AN UNIVALENCE CRITERIA FOR A CLASS OF INTEGRAL OPERATORS

HORIANA TUDOR

ABSTRACT. In this note it is proved, by the method of subordonation chains, a sufficient condition for the analyticity and the univalence of the functions defined by an integral operator.

1. INTRODUCTION

We denote by $U_r = \{ z \in C : |z| < r \}$ the disk of z-plane, where $r \in (0, 1], U_1 = U$ and $I = [0, \infty)$. Let A be the class of functions f analytic in U such that f(0) = 0, f'(0) = 1.

Theorem 1. ([1]) Let $f \in A$. If for all $z \in U$

$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1 \tag{1}$$

then the function f is univalent in U.

In order to prove our main result we need the theory of Löewner chains. A function $L: U \times I \longrightarrow C$ is called a Löewner chain if it is analytic and univalent in U and L(z, s) is subordinate to L(z, t), for all $0 \le s \le t < \infty$. Recall that a function $f: U \longrightarrow C$ is said to be subordinate to a function $g: U \to C$ (in symbols $f \prec g$) if there exists a function $w: U \longrightarrow U$ such that f(z) = g(w(z)) for all $z \in U$. We also recall the basic result of this theory, from Pommerenke.

Theorem 2. ([2]) Let $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots$, $a_1(t) \neq 0$ be analytic in U_r , for all $t \in I$, locally absolutely continuous in I and locally uniformly with respect to U_r . For almost all $t \in I$, suppose that

$$z\frac{\partial L(z,t)}{\partial z} = p(z,t)\frac{\partial L(z,t)}{\partial t}, \quad \forall z \in U_r,$$

where p(z,t) is analytic in U and satisfies the condition $\operatorname{Re} p(z,t) > 0$, for all $z \in U$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$, the function L(z,t) has an analytic and univalent extension to the whole disk U.

2. Main results

Theorem 3. Let $f \in A$ and α be a complex number, Re $\alpha > 0$. If the following inequalities

$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1 \tag{2}$$

and

$$\left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) |z|^{4\alpha} + \frac{1 - |z|^{4\alpha}}{2\alpha} \left[2 \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) - \alpha \right] +$$
(3)
$$\frac{(1 - |z|^{4\alpha})^2}{4\alpha^2 |z|^{4\alpha}} \left[\left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) + (1 - \alpha) \left(\frac{f(z)}{z} - 1 \right) \right] \right| \le 1$$

are true for all $z \in U \setminus \{0\}$, then the function F_{α} ,

$$F_{\alpha}(z) = \left(\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$
(4)

is analytic and univalent in U, where the principal branch is intended.

Proof. Let us prove that there exists a real number $r \in (0, 1]$ such that the function $L(z, t) : U_r \times I \longrightarrow C$, defined formally by

$$L(z,t) = \left[2\alpha \int_0^{e^{-t_z}} u^{\alpha-1} f'(u) du + \frac{(e^{4\alpha t} - 1)e^{(2-\alpha)t} z^{\alpha-2} f^2(e^{-t_z})}{1 - \frac{e^{4\alpha t} - 1}{2\alpha} \left(\frac{f(e^{-t_z})}{e^{-t_z}} - 1\right)}\right]^{1/\alpha}$$
(5)

is analytic in U_r , for all $t \in I$.

Because $f \in A$, it is easy to see that the function

$$g_1(z,t) = 2\alpha \int_0^{e^{-t_z}} u^{\alpha-1} f'(u) du ,$$

can be written as $g_1(z,t) = z^{\alpha} \cdot g_2(z,t)$, where $g_2(z,t)$ is analytic in U, for all $t \in I$, $g_2(0,t) = 2e^{-\alpha t}$. For all $t \in I$ and $z \in U$, the function

$$g_3(z,t) = 1 - \frac{e^{4\alpha t} - 1}{2\alpha} \left(\frac{f(e^{-t}z)}{e^{-t}z} - 1\right)$$

is analytic in U and $g_3(0,t) = 1$. Then there is a disk U_{r_1} , $0 < r_1 < 1$ in which $g_3(z,t) \neq 0$, for all $t \in I$. It follows that the function g_4 is also analytic in U_{r_1} , where

$$g_4(z,t) = g_2(z,t) + \frac{\left(e^{3\alpha t} - e^{-\alpha t}\right) \left(\frac{f(e^{-t}z)}{e^{-t}z}\right)^2}{g_3(z,t)}$$

and $g_4(0,t) = e^{3\alpha t} + e^{-\alpha t}$. From $Re\alpha > 0$ we deduce that $g_4(0,t) \neq 0$ for all $t \in I$. Therefore, there is a disk U_{r_2} , $0 < r_2 \leq r_1$ in which $g_4(z,t) \neq 0$, for all $t \in I$ and we can choose an analytic branch of $[g_4(z,t)]^{1/\alpha}$, denoted by g(z,t). We choose the uniform branch which is equal to $a_1(t) = (e^{3t\alpha} + e^{-\alpha t})^{1/\alpha}$ at the origin, and for $a_1(t)$ we fix a determination.

From these considerations it follows that the relation (5) may be written as

$$L(z,t) = z \cdot g(z,t) = a_1(t)z + a_2(t)z^2 + \dots$$

and is analytic in U_{r_2} , for all $t \in I$, $a_1(t) = e^{3t}(1 + e^{-4\alpha t})^{1/\alpha}$. We have $\lim_{t\to\infty} |a_1(t)| = \infty$ and $a_1(t) \neq 0$.

From the analyticity of L(z,t) in U_{r_2} , it follows that there is a number r_3 , $0 < r_3 < r_2$, and a constant $K = K(r_3)$ such that

$$|L(z,t)/e^t| < K, \qquad \forall z \in U_{r_3}, \quad t \in I,$$

and then $\{L(z,t)/e^t\}$ is a normal family in U_{r_3} . From the analyticity of $\partial L(z,t)/\partial t$, for all fixed numbers T > 0 and r_4 , $0 < r_4 < r_3$, there exists a constant $K_1 > 0$ (that depends on T and r_4) such that

$$\left| \frac{\partial L(z,t)}{\partial t} \right| < K_1, \quad \forall z \in U_{r_4}, \quad t \in [0,T].$$

It follows that the function L(z, t) is locally absolutely continuous in I, locally uniform with respect to U_{r_4} . We also have that the function

$$p(z,t) = z \frac{\partial L(z,t)}{\partial z} / \frac{\partial L(z,t)}{\partial t}$$

is analytic in U_r , $0 < r < r_4$, for all $t \in I$.

In order to prove that the function p(z,t) has an analytic extension, with positive real part in U, for all $t \in I$, it is sufficient to show that the function w(z,t) defined in U_r by

$$w(z,t) = \frac{p(z,t) - 1}{p(z,t) + 1}$$

can be continued analytically in U and that |w(z,t)| < 1 for all $z \in U$ and $t \in I$.

By simple calculations, we obtain

$$w(z,t) = \left(\frac{e^{-2t}z^2 f'(e^{-t}z)}{f^2(e^{-t}z)} - 1\right)e^{-4\alpha t} + \frac{1 - e^{-4\alpha t}}{2\alpha} \left[\left(2\frac{e^{-2t}z^2 f'(e^{-t}z)}{f^2(e^{-t}z)} - 1\right) - \alpha \right]$$

$$+\frac{(1-e^{-4\alpha t})^2}{4\alpha^2 e^{-4\alpha t}} \left[\left(\frac{e^{-2t} z^2 f'(e^{-t}z)}{f^2(e^{-t}z)} - 1 \right) + (1-\alpha) \left(\frac{f(e^{-t}z)}{e^{-t}z} - 1 \right) \right]$$
(6)

From (2) and (3) we deduce that the function w(z,t) is analytic in the unit disk and

$$|w(z,0)| = \left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1$$
(7)

We observe that w(0,t) = 0. Let t be a fixed number, t > 0, $z \in U$, $z \neq 0$. Since $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{U} = \{z \in C : |z| \leq 1\}$ we conclude that the function w(z,t) is analytic in \overline{U} . Using the maximum modulus principle it follows that for each t > 0, arbitrary fixed, there exists $\theta = \theta(t) \in R$ such that

$$|w(z,t)| < \max_{|\xi|=1} |w(\xi,t)| = |w(e^{i\theta},t)|,$$
(8)

We denote $u=e^{-t}\cdot e^{i\theta}$. Then $|u|=e^{-t}<1$ and from (6) we get

$$\begin{split} w(e^{i\theta},t) &= \left(\frac{u^2 f'(u)}{f^2(u)} - 1\right) |u|^{4\alpha} + \frac{1 - |u|^{4\alpha}}{2\alpha} \left[2\left(\frac{u^2 f'(u)}{f^2(u)} - 1\right) - \alpha \right] + \\ &\frac{(1 - |u|^{4\alpha})^2}{4\alpha^2 |u|^{4\alpha}} \left[\left(\frac{u^2 f'(u)}{f^2(u)} - 1\right) + (1 - \alpha)\left(\frac{f(u)}{u} - 1\right) \right]. \end{split}$$

Since $u \in U$, the inequality (3) implies $|w(e^{i\theta}, t)| \leq 1$ and from (7) and (8) we conclude that |w(z, t)| < 1 for all $z \in U$ and $t \geq 0$.

From Theorem 2.1 it results that the function L(z, t) has an analytic and univalent extension to the whole disk U, for each $t \in I$. For t = 0 we conclude that the function

$$L(z,0) = \left(2\alpha \int_0^z u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$

is analytic and univalent in U, and then the function defined by (4)

$$F_{\alpha}(z) = \left(\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$

is analytic and univalent in U.

Remark 1. The condition (2) of the Theorem 2.1 which is just Ozaki-Nunokawa's univalence criterion, assures the univalence of the function f. For $\alpha = 1/2$ we get

Corollary 1. Let $f \in A$. If the following inequalities

$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1 \tag{9}$$

and

$$\left| \left(\frac{z^2 f'(z)}{f^2(z)} - 1 \right) \frac{1}{|z|^2} - \frac{1 - |z|^2}{2} + \frac{(1 - |z|^2)^2}{2|z|^2} \left(\frac{f(z)}{z} - 1 \right) \right| \le 1$$
(10)

are true for all $z \in U \setminus \{0\}$, then the function

$$F(z) = \left(\int_0^z \frac{f'(u)}{2\sqrt{u}} du\right)^2 \tag{11}$$

is analytic and univalent in U.

Example 1. Let the function

$$f(z) = \frac{z}{1 - \frac{z^2}{4}}$$
(12)

Then f is univalent in U and the function F defined by (11) is analytic and univalent in U.

Proof. We have

$$\frac{z^2 f'(z)}{f^2(z)} - 1 = \frac{z^2}{4} \tag{13}$$

and

$$\frac{f(z)}{z} - 1 = \frac{z^2}{4 - z^2} \tag{14}$$

It is clear that the condition (2) of the Theorem 3.1 is satisfied, and then the function f is univalent in U.

Taking into account (13) and (14), the condition (10) of the Corollary 1 becomes

$$\left| \frac{z^2}{4} \cdot \frac{1}{|z|^2} - \frac{1 - |z|^2}{2} + \frac{(1 - |z|^2)^2}{2|z|^2} \left(\frac{z^2}{4 - z^2} \right) \right| \le \frac{1}{4} + \frac{1 - |z|^2}{2} + \frac{(1 - |z|^2)^2}{6} = \frac{1}{12} [2|z|^4 - 10|z|^2 + 11] < 1$$

because the greatest value of the function $g(x) = 2x^2 - 10x + 11$, for $x \in [0, 1]$ is taken for x = 0 and is g(0) = 11. Therefore the function F defined by (11) is analytic and univalent in U.

References

[1] S.Ozaki, M.Nunokawa, *The Schwartzian derivative and univalent functions*, Proc. Amer. Math. Soc. 33(2)(1972), 392-394. [2] Ch.Pommerenke, *Univalent function*, Vandenhoech Ruprecht in Göttingen, 1975.

Author:

Horiana Tudor Department of Mathematics "Transilvania" University of Braşov Faculty of Science Braşov Romania e-mail: