ON FIXED POINTS OF PSEUDOCONTRACTIVE MAPPINGS

Arif Rafiq, Ana Maria Acu

ABSTRACT. Suppose $E = L_p$ (or l_p), $p \ge 2$, and C is a nonempty closed convex subset of E. Let $T : C \to C$ be a continuous pseudocontractive mapping. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\delta_n\}$ be four real sequences, satisfying the following conditions:

(i) $0 \leq \alpha_n, \beta_n, \delta_n \leq 1, 0 < \gamma_n < 1;$ (ii) $\alpha_n + \beta_n + \gamma_n + \delta_n = 1;$ (iii) $\lim_{n \to \infty} \beta_n = 0 = \lim_{n \to \infty} \alpha_n;$ (iv) $\sum_{n=0}^{\infty} \frac{\alpha_n}{\alpha_n + \beta_n + \delta_n} = \infty;$ (v) $\delta_n = o(\alpha_n).$

For arbitrary initial value $x_1 \in C$ and a fixed anchor $u \in C$, the sequence $\{x_n\}$ is defined by $x_n = \alpha_n u + \beta_n x_{n-1} + \gamma_n T x_n + \delta_n u_n, n \ge 1$, where $\{u_n\}$ is abounded sequence of error terms. Then $\{x_n\}$ converges strongly to a fixed point of T.

2000 Mathematics Subject Classification: 47H10.

Keywords and phrases: L_p (or l_p), $p \ge 2$ spaces, Mann type implicit iteration process with errors, pseudocontractive mappings.

1. INTRODUCTION

Let E be a real Banach space and E^* be its dual space. The normalized duality mapping $J: E \to 2^{E^*}$ is defined as

$$J(x) := \left\{ x^* \in E^*; \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \right\}.$$

Let C a closed convex subset of E. The mapping $T: C \to C$ is called pseudocontractive if

$$||x - y|| \le ||x - y + t((I - T)x - (I - T)y)||$$

holds for every $x, y \in C$ and t > 0. An equivalent definition of pseudocontractive mappings is due to Kato [3],

$$\langle Tx - Ty, j(x - y) \rangle \le ||x - y||^2,$$

for $x, y \in C$ and $j(x - y) \in J(x - y)$.

Let $U = \{x \in E : ||x|| = 1\}$ denote the unit sphere of E. The norm on E is said to be Gateaux differentiable if the

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t},\tag{1}$$

exist for each $x, y \in U$ and in this case E is said to be smooth. E is said to have a uniformly Frechet differentiable norm if the limit (1) is attained uniformly for $x, y \in U$ and in this case E is said to be uniformly smooth. It is well known that if E is uniformly smooth then the duality mapping is norm-to-norm uniformly continuous on bounded subset of E.

Very recently, Yao et al. [5], introduced the following iterative scheme: Let C be a closed convex subset of real Banach space E and $T: C \to C$ be a mapping. Define $\{x_n\}$ in the following way:

$$x_1 \in C,$$

$$x_n = \alpha_n u + \beta_n x_{n-1} + \gamma_n T x_n, \ n \ge 1,$$
(2)

where u is an anchor and $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are three real sequences in (0, 1) satisfying some appropriate conditions.

The following theorem is due to Yao et al. [5].

Theorem 1. Let C be a nonempty closed convex subset of a real uniformly smooth Banach space E. Let $T : C \to C$ be a continuous pseudocontractive mapping. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be three real sequences in (0, 1) satisfying the following conditions:

(i)
$$\alpha_n + \beta_n + \gamma_n = 1;$$

(ii) $\lim_{n \to \infty} \beta_n = 0$ and $\lim_{n \to \infty} \frac{\alpha_n}{\beta_n} = 0;$

(*iii*)
$$\sum_{n=0}^{\infty} \frac{\alpha_n}{\alpha_n + \beta_n} = \infty.$$

For arbitrary initial value $x_1 \in C$ and fixed anchor $u \in C$, the sequence $\{x_n\}$ is defined by (2). Then $\{x_n\}$ converges strongly to a fixed point of T.

Suppose now $E = L_p$, (or l_p), $p \ge 2$, $C \subset E$ and j will always denote the single-valued normalized duality mapping of E into E^* .

In this paper, we modified the results of Yao et al. [5] for the implicit Mann type iteration process with errors, associated with pseudocontractive mappings to have the strong convergence in the setting of L_p (or l_p), $p \ge 2$ spaces.

We shall need the following results.

Lemma 1. [2] For the Banach space $E = L_p$, (or l_p), $p \ge 2$, the following inequality holds for all x, y in E:

$$||x+y||^{2} \le (p-1) ||x||^{2} + ||y||^{2} + 2\langle x, j(y) \rangle.$$

Lemma 2. [4] Let β_n be a nonnegative sequence satisfying

$$\beta_{n+1} \le (1 - \delta_n)\beta_n + \sigma_n,$$

with $\delta_n \in [0,1]$, $\sum_{i=1}^{\infty} \delta_i = \infty$, and $\sigma_n = o(\delta_n)$. Then $\lim_{n \to \infty} \beta_n = 0$.

2. Main results

Now we prove our main results.

Theorem 2. Suppose $E = L_p$ (or l_p), $p \ge 2$, and C is a nonempty closed convex subset of E. Let $T : C \to C$ be a continuous pseudocontractive mapping. Let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\delta_n\}$ be four real sequences, satisfying the following conditions:

$$\begin{array}{ll} (i) & 0 \leq \alpha_n, \beta_n, \delta_n \leq 1, \ 0 < \gamma_n < 1; \\ (ii) & \alpha_n + \beta_n + \gamma_n + \delta_n = 1; \\ (iii) & \lim_{n \to \infty} \beta_n = 0 = \lim_{n \to \infty} \alpha_n; \\ (iv) & \sum_{\substack{n=0\\n=0}}^{\infty} \frac{\alpha_n}{\alpha_n + \beta_n + \delta_n} = \infty; \\ (v) & \delta_n = o(\alpha_n). \end{array}$$

For arbitrary initial value $x_1 \in C$ and a fixed anchor $u \in C$, the sequence $\{x_n\}$ is defined by

$$x_1 \in C,$$

$$x_n = \alpha_n u + \beta_n x_{n-1} + \gamma_n T x_n + \delta_n u_n, n \ge 1,$$
(3)

where $\{u_n\}$ is abounded sequence of error terms. Then $\{x_n\}$ converges strongly to a fixed point of T.

Proof. Indeed, suppose we take a fixed point x^* of T. Since $\{u_n\}$ is a bounded sequence of error terms, set $M_1 = \sup_{n \ge 1} ||u_n - x^*||$. First, we show that $\{x_n\}$ is bounded. Consider

$$\begin{aligned} x_n - x^* &= (1 - \gamma_n) \left(\frac{\alpha_n}{1 - \gamma_n} u + \frac{\beta_n}{1 - \gamma_n} x_{n-1} + \frac{\delta_n}{1 - \gamma_n} u_n \right) + \gamma_n T x_n - x^* \\ &= (1 - \gamma_n) \left[\frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\beta_n}{1 - \gamma_n} (x_{n-1} - x^*) \right. \\ &+ \frac{\delta_n}{1 - \gamma_n} (u_n - x^*) \right] + \gamma_n (T x_n - x^*). \end{aligned}$$

It follows that

$$\begin{aligned} \|x_{n} - x^{*}\|^{2} &= \langle x_{n} - x^{*}, j(x_{n} - x^{*}) \rangle \\ &= \langle (1 - \gamma_{n}) \left[\frac{\alpha_{n}}{1 - \gamma_{n}} (u - x^{*}) + \frac{\beta_{n}}{1 - \gamma_{n}} (x_{n-1} - x^{*}) \right. \\ &+ \left. \frac{\delta_{n}}{1 - \gamma_{n}} (u_{n} - x^{*}) \right] + \gamma_{n} (Tx_{n} - x^{*}), j(x_{n} - x^{*}) \rangle \\ &= (1 - \gamma_{n}) \left\langle \frac{\alpha_{n}}{1 - \gamma_{n}} (u - x^{*}) + \frac{\beta_{n}}{1 - \gamma_{n}} (x_{n-1} - x^{*}) \right. \\ &+ \left. \frac{\delta_{n}}{1 - \gamma_{n}} (u_{n} - x^{*}), j(x_{n} - x^{*}) \right\rangle + \gamma_{n} \langle Tx_{n} - x^{*}, j(x - x^{*}) \rangle \\ &\leq (1 - \gamma_{n}) \left\| \frac{\alpha_{n}}{1 - \gamma_{n}} (u - x^{*}) + \frac{\beta_{n}}{1 - \gamma_{n}} (x_{n-1} - x^{*}) \right. \\ &+ \left. \frac{\delta_{n}}{1 - \gamma_{n}} (u_{n} - x^{*}) \right\| \|x_{n} - x^{*}\| + \gamma_{n} \|x_{n} - x^{*}\|^{2}, \end{aligned}$$

implies

$$\begin{aligned} \|x_{n} - x^{*}\| &\leq \left\| \frac{\alpha_{n}}{1 - \gamma_{n}} (u - x^{*}) + \frac{\beta_{n}}{1 - \gamma_{n}} (x_{n-1} - x^{*}) + \frac{\delta_{n}}{1 - \gamma_{n}} (u_{n} - x^{*}) \right\| &(4) \\ &\leq \left\| \frac{\alpha_{n}}{1 - \gamma_{n}} \|u - x^{*}\| + \frac{\beta_{n}}{1 - \gamma_{n}} \|x_{n-1} - x^{*}\| + \frac{\delta_{n}}{1 - \gamma_{n}} \|u_{n} - x^{*}\| \\ &\leq \left\| \frac{\alpha_{n}}{1 - \gamma_{n}} \|u - x^{*}\| + \frac{\beta_{n}}{1 - \gamma_{n}} \|x_{n-1} - x^{*}\| + M_{1} \frac{\delta_{n}}{1 - \gamma_{n}} \\ &\leq \max \left\{ \|u - x^{*}\|, \|x_{n-1} - x^{*}\|, M_{1} \right\}. \end{aligned}$$

Now, induction yields

$$||x_n - x^*|| \le \max\{||u - x^*||, ||x_1 - x^*||, M_1\},\$$

implies $\{x_n\}$ is bounded and so is $\{Tx_n\}$. Let

$$M = \sup_{n \ge 1} \|x_n - x^*\| + \sup_{n \ge 1} \|Tx_n - x^*\| + M_1.$$

Finally, we prove that $x_n \to x^*$. Since $\delta_n = o(\alpha_n)$, implies there exist a sequence $\{t_n\}$ such that $t_n \to 0$ as $n \to \infty$ and $\delta_n = t_n \alpha_n$. Now

$$\left\| \frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\delta_n}{1 - \gamma_n} (u_n - x^*) \right\| \le \frac{\alpha_n}{1 - \gamma_n} \|u - x^*\| + \frac{\delta_n}{1 - \gamma_n} \|u_n - x^*\| (5)$$
$$\le \frac{\alpha_n}{1 - \gamma_n} \|u - x^*\| + M \frac{\delta_n}{1 - \gamma_n} = \frac{\alpha_n}{1 - \gamma_n} (\|u - x^*\| + M t_n).$$

67

From Lemma 1 and relations (4), (5), we have

$$\begin{split} \|x_n - x^*\|^2 &= \left\| \frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\beta_n}{1 - \gamma_n} (x_{n-1} - x^*) + \frac{\delta_n}{1 - \gamma_n} (u_n - x^*) \right\|^2 \\ &\leq \left(\frac{\beta_n}{1 - \gamma_n} \right)^2 \|x_{n-1} - x^*\|^2 + (p-1) \left\| \frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\delta_n}{1 - \gamma_n} (u_n - x^*) \right\|^2 \\ &+ 2 \left\langle \frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\delta_n}{1 - \gamma_n} (u_n - x^*), j \left(\frac{\beta_n}{1 - \gamma_n} (x_{n-1} - x^*) \right) \right\rangle \right\rangle \\ &\leq \left(1 - \frac{\alpha_n}{1 - \gamma_n} \right) \|x_{n-1} - x^*\|^2 + (p-1) \left\| \frac{\alpha_n}{1 - \gamma_n} (u - x^*) \right\| \\ &+ \left. 2 \frac{\beta_n}{1 - \gamma_n} \left\| \frac{\alpha_n}{1 - \gamma_n} (u - x^*) + \frac{\delta_n}{1 - \gamma_n} (u_n - x^*) \right\| \|x_{n-1} - x^*\| \\ &\leq \left(1 - \frac{\alpha_n}{1 - \gamma_n} \right) \|x_{n-1} - x^*\|^2 + (p-1) \left(\frac{\alpha_n}{1 - \gamma_n} \right)^2 (\|u - x^*\| + Mt_n)^2 \\ &+ \left. 2M \frac{\alpha_n \beta_n}{(1 - \gamma_n)^2} (\|u - x^*\| + Mt_n) \right\| \\ &= \left(1 - \frac{\alpha_n}{1 - \gamma_n} \right) \|x_{n-1} - x^*\|^2 + \frac{\alpha_n}{1 - \gamma_n} \eta_n, \end{split}$$

where

$$\eta_n = \left[(p-1)\frac{\alpha_n}{1-\gamma_n} \left(\|u-x^*\| + Mt_n \right) + 2M\frac{\beta_n}{1-\gamma_n} \right] \left(\|u-x^*\| + Mt_n \right).$$

Now according to Lemma 2, we have $x_n \to x^*$.

Remark 1. Our results are true for L_p (or l_p), $p \ge 2$ space (Banach spaces) instead of uniformly smooth Banach spaces.

References

[1] F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach space, Bull. Amer. Math. Soc. 73 (1967), 875-882.

[2] C. E. Chidume, Iterative approximation of fixed point of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288.

[3] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19(1967), 508-520.

[4] X. L. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.

[5] Y. Yao et al., Strong convergence of an iterative algorithm for pseudo contractive mapping in Banach space, Nonlinear Anal. 67 (2007), 3311-3317.

Authors:

Arif Rafiq

Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan e-mail:*arafiq@comsats.edu.pk*

Ana Maria Acu Department of Mathematics "Lucian Blaga" University Sibiu, Romania e-mail:*acuana77@yahoo.com*

69