ONE KANTOROVICH-TYPE OPERATOR

Ovidiu T. Pop

Abstract. The aim of this paper is to construct a sequence linear positive operators of Kantorovich-type. We demonstrate some convergence and approximation properties of these operators.

2000 Mathematics Subject Classification: 41A25, 41A36.
Keywords and phrases: Linear positive operators, convergence and approximation theorems.

1. Introduction

In this section we recall some notions and results which we will use in this paper.

Let \mathbb{N} be the set of positive integer and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $m \in \mathbb{N}$, let the operator $K_{m}: L_{1}([0,1]) \rightarrow C([0,1])$ defined for any function $f \in L_{1}([0,1])$ by

$$
\begin{equation*}
\left(K_{m} f\right)(x)=(m+1) \sum_{k=0}^{m} p_{m, k}(x) \int_{\frac{k}{m+1}}^{\frac{k+1}{m+1}} f(x) d t \tag{1}
\end{equation*}
$$

where $p_{m, k}(x)$ are the fundamental polynomials of Bernstein, defined as follows

$$
\begin{equation*}
p_{m, k}(x)=\binom{m}{k} x^{k}(1-x)^{m-k} \tag{2}
\end{equation*}
$$

for any $x \in[0,1]$ and any $k \in\{0,1, \ldots, m\}$.
The operators $K_{m}, m \in \mathbb{N}$ are named Kantorovich operators, introduced and studied in 1930 by L. V. Kantorovich (see [1] or [6]).

In [4] and [5] we give approximation theorems and Voronovskaja-type theorem for these operators.

For $i \in \mathbb{N}_{0}$, we note

$$
\left(T_{m, i} B_{m}\right)(x)=m^{i}\left(B_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{m} p_{m, k}(x)\left(\frac{k}{m}-x\right)^{i}
$$

where $x \in[0,1], m \in \mathbb{N}, \psi_{x}:[0,1] \rightarrow \mathbb{R}, \psi_{x}(t)=t-x$, for any $t \in[0,1]$ and $B_{m}, m \in \mathbb{N}$ are the Bernstein operators.

It is known (see [2]) that

$$
\begin{gather*}
\left(T_{m, 0} B_{m}\right)(x)=1, \tag{3}\\
\left(T_{m, 1} B_{m}\right)(x)=0, \tag{4}\\
\left(T_{m, 2} B_{m}\right)(x)=m x(1-x), \tag{5}\\
\left(T_{m, 3} B_{m}\right)(x)=m x(1-x)(1-2 x) \tag{6}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(T_{m, 4} B_{m}\right)(x)=3 m^{2} x^{2}(1-x)^{2}+m\left[x(1-x)-6 x^{2}(1-x)^{2}\right] \tag{7}
\end{equation*}
$$

where $x \in[0,1], m \in \mathbb{N}$.
The following construction and results are given in [4].
We consider $I \subset \mathbb{R}, I$ an interval and we shall use the function sets $E(I)$, $F(I)$ which are subsets of the set of real functions defined on $I, B(I)=$ $\{f \mid f: I \rightarrow \mathbb{R}, f$ bounded on $I\}, C(I)=\{f \mid f: I \rightarrow \mathbb{R}, f$ continuous on $I\}$ and $C_{B}(I)=B(I) \cap C(I)$. Let $a, b, a^{\prime}, b^{\prime}$ be real numbers, $a<b, a^{\prime}<b^{\prime}$, $[a, b] \subset I,\left[a^{\prime}, b^{\prime}\right] \subset I$ and $[a, b] \cap\left[a^{\prime}, b^{\prime}\right] \neq \emptyset$.

For $m \in \mathbb{N}$, consider the functions $\varphi_{m, k}: I \rightarrow \mathbb{R}$ with the property that $\varphi_{m, k}(x) \geq 0$, for any $x \in\left[a^{\prime}, b^{\prime}\right]$, any $k \in\{0,1, \ldots, m]$ and the linear positive functionals $A_{m, k}: E([a, b]) \rightarrow \mathbb{R}, k \in\{0,1, \ldots, m\}$.

For $m \in \mathbb{N}$, define the operator $L_{m}: E([a, b]) \rightarrow F(I)$ by

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}(f), \tag{8}
\end{equation*}
$$

for any $f \in E([a, b])$, any $x \in I$ and for $i \in \mathbb{N}_{0}$, define $T_{m, i} L_{m}$ by

$$
\begin{equation*}
\left(T_{m, i} L_{m}\right)(x)=m^{i}\left(L_{m} \psi_{x}^{i}\right)(x)=m^{i} \sum_{k=0}^{m} \varphi_{m, k}(x) A_{m, k}\left(\psi_{x}^{i}\right) \tag{9}
\end{equation*}
$$

for any $x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$.

In the following, let s be a fixed natural number, s even and we suppose that the operators $\left(L_{m}\right)_{m \geq 1}$ verify the conditions: there exist the smallest $\alpha_{s}, \alpha_{s+2} \in[0, \infty)$ so that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left(T_{m, j} L_{m}\right)(x)}{m^{\alpha j}}=B_{j}(x) \in \mathbb{R} \tag{10}
\end{equation*}
$$

for any $x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right], j \in\{s, s+2\}$ and

$$
\begin{equation*}
\alpha_{s+2}<\alpha_{s}+2 \tag{11}
\end{equation*}
$$

Theorem 1 Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. If $x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$ and f is a s times differentiable function in x, the function $f^{(s)}$ is continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m^{s-\alpha_{s}}\left[\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i} L_{m}\right)(x)\right]=0 . \tag{12}
\end{equation*}
$$

If f is a s times differentiable function on $[a, b]$, the function $f^{(s)}$ is continuous on $[a, b]$ and there exist $m(s) \in \mathbb{N}$ and $k_{j} \in \mathbb{R}$ so that for any $m \in \mathbb{N}$, $m \geq m(s)$ and for any $x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$ we have

$$
\begin{equation*}
\frac{\left(T_{m, j} L_{m}\right)(x)}{m^{\alpha_{j}}} \leq k_{j} \tag{13}
\end{equation*}
$$

where $j \in\{s, s+2\}$, then the convergence given in (12) is uniform on $[a, b] \cap$ [$\left.a^{\prime}, b^{\prime}\right]$ and

$$
\begin{align*}
& m^{s-\alpha_{s}}\left|\left(L_{m} f\right)(x)-\sum_{i=0}^{s} \frac{f^{(i)}(x)}{m^{i} i!}\left(T_{m, i} L_{m}\right)(x)\right| \leq \tag{14}\\
& \leq \frac{1}{s!}\left(k_{s}+k_{s+2}\right) \omega\left(f^{(s)} ; \frac{1}{\sqrt{m^{2+\alpha_{s}-\alpha_{s+2}}}}\right)
\end{align*}
$$

for any $x \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$, for any $m \in \mathbb{N}, m \geq m(s)$.

2. Preliminaries

Definition 1 For $m \in \mathbb{N}$, define the operator $\mathcal{K}_{m}: L_{1}([0,1]) \rightarrow C([0,1])$ by

$$
\begin{equation*}
\left(\mathcal{K}_{m} f\right)(x)=m \sum_{k=0}^{m-1} p_{m, k}(x) \int_{\frac{k}{m}}^{\frac{k+1}{m}} f(t) d t+x^{m} f(1) \tag{15}
\end{equation*}
$$

for any $f \in L_{1}([0,1])$ and any $x \in[0,1]$.
These operators are Kantorovich-type operators.
Proposition 1 The operators $\mathcal{K}_{m}, m \in \mathbb{N}$ are linear and positive on $L_{1}([0,1])$.
Proof. The proof follows immediately.
Proposition 2 For any $m \in \mathbb{N}$ and $x \in[0,1]$, we have

$$
\begin{gather*}
\left(\mathcal{K}_{m} e_{0}\right)(x)=1 \tag{16}\\
\left(\mathcal{K}_{m} e_{1}\right)(x)=x+\frac{1}{2 m}\left(1-x^{m}\right) \tag{17}\\
\left(\mathcal{K}_{m} e_{2}\right)(x)=x^{2}+\frac{x(2-x)}{m}+\frac{1}{3 m^{2}}-\frac{3 m+1}{3 m^{2}} x^{m} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\mathcal{K}_{m} \psi_{x}^{2}\right)(x)=\frac{x(1-x)}{m}+\frac{1}{3 m^{2}}-\frac{3 m+1}{3 m^{2}} x^{m}+\frac{1}{m} x^{m+1} \tag{19}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\left(\mathcal{K}_{m} e_{0}\right)(x) & =\left.m \sum_{k=0}^{m-1} p_{m, k}(x) t\right|_{\frac{k}{m}} ^{\frac{k+1}{m}}+x^{m}=\sum_{k=0}^{m-1} p_{m, k}(x)+x^{m}= \\
& =\sum_{k=0}^{m} p_{m, k}(x)=\left(B_{m} e_{0}\right)(x)=1,
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathcal{K}_{m} e_{1}\right)(x) & =\left.m \sum_{k=0}^{m-1} p_{m, k}(x) \frac{t^{2}}{2}\right|_{\frac{k}{m}} ^{\frac{k+1}{m}}+x^{m}=m \sum_{k=0}^{m-1} p_{m, k}(x) \frac{2 k+1}{2 m^{2}}+x^{m}= \\
= & \sum_{k=0}^{m-1} p_{m, k}(x) \frac{k}{m}+\frac{1}{2 m} \sum_{k=0}^{m-1} p_{m, k}(x)+x^{m}= \\
& =\left(\left(B_{m} e_{1}\right)(x)-p_{m, m}(x)\right)+\frac{1}{2 m}\left(\left(B_{m} e_{0}\right)(x)-p_{m, m}(x)\right)+x^{m}, \\
\left(\mathcal{K}_{m} e_{2}\right)(x) & =\left.m \sum_{k=0}^{m-1} p_{m, k}(x) \frac{t^{3}}{3}\right|_{\frac{k}{m}} ^{\frac{k+1}{m}}+x^{m}= \\
& =m \sum_{k=0}^{m-1} p_{m, k}(x) \frac{3 k^{2}+3 k+1}{3 m^{3}}+x^{m}= \\
& =\left(\left(B_{m} e_{2}\right)(x)-p_{m, m}(x)\right)+\frac{1}{m}\left(\left(B_{m} e_{1}\right)(x)-p_{m, m}(x)\right)+ \\
& +\frac{1}{3 m^{2}}\left(\left(B_{m} e_{0}\right)(x)-p_{m, m}(x)\right)+x^{m},
\end{aligned}
$$

from where the relations (16) - (18) result. From (16) - (18), we obtain the relation (19).
Remark 1 Taking Proposition 2 into account, from the Theorem BohmanKorovkin, it results that for any $f \in C([0,1])$ we have $\lim _{m \rightarrow \infty} \mathcal{K}_{m} f=f$ uniform on $[0,1]$.
Remark 2 From the Theorem Shisha-Mond, approximation theorems for the $\left(\mathcal{K}_{m}\right)_{m \in \mathbb{N}}$ operators result.

3. Main result

In the following, we study the $\mathcal{K}_{m}, m \in \mathbb{N}$ operators with the aid of the Theorem 1. For these operators, we have

$$
A_{m, k}(f)= \begin{cases}m \int_{\frac{k}{m}}^{\frac{k+1}{m}} f(t) d t, & 0 \leq k \leq m-1 \tag{20}\\ f(1), & k=m\end{cases}
$$

where $m \in \mathbb{N}$ and $f \in L_{1}([0,1])$.

Theorem 2 For $m, i \in \mathbb{N}_{0}, m \neq 0$ and $x \in[0,1]$ we have

$$
\begin{align*}
& \left(T_{m, i} \mathcal{K}_{m}\right)(x)=\frac{1}{i+1} \sum_{j=0}^{i}\binom{i+1}{j}\left(T_{m, j} B_{m}\right)(x)- \tag{21}\\
& -\frac{x^{m}}{i+1}\left[(1+m(1-x))^{i+1}-(m(1-x))^{i+1}\right]+x^{m}(m(1-x))^{i}
\end{align*}
$$

Proof. Taking (9) and (20) into account, we have

$$
\begin{aligned}
& \left(T_{m, i} \mathcal{K}_{m}\right)(x)=m^{i}\left(\mathcal{K}_{m} \psi_{x}^{i}\right)(x)= \\
& =m^{i}\left[m \sum_{k=0}^{m-1} p_{m, k}(x) \int_{\frac{k}{m}}^{\frac{k+1}{m}}(t-x)^{i} d t+x^{m}(1-x)^{i}\right]= \\
& =m^{i}\left[\left.m \sum_{k=0}^{m-1} p_{m, k}(x) \frac{(t-x)^{i+1}}{i+1}\right|_{\frac{k}{m}} ^{\frac{k+1}{m}}+x^{m}(1-x)^{i}\right]= \\
& =m^{i}\left[\frac{m}{i+1} \sum_{k=0}^{m-1} p_{m, k}(x)\left(\left(\frac{k}{m}-x+\frac{1}{m}\right)^{i+1}-\left(\frac{k}{m}-x\right)^{i+1}\right)+x^{m}(1-x)^{i}\right]= \\
& =m^{i}\left[\frac{m}{i+1} \sum_{k=0}^{m-1} p_{m, k}(x) \sum_{j=0}^{i}\binom{i+1}{j}\left(\frac{k}{m}-x\right)^{j}\left(\frac{1}{m}\right)^{i+1-j}+x^{m}(1-x)^{i}\right]= \\
& =m^{i}\left\{\frac{m}{i+1} \sum_{j=0}^{i}\binom{i+1}{j} \frac{1}{m^{i+1-j}}\left[\sum_{k=0}^{m} p_{m, k}(x)\left(\frac{k}{m}-x\right)^{j}-p_{m, m}(x)(1-x)^{j}\right]+\right. \\
& \left.+x^{m}(1-x)^{i}\right\}=\frac{1}{i+1} \sum_{j=0}^{i}\binom{i+1}{j}\left[\left(T_{m, j} B_{m}\right)(x)-x^{m}(m(1-x))^{j}\right]+ \\
& +x^{m}(m(1-x))^{i}=\frac{1}{i+1} \sum_{j=0}^{i}\binom{i+1}{j}\left(T_{m, j} B_{m}\right)(x)- \\
& -\frac{x^{m}}{i+1} \sum_{j=0}^{i}\binom{i+1}{j}(m(1-x))^{j}+x^{m}(m(1-x))^{i},
\end{aligned}
$$

from where we obtain relation (21).

Remark 3 If $m, i \in \mathbb{N}$ and $x \in[0,1]$, from (21) it results that

$$
\begin{align*}
& \left(T_{m, i} \mathcal{K}_{m}\right)(x)= \tag{22}\\
& =\frac{1}{i+1} \sum_{j=0}^{i}\binom{i+1}{j}\left(T_{m, j} B_{m}\right)(x)-\frac{x^{m}}{i+1} \sum_{j=0}^{i-1}\binom{i+1}{j}(m(1-x))^{j} .
\end{align*}
$$

Lemma 1 For any $m \in \mathbb{N}$ and $x \in[0,1]$, we have

$$
\begin{gather*}
\left(T_{m, 0} \mathcal{K}_{m}\right)(x)=1 \tag{23}\\
\left(T_{m, 1} \mathcal{K}_{m}\right)(x)=\frac{1}{2}\left(1-x^{m}\right) \tag{24}\\
\left(T_{m, 2} \mathcal{K}_{m}\right)(x)=\frac{1}{3}\left(1-x^{m}\right)+m x(1-x)\left(1-x^{m-1}\right) \tag{25}
\end{gather*}
$$

and

$$
\begin{align*}
\left(T_{m, 4} \mathcal{K}_{m}\right)(x) & =\frac{1}{5}\left(1-x^{m}\right)+m x(1-x)\left(6 x^{2}+2 x+5-x^{m-1}\right)+ \tag{26}\\
& +m^{2} x^{2}(1-x)^{2}\left(3-2 x^{m-2}\right)-2 m^{3} x^{m}(1-x)^{3}
\end{align*}
$$

Proof. It results from the Theorem 2 and relations (3) - (7).
Lemma 2 We have

$$
\begin{gather*}
\lim _{m \rightarrow \infty}\left(T_{m, 0} \mathcal{K}_{m}\right)(x)=1 \tag{27}\\
\lim _{m \rightarrow \infty} \frac{\left(T_{m, 2} \mathcal{K}_{m}\right)(x)}{m}=x(1-x) \tag{28}\\
\lim _{m \rightarrow \infty} \frac{\left(T_{m, 4} \mathcal{K}_{m}\right)(x)}{m^{2}}=3 x^{2}(1-x)^{2} \tag{29}
\end{gather*}
$$

for any $x \in[0,1]$ and

$$
\begin{align*}
\left(T_{m, 0} \mathcal{K}_{m}\right)(x) & =1=k_{0} \tag{30}\\
\frac{\left(T_{m, 2} \mathcal{K}_{m}\right)(x)}{m} & \leq \frac{7}{12}=k_{2} \tag{31}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\left(T_{m, 4} \mathcal{K}_{m}\right)(x)}{m^{2}} \leq \frac{291}{80}=k_{4} \tag{32}
\end{equation*}
$$

for any $x \in[0,1]$, any $m \in \mathbb{N}$.

Proof. For $x=1$, the relations (28) and (29) hold. For $x \in[0,1)$ we take $\lim _{m \rightarrow \infty} x^{m}=0, \lim _{m \rightarrow \infty} m x^{m}=0$ into account, so (28) and (29) hold.

We have

$$
\begin{aligned}
\frac{\left(T_{m, 2} \mathcal{K}_{m}\right)(x)}{m} & =\frac{1}{3 m}\left(1-x^{m}\right)+x(1-x)\left(1-x^{m-1}\right) \leq \\
& \leq \frac{1}{3 m}+x(1-x) \leq \frac{1}{3}+\frac{1}{4}=\frac{7}{12}
\end{aligned}
$$

because $x(1-x) \leq \frac{1}{4}$, for any $x \in[0,1]$ and with similar calculation we obtain the inequality (32).

Theorem 3 Let $f:[0,1] \rightarrow \mathbb{R}$ be a function. If f is a continuous function in $x \in[0,1]$, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\mathcal{K}_{m} f\right)(x)=f(x) \tag{33}
\end{equation*}
$$

If f is continuous on $[0,1]$, then the convergence given in (33) is uniform on $[0,1]$ and

$$
\begin{equation*}
\left|\left(\mathcal{K}_{m} f\right)(x)-f(x)\right| \leq \frac{19}{12} \omega\left(f ; \frac{1}{\sqrt{m}}\right) \tag{34}
\end{equation*}
$$

for any $x \in[0,1]$, any $m \in \mathbb{N}$.
Proof. It results from Theorem 1 for $s=0$, Lemma 1 and Lemma 2.
Theorem 4 Let $f:[0,1] \rightarrow \mathbb{R}$ be a function. If $x \in[0,1]$ and f is two times differentiable function in x, the function $f^{(2)}$ is continuous in x, then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} m\left[\left(\mathcal{K}_{m} f\right)(x)-f(x)\right]=\frac{1}{2} f^{(1)}(x)+\frac{1}{2} x(1-x) f^{(2)}(x) \tag{35}
\end{equation*}
$$

If f is a two times differentiable function on $[0,1]$, the function $f^{(2)}$ is continuous on $[0,1]$, then the convergence given in (35) is uniform on $[0,1]$ and

$$
\begin{align*}
& m \left\lvert\,\left(\mathcal{K}_{m} f\right)(x)-f(x)-\frac{1}{2 m}\left(1-x^{m}\right) f^{(1)}(x)-\right. \tag{36}\\
& \left.-\frac{1}{2 m^{2}}\left[\frac{1}{3}\left(1-x^{m}\right)+m x(1-x)\left(1-x^{m-1}\right)\right] f^{(2)}(x) \right\rvert\, \leq \\
& \leq \frac{1013}{480} \omega\left(f^{(2)} ; \frac{1}{\sqrt{m}}\right)
\end{align*}
$$

for any $x \in[0,1]$, any $m \in \mathbb{N}$.

Proof. It results from Theorem 1 for $s=2$, Lemma 1 and Lemma 2.
Remark 4 The relation (35) is a Voronovskaja-type relation for the $\left(\mathcal{K}_{m}\right)_{m \geq 1}$ operators.

References

[1] Kantorovich, L. V., Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II, C. R. Acad. URSS (1930), 563-568, 595600
[2] Lorentz, G. G., Bernstein polynomials, University of Toronto Press, Toronto, 1953
[3] Lorentz, G. G., Approximation of functions, Holt, Rinehart and Winston, New York, 1996
[4] Pop, O. T., The generalization of Voronovskaja's theorem for a class of linear and positive operators, Rev. Anal. Numér. Théor. Approx., 34, no. 1, 2005, 79-91
[5] Pop, O. T., A general property for a class of linear positive operators and applications, Rev. Anal. Numér. Théor. Approx., 34, no. 2, 2005, 175-180
[6] Stancu, D. D., Coman, Gh., Agratini, O., Trîmbiţaş, R., Analiză numerică şi teoria aproximării, I, Presa Universitară Clujeană, Cluj-Napoca, 2001 (Romanian)
[7] Voronovskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynômes de M. Bernstein, C. R. Acad. Sci. URSS, 79-85, 1932

Author:

Ovidiu T. Pop
National College "Mihai Eminescu"
Satu Mare
Romania
e-mail:ovidiutiberiu@yahoo.com

