:

$$
\begin{aligned}
& x=\left[\begin{array}{l}
p_{2} \\
p_{3}
\end{array}\right], \quad y=p_{1} \\
& X(x, y)=\left[\begin{array}{c}
p_{1} p_{3} \\
0
\end{array}\right] \\
& Y(x, y)=-p_{2} p_{3} .
\end{aligned}
$$

and the system (2.5) can be written in the following equivalent form:

$$
\left\{\begin{array}{l}
\dot{x}=A x+X(x, y) \tag{2.6}\\
\dot{y}=Y(x, y)
\end{array}\right.
$$

where:

$$
A=\left[\begin{array}{cc}
0 & m \\
-m & 3 m
\end{array}\right]
$$

Now we must verify the conditions from the Lyapunov-Malkin theorem for system (2.6). We have successively:
i) $X(0,0)=\left[\begin{array}{c}p_{1} p_{3} \\ 0\end{array}\right]_{(0,0,0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,

$$
Y(0,0)=\left[-p_{2} p_{3}\right]_{(0,0,0)}=[0] .
$$

ii) $X(0, y)=\left[\begin{array}{c}p_{1} p_{3} \\ 0\end{array}\right]_{\left(p_{1}, p_{2}=0, p_{3}=0\right)}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad(\forall) y \in R^{2}$,

$$
Y(0, y)=\left[-p_{2} p_{3}\right]_{\left(p_{1}, p_{2}=0, p_{3}=0\right)}=[0], \quad(\forall) y \in R^{2} .
$$

iii) $\left.\frac{D X}{D x}\right|_{(0,0)}=\left[\begin{array}{cc}\frac{\partial p_{1} p_{3}}{\partial p_{2}} & \frac{\partial p_{1} p_{3}}{\partial p_{3}} \\ \frac{\partial 0}{\partial p_{2}} & \frac{\partial 0}{\partial p_{2}}\end{array}\right]$ $=\left[\begin{array}{cc}0 & p_{1} \\ 0 & 0\end{array}\right]_{(0,0,0)}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$,
$\left.\frac{D X}{D y}\right|_{(0,0)}=\left[\begin{array}{c}\frac{\partial p_{1} p_{3}}{\partial p_{1}} \\ \frac{\partial 0}{\partial p_{1}}\end{array}\right]_{(0,0,0)}$
$=\left[\begin{array}{c}p_{3} \\ 0\end{array}\right]_{(0,0,0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$,
$\left.\frac{D Y}{D x}\right|_{(0,0)}=\left[\begin{array}{ll}\frac{\partial\left(-p_{2} p_{3}\right)}{\partial p_{2}} & \frac{\partial\left(-p_{2} p_{3}\right)}{\partial p_{3}}\end{array}\right]_{(0,0,0)}$
$=\left[\begin{array}{ll}-p_{3} & -p_{2}\end{array}\right]_{(0,0,0)}=\left[\begin{array}{cc}0 & 0\end{array}\right]$,
$\left.\frac{D Y}{D y}\right|_{(0,0)}=\left[\frac{\partial\left(-p_{2} p_{3}\right)}{\partial p_{1}}\right]_{(0,0,0)}$
$=[0]$
iv) Again the characteristic polynomial of A is

$$
P_{A}(x)=\operatorname{det}\left[\begin{array}{cc}
-x & m \\
-m & 3 e-x
\end{array}\right]=x^{2}-3 m x+m^{2}
$$

and it has negative roots. So we have the eigenvalues of the matrix A, $x_{1,2}=\frac{3 m \pm m \sqrt{5}}{2}<0$, for $m<0$.

We can conclude, by Lyapunov-Malkin theorem, that:

Proposition 2.2 The equilibrium state $(0,0,0)$ for the system (2.6) is nonlinear stable.

References

[1] Andrica, D., Critical Point Theory and Some Applications, Cluj University Press, 2005.
[2] Craioveanu, M., , Introducere in geometria doferenţială, Ed. Universităţii de Vest, Timişoara, 2008.
[3] Makin, I.G. On the stability of motion in sense of Lyapunov, Matemat. Sbornik, XXXV, 1938, pp 47-101.
[4] Marsden, J.E., Generalized Hamiltonian mechanics, Arch. Rational Mech. Anal., 28, 1968, pp 323-361.
[5] Puta, M. Hamiltonian Mechanical Systems and Geometric Quantinization, Kluwer Academic Publishers, 1993.
[6] Zenkov, D., Bloch, A., Marsden, J.E., The energy-momentum method for the stability of nonholonomic systems, Dynamics and stability of systems, vol. 13, no. 2, (1998), 123-165.

Author:

Dorin Wainberg
Department of Mathematics
"1 Decembrie 1918" University
Alba Iulia
Romania
e-mail:dwainberg@uab.ro

[^0]: ${ }^{1}$ Supported with Project TD-404/2008 by UEFISCSU Romania

