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Abstract. The Unsteady laminar flow of an electrically conducting
dusty viscous incompressible fluid near an accelerated flat, nonconducting
plate, under the influence of a uniform magnetic field and pulsatile pres-
sure gradient has been studied using differential geometry techniques i.e., in
Frenet frame field system. The particular cases as (i) impulsively moving
and (ii) uniformly accelerated motion of plate, have been discussed in detail.
Further The velocity profiles for conducting fluid and non-conducting dust
particles are determined. The expressions for skin friction at the boundaries
are obtained. Finally the conclusions are given on basis the graphs.
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1.Introduction

In fluid mechanics, multi-phase flow is a generalization of the modelling
used in two-phase flow i.e., to cases where the two phases are not chemically
related (e.g. dusty gases) or where more than two phases are present (e.g. in
modelling of propagating steam explosions). Each of the phases is considered
to have a separately defined volume fraction and velocity field. Conservation
equations for the flow of each species, can then be written down straightfor-
wardly. The momentum equation for each phase is less straightforward. It
can be shown that a common pressure field can be defined, and that each
phase is subject to the gradient of this field, weighted by its volume fraction.
Transfer of momentum between the phases is sometimes less straightforward
to determine, and in addition, a very light phase in bubble form has a virtual
mass associated with its acceleration.
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Considerable work has already been done on such models of dusty fluid
flow. Rossow [12] has discussed the flow of a viscous, incompressible and
electrically conducting fluid in presence of an external magnetic field due to
the impulsive motion of an infinite flat plate. Ong and Nicholls [10] have
extended the study to cover the case of flow near an infinite wall which exe-
cutes simple harmonic motion parallel to itself. P.G.Saffman [13] formulated
the basic equations for the flow of dusty fluid. Regarding the plate problems,
Liu [7], Michael and Miller [9] have studied the flow produced by the motion
of an infinite plane in a steady fluid occupying the semi-infinite space above
it. Later, M.C.Baral [4] has discussed the plane parallel flow of conducting
dusty gas.

The tools of differential geometry and, in particular, Riemannian geom-
etry have been proved very useful in handling problems in areas of Fluid
dynamics. Differential geometry of curves and surfaces has appeared in sev-
eral areas of physics, ranging from liquid crystals to plasma physics, and
from solutions to general relativity, or even in high energy strings and ther-
modynamics. In all these applications one important common feature arises,
which is the application of the Serret-Frenet frame to the motion of curves.

Frenet frames are a central construction in modern differential geometry,
in which structure is described with respect to an object of interest rather
than with respect to external coordinate systems.

To investigate the kinematical properties of fluid flows in the field of fluid
mechanics some researchers like Kanwal [6], Truesdell [15], Indrasena [5], Pu-
rushotham [11], Bagewadi, Shantharajappa and Gireesha [14], [1], [2] have
applied differential geometry techniques. Further, recently the authors [1],
have studied two-dimensional dusty fluid flow in Frenet frame field system,
which is one of the moving frame. In this investigation, the differential ge-
ometry techniques are used to study the flow of an electrically conducting
viscous incompressible fluid with suspended non-conducting small spherical
dust particles. The flow of the fluid is due to the influence of uniform mag-
netic field, accelerated flat plate and pulsatile pressure gradient. Initially
both the conducting fluid and the dust particles are assumed to be at rest.
Applying Laplace transform technique, the velocity fields for fluid and dust
particles have been obtained. Also the particular cases when the flow is due
to (i) impulsively moving plate, (ii) uniformly accelerated motion of plate.
Further the expressions for skin friction at the boundaries are determined.
The graphical representation of velocity profiles are given.
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2. Equations of Motion

The modified Saffman’s [13] equations for the conducting dusty gas and
non-conducting dust particle are:
For fluid phase

∇.−→u = 0 (1)

∂−→u
∂t

+ (−→u .∇)−→u = −ρ−1∇p + υ∇2−→u +
KN

ρ
(−→v −−→u ) +

1

ρ
(
−→
J ×

−→
B )(2)

For dust phase

∇.−→v = 0 (3)

∂−→v
∂t

+ (−→v .∇)−→v =
k

m
(−→u −−→v ) (4)

We have following nomenclature:
−→u− velocity of the fluid phase, −→v − velocity density of dust phase, ρ−

Density of the gas, p− Pressure of the fluid, N− Number of density of dust
particles, υ− Kinematic viscosity, K = 6πaµ− Stoke’s resistance (drag coef-
ficient ), a− Spherical radius of dust particle, m− Mass of the dust particle,

µ− the co-efficient of viscosity of fluid particles, t− time and
−→
J − and

−→
B−

given by Maxwell’s equations and Ohm’s law, namely,

∇×
−→
H = 4π

−→
J , ∇×

−→
B = 0, ∇×

−→
E = 0,

−→
J = σ[

−→
E +−→u ×

−→
B ]

Here
−→
H−Magnetic field,

−→
J − Current density,

−→
B− Magnetic Flux,

−→
E -

Electric field.
It is assumed that the effect of induced magnetic fields produced by the

motion of the electrically conducting gas is negligible and no external electric

field is applied. With those assumptions the magnetic field
−→
J ×

−→
B of the

body force in (2) reduces simply to −σB2
0
−→u .

Let −→s ,−→n ,
−→
b be triply orthogonal unit vectors tangent, principal nor-

mal, binormal respectively to the spatial curves of congruences formed by
fluid phase velocity and dusty phase velocity lines respectively, Geometrical
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relations are given by Frenet formulae [3]

i)
∂−→s
∂s

= ks
−→n ,

∂−→n
∂s

= τs

−→
b − ks

−→s ,
∂
−→
b

∂s
= −τs

−→n

ii)
∂−→n
∂n

= k′n
−→s ,

∂
−→
b

∂n
= −σ′n

−→s ,
∂−→s
∂n

= σ′n
−→
b − k′n

−→n

(5)

iii)
∂
−→
b

∂b
= k′′b

−→s ,
∂−→n
∂b

= −σ′′b
−→s ,

∂−→s
∂b

= σ′′b
−→n − k′′b

−→
b

iv) ∇.−→s = θns + θbs; ∇.−→n = θbn − ks; ∇.
−→
b = θnb

where ∂/∂s, ∂/∂n and ∂/∂b are the intrinsic differential operators along fluid
phase velocity (or dust phase velocity ) lines, principal normal and binormal.
The functions (ks, k

′
n, k

′′
b ) and (τs, σ

′
n, σ

′′
b ) are the curvatures and torsion of

the above curves and θns and θbs are normal deformations of these spatial
curves along their principal normal and binormal respectively.

3. Formulation and Solution of the Problem

Consider a viscous incompressible, dusty fluid bounded by two noncon-
ducting infinite flat plates separated by a distance h. Both the fluid and
the dust particle clouds are supposed to be static at the beginning. The
dust particles are assumed to be spherical in shape and uniform in size. The
number density of the dust particles is taken as a constant throughout the
flow. It is assumed that the dust particles are electrically nonconducting and
neutral. The motion of the fluid is due to magnetic field of uniform strength
B0, accelerated flat plate and pulsatile pressure gradient. Under these as-
sumptions the flow will be a parallel flow in which the streamlines are along
the tangential direction as shown in the figure 1.
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Figure-1: Geometry of the flow

For the above described flow the velocities of fluid and dust are of the
form

−→u = us
−→s , −→v = vs

−→s

i.e., un = ub = 0 and vn = vb = 0, where (us, un, ub) and (vs, vn, vb) denote
the velocity components of fluid and dust respectively.

Since the flow is in between two parallel plates, we can assume the ve-
locity of both fluid and dust particles do not vary along tangential direction.
Suppose the fluid extends to infinity in the principal normal direction, then
the velocities of both may be neglected in this direction.

By virtue of system of equations (5) the intrinsic decomposition of equa-
tions (2) and (4) give the following forms;

∂us

∂t
= −1

ρ

∂P

∂s
+ ν

[
∂2us

∂b2
− Crus

]
+

kN

ρ
(vs − us)−Dus (6)

2u2
sks = −1

ρ

∂P

∂n
+ ν

[
2σ′′b

∂us

∂b
− usk

2
s

]
(7)

0 = −1

ρ

∂P

∂b
+ ν

[
usksτs − 2k′′b

∂us

∂b

]
(8)

∂vs

∂t
=

k

m
(us − vs) (9)

2v2
sks = 0 (10)

where D =
σB2

0

ρ
and Cr = (σ′2b + k′2n + k′2b + σ′′2b ) is called curvature number

[2].
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From equation (10) we see that v2
sks = 0 which implies either vs = 0 or

ks = 0. The choice vs = 0 is impossible, since if it happens then us = 0,
which shows that the flow doesn’t exist. Hence ks = 0, it suggests that the
curvature of the streamline along tangential direction is zero. Thus no radial
flow exists.

Equation (6) and (9) are to be solved subject to the initial and boundary
conditions;

Initial condition;at t = 0; us = 0, vs = 0

Boundary condition;for t > 0; us = A tn, at b = h

us = 0, at b = 0.

where A & n are positive constants.
We define Laplace transformations of us and vs as

U =

∞∫
0

e−xtusdt and V =

∞∫
0

e−xtvsdt

Suppose −1
ρ

∂P
∂s

= C + α cos βt, where C and α are constants and β is
the frequency of oscillation.

Applying the Laplace transform to equations (6), (9) and to boundary
conditions, then one can obtains

xU =

[
C

x
+

αx

x2 + β2

]
+ ν

[
∂2U

∂b2
− CrU

]
+

L

τ
(V − U)−DU (11)

xV =
1

τ
(U − V ) (12)

U =
A n!

xn+1
, at b = h and U = 0 at b = 0 (13)

where l = mN
ρ

and τ = m
k
. Equation (12) implies

V =
U

1 + sτ
(14)

Eliminating V from (11) and (14) we obtain the following equation

d2U

db2
−Q2U = −1

ν

[
C

x
+

αx

x2 + β2

]
(15)
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where Q2 =
(
Cr + s

ν
+ D

ν
+ sl

ν(1+sτ)

)
.

The velocities of fluid and dust particle are obtained by solving the equa-
tion (15) subjected to the boundary conditions (13) as follows

U =
A n!

xn+1

sinh Qb

sinh Qh
+

[
C

x
+

αx

x2 + β2

] [
sinh(Q(b− h))− sinh(Qb) + sinh(Qh)

νQ2sinh(Qh)

]
.

Using U in (14) we obtain V as

V =
A n!

xn+1(1 + xτ)

sinh Qb

sinh Qh
+

[
C

x
+

αx

x2 + β2

]
·

[
sinh(Q(b− h))− sinh(Qb) + sinh(Qh)

νQ2(1 + xτ)sinh(Qh)

]
.

Case-1: (Impulsively moving plate) Suppose n = 0, then the flow is due
to Impulsively moving plate, then one can obtain the velocity profiles for
fluid phase and dust phase as

us =
C

νλ2

[
sinh(λ(b− h))− sinh(λb)

sinh(λh)
+ 1

]
+

4C

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
+

α

ν

[
θ1 cos βt− θ2 sin βt

(α2
1 + α2

2)(F
2
1 + F 2

2 )

]
+

4α

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
+ A

sinh λb

sinh λh

− 2Aπν

h2

∞∑
r=0

(−1)rr sin
rπb

h

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]

vs =
C

νλ2

[
sinh(λ(b− h))− sinh(λb)

sinh(λh)
+ 1

]
+

4C

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
ex1t(1 + x1τ)

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)

x2 [(1 + x2τ)2 + l]

]
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+
α

ν

[
(θ1 cos βt− θ2 sin βt) + βτ(θ1 sin βt + θ2 cos βt)

(α2
1 + α2

2)(F
2
1 + F 2

2 )(1 + β2τ 2)

]
+

4α

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
x1e

x1t(1 + x1τ)

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)

(x2
2 + β2) [(1 + x2τ)2 + l]

]
+ A

sinh λb

sinh λh

− 2Aπν

h2

∞∑
r=0

(−1)rr sin
rπb

h

[
ex1t(1 + x1τ)

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)

x2 [(1 + x2τ)2 + l]

]
Shearing Stress (Skin Friction): The Shear stress at the boundaries
b = 0, b = h are given by;

D0 =
C

νλ

[
cosh(λh)− 1

sinh(λh)

]
+

4C

h

∞∑
r=0

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
+

α[(k1α1 + k2α2) cos βt− (k2α1 − k1α2) sin βt]

ν(α2
1 + α2

2)(F
2
1 + F 2

2 )
+

A

cosh λh

+
4α

h

∞∑
r=0

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
− 2Aπ2ν

h3

∞∑
r=0

(−1)rr2

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]

Dh =
C

νλ

[
1− cosh(λh)

sinh(λh)

]
− 4C

h

∞∑
r=0

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]

− α[(k1α1 + k2α2) cos βt + (k1α2 − k2α1) sin βt]

ν(α2
1 + α2

2)(F
2
1 + F 2

2 )
+ A

− 4α

h

∞∑
r=0

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
− 2Aπ2ν

h3

∞∑
r=0

r2

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
Case-2: If n = 1, then the flow is due to uniformly accelerated motion of

plate, then by taking inverse Laplace transform to U and V, one can obtain
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the velocity profiles for fluid phase and dust phase as

us =
C

νλ2

[
sinh(λ(b− h))− sinh(λb)

sinh(λh)
+ 1

]
+

4C

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
+

α

ν

[
θ1 cos βt− θ2 sin βt

(α2
1 + α2

2)(F
2
1 + F 2

2 )

]
+

4α

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
+

A

2λν

[
(2tνλ sinh λb + lb cosh λb) sinh λh− lh sinh λb cosh λh

sinh2 λh

]
− 2Aπν

h2

∞∑
r=0

(−1)rr sin
rπb

h

[
ex1t(1 + x1τ)2

x2
1 [(1 + x1τ)2 + l]

+
ex2t(1 + x2τ)2

x2
2 [(1 + x2τ)2 + l]

]

vs =
C

νλ2

[
sinh(λ(b− h))− sinh(λb)

sinh(λh)
+ 1

]
+

4C

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
ex1t(1 + x1τ)

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)

x2 [(1 + x2τ)2 + l]

]
+

α

ν

[
(θ1 cos βt− θ2 sin βt) + βτ(θ1 sin βt + θ2 cos βt)

(α2
1 + α2

2)(F
2
1 + F 2

2 )(1 + β2τ 2)

]
+

4α

π

∞∑
r=0

1

(2r + 1)
sin

(
(2r + 1)π

h
b

)
×

[
x1e

x1t(1 + x1τ)

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)

(x2
2 + β2) [(1 + x2τ)2 + l]

]
+

A

2λν

·
[
(2tνλ sinh λb + lb cosh λb) sinh λh− (2τλν sinh λh + lh cosh λh) sinh λb

sinh2 λh

]

− 2Aπν

h2

∞∑
r=0

(−1)rr sin
rπb

h

[
ex1t(1 + x1τ)

x2
1 [(1 + x1τ)2 + l]

+
ex2t(1 + x2τ)

x2
2 [(1 + x2τ)2 + l]

]
Shearing Stress (Skin Friction): The Shear stress at the boundaries
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b = 0, b = h are given by;

D0 =
C

νλ

[
cosh(λh)− 1

sinh(λh)

]
+

4C

h

∞∑
r=0

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
+

α

ν

[
(k1α1 + k2α2) cos βt− (k2α1 − k1α2) sin βt

(α2
1 + α2

2)(F
2
1 + F 2

2 )

]
+ A

[
(2tνλ2 + l) sinh λh− λlhcoshλh

2λν sinh2 λh

]
+

4α

h

∞∑
r=0

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
− 2Aπ2ν

h3

∞∑
r=0

(−1)rr2

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
Dh =

C

νλ

[
1− cosh(λh)

sinh(λh)

]
− 4C

h

∞∑
r=0

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
− α

ν

[
(k1α1 + k2α2) cos βt− (k2α1 − k1α2) sin βt

(α2
1 + α2

2)(F
2
1 + F 2

2 )

]
+ A

[
(2tνλ2 + l) sinh λh− λlhcoshλh

2λν sinh2 λh

]
− 4α

h

∞∑
r=0

[
x1e

x1t(1 + x1τ)2

(x2
1 + β2) [(1 + x1τ)2 + l]

+
x2e

x2t(1 + x2τ)2

(x2
2 + β2) [(1 + x2τ)2 + l]

]
− 2Aπ2ν

h3

∞∑
r=0

r2

[
ex1t(1 + x1τ)2

x1 [(1 + x1τ)2 + l]
+

ex2t(1 + x2τ)2

x2 [(1 + x2τ)2 + l]

]
where

x1 = − 1

2τ

(
1 + l + Dτ + νCrτ + ντ

r2π2

h2

)
+

1

2τ

√(
1 + l + Dτ + νCrτ + ντ

r2π2

h2

)2

− 4τ

(
Crν + D + ν

r2π2

h2

)
x2 = − 1

2τ

(
1 + l + Dτ + νCrτ + ντ

r2π2

h2

)
− 1

2τ

√(
1 + l + Dτ + νCrτ + ντ

r2π2

h2

)2

− 4τ

(
Crν + D + ν

r2π2

h2

)
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E1 = sinh(β1(b− h)) cos(β2(b− h))− sinh(β1b) cos(β2b) + sinh β1h cos β2h,

E2 = cosh(β1(b− h)) sin(β2(b− h))− cosh(β1b) sin(β2b) + cosh β1h sin β2h,

F1 = sinh β1h cos β2h, F2 = cosh β1h sin β2h

θ1 = α1(E1F1 + E2F2) + α2(E2F1 − F2E1),

θ2 = α1(E2F1 − F2E1)− α2(E1F1 + E2F2),

α1 =

[
Cr +

D

ν
+

β2τ l

ν(1 + β2τ 2)

]
, α2 =

[
β

ν
+

βl

ν(1 + β2τ 2)

]

β1 =

√
α1 +

√
α2

1 + α2
2

2
, β2 =

√
α1 +

√
α2

1 + α2
2

2

R1 = −β2 sinh β1h sin β2h + β1 cosh β1h cos β2h− β1

R2 = β2 cosh β1h cos β2h + β1 sinh β1h sin β2h− β2

k1 = F1R1 + F2R2, k2 = F1R2 − F2R1, λ =
√

Cr + D/ν.

4. Conclusion

Figures 2 to 5 show the velocity profiles for the fluid and dust particles
respectively, which are parabolic. It is concluded that velocity of fluid parti-
cles is parallel to velocity of dust particles. Also it is evident from the graphs
that, as we increase the strength of the magnetic field it reduces the velocities
of fluid and dust particles. It means that it has an appreciable effect on the
velocities of the both the phases. One can observe that if the magnetic field
is zero then results are in agreement with the Couette flow. The velocity is
symmetrical with the centre of the channel. Further one can observe that if
the dust is very fine i.e., mass of the dust particles is negligibly small then
the relaxation time of dust particle decreases and ultimately as τ → 0 the
velocities of fluid and dust particles will be the same. Also we see that the
fluid particles will reach the steady state earlier than the dust particles.

Graphs are drawn for the following particular values
h = 1, r = 1, τ = 0.5, Cr = 1, l = 1, A = 100, ν = 0.5, D =
0.2, 0.4, 0.6, t = 0.2, β = 1.
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Figure 2: Variation of fluid velocity in case-1 versus b

Figure 3: Variation of dust phase velocity in case-1 versus b
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Figure 4: Variation of fluid velocity in case-2 versus b

Figure 5: Variation of dust phase velocity in case-2 versus b
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