ON FIXED POINTS OF PSEUDOCONTRACTIVE MAPPINGS

Arif Rafiq, Ana Maria Acu

Abstract

the following conditions: (i) $0 \leq \alpha_{n}, \beta_{n}, \delta_{n} \leq 1,0<\gamma_{n}<1$; (ii) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$; (iii) $\lim _{n \rightarrow \infty} \beta_{n}=0=\lim _{n \rightarrow \infty} \alpha_{n}$; (iv) $\sum_{n=0}^{\infty} \frac{\alpha_{n}}{\alpha_{n}+\beta_{n}+\delta_{n}}=\infty$; (v) $\delta_{n}=o\left(\alpha_{n}\right)$.

Abstract. Suppose $E=L_{p}\left(\right.$ or $\left.l_{p}\right), p \geq 2$, and C is a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a continuous pseudocontractive mapping. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be four real sequences, satisfying

For arbitrary initial value $x_{1} \in C$ and a fixed anchor $u \in C$, the sequence $\left\{x_{n}\right\}$ is defined by $x_{n}=\alpha_{n} u+\beta_{n} x_{n-1}+\gamma_{n} T x_{n}+\delta_{n} u_{n}, n \geq 1$, where $\left\{u_{n}\right\}$ is abounded sequence of error terms. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

2000 Mathematics Subject Classification: 47H10.
Keywords and phrases: L_{p} (or l_{p}), $p \geq 2$ spaces, Mann type implicit iteration process with errors, pseudocontractive mappings.

1. Introduction

Let E be a real Banach space and E^{*} be its dual space. The normalized duality mapping $J: E \rightarrow 2^{E^{*}}$ is defined as

$$
J(x):=\left\{x^{*} \in E^{*} ;\left\langle x, x^{*}\right\rangle=\|x\|^{2}=\left\|x^{*}\right\|^{2}\right\} .
$$

Let C a closed convex subset of E. The mapping $T: C \rightarrow C$ is called pseudocontractive if

$$
\|x-y\| \leq\|x-y+t((I-T) x-(I-T) y)\|,
$$

holds for every $x, y \in C$ and $t>0$. An equivalent definition of pseudocontractive mappings is due to Kato [3],

$$
\langle T x-T y, j(x-y)\rangle \leq\|x-y\|^{2}
$$

for $x, y \in C$ and $j(x-y) \in J(x-y)$.
Let $U=\{x \in E:\|x\|=1\}$ denote the unit sphere of E. The norm on E is said to be Gateaux differentiable if the

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}, \tag{1}
\end{equation*}
$$

exist for each $x, y \in U$ and in this case E is said to be smooth. E is said to have a uniformly Frechet differentiable norm if the limit (1) is attained uniformly for $x, y \in U$ and in this case E is said to be uniformly smooth. It is well known that if E is uniformly smooth then the duality mapping is norm-to-norm uniformly continuous on bounded subset of E.

Very recently, Yao et al. [5], introduced the following iterative scheme: Let C be a closed convex subset of real Banach space E and $T: C \rightarrow C$ be a mapping. Define $\left\{x_{n}\right\}$ in the following way:

$$
\begin{align*}
& x_{1} \in C \\
& x_{n}=\alpha_{n} u+\beta_{n} x_{n-1}+\gamma_{n} T x_{n}, n \geq 1, \tag{2}
\end{align*}
$$

where u is an anchor and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three real sequences in $(0,1)$ satisfying some appropriate conditions.

The following theorem is due to Yao et al. [5].
Theorem 1. Let C be a nonempty closed convex subset of a real uniformly smooth Banach space E. Let $T: C \rightarrow C$ be a continuous pseudocontractive mapping. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be three real sequences in $(0,1)$ satisfying the following conditions:
(i) $\alpha_{n}+\beta_{n}+\gamma_{n}=1$;
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\lim _{n \rightarrow \infty} \frac{\alpha_{n}}{\beta_{n}}=0$;
(iii) $\sum_{n=0}^{\infty} \frac{\alpha_{n}}{\alpha_{n}+\beta_{n}}=\infty$.

For arbitrary initial value $x_{1} \in C$ and fixed anchor $u \in C$, the sequence $\left\{x_{n}\right\}$ is defined by (2). Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Suppose now $E=L_{p}$, (or $\left.l_{p}\right), p \geq 2, C \subset E$ and j will always denote the single-valued normalized duality mapping of E into E^{*}.

In this paper, we modified the results of Yao et al. [5] for the implicit Mann type iteration process with errors, associated with pseudocontractive mappings to have the strong convergence in the setting of L_{p} (or l_{p}), $p \geq 2$ spaces.

We shall need the following results.
Lemma 1. [2] For the Banach space $E=L_{p}$, (or l_{p}), $p \geq 2$, the following inequality holds for all x, y in E :

$$
\|x+y\|^{2} \leq(p-1)\|x\|^{2}+\|y\|^{2}+2\langle x, j(y)\rangle .
$$

Lemma 2. [4] Let β_{n} be a nonnegative sequence satisfying

$$
\beta_{n+1} \leq\left(1-\delta_{n}\right) \beta_{n}+\sigma_{n},
$$

with $\delta_{n} \in[0,1], \sum_{i=1}^{\infty} \delta_{i}=\infty$, and $\sigma_{n}=o\left(\delta_{n}\right)$. Then $\lim _{n \rightarrow \infty} \beta_{n}=0$.

2. Main Results

Now we prove our main results.
Theorem 2. Suppose $E=L_{p}$ (or l_{p}), $p \geq 2$, and C is a nonempty closed convex subset of E. Let $T: C \rightarrow C$ be a continuous pseudocontractive mapping. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\delta_{n}\right\}$ be four real sequences, satisfying the following conditions:
(i) $0 \leq \alpha_{n}, \beta_{n}, \delta_{n} \leq 1,0<\gamma_{n}<1$;
(ii) $\alpha_{n}+\beta_{n}+\gamma_{n}+\delta_{n}=1$;
(iii) $\lim _{n \rightarrow \infty} \beta_{n}=0=\lim _{n \rightarrow \infty} \alpha_{n}$;
(iv) $\sum_{n=0}^{\infty} \frac{\alpha_{n}}{\alpha_{n}+\beta_{n}+\delta_{n}}=\infty$;
(v) $\quad \delta_{n}=o\left(\alpha_{n}\right)$.

For arbitrary initial value $x_{1} \in C$ and a fixed anchor $u \in C$, the sequence $\left\{x_{n}\right\}$ is defined by

$$
\begin{align*}
& x_{1} \in C \\
& x_{n}=\alpha_{n} u+\beta_{n} x_{n-1}+\gamma_{n} T x_{n}+\delta_{n} u_{n}, n \geq 1 \tag{3}
\end{align*}
$$

where $\left\{u_{n}\right\}$ is abounded sequence of error terms. Then $\left\{x_{n}\right\}$ converges strongly to a fixed point of T.

Proof. Indeed, suppose we take a fixed point x^{*} of T. Since $\left\{u_{n}\right\}$ is a bounded sequence of error terms, set $M_{1}=\sup _{n \geq 1}\left\|u_{n}-x^{*}\right\|$. First, we show that $\left\{x_{n}\right\}$ is bounded. Consider

$$
\begin{aligned}
x_{n}-x^{*} & =\left(1-\gamma_{n}\right)\left(\frac{\alpha_{n}}{1-\gamma_{n}} u+\frac{\beta_{n}}{1-\gamma_{n}} x_{n-1}+\frac{\delta_{n}}{1-\gamma_{n}} u_{n}\right)+\gamma_{n} T x_{n}-x^{*} \\
& =\left(1-\gamma_{n}\right)\left[\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)\right. \\
& \left.+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right]+\gamma_{n}\left(T x_{n}-x^{*}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\|^{2} & =\left\langle x_{n}-x^{*}, j\left(x_{n}-x^{*}\right)\right\rangle \\
& =\left\langle(1 - \gamma _ { n }) \left[\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)\right.\right. \\
& \left.\left.+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right]+\gamma_{n}\left(T x_{n}-x^{*}\right), j\left(x_{n}-x^{*}\right)\right\rangle \\
& =\left(1-\gamma_{n}\right)\left\langle\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)\right. \\
& \left.+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right), j\left(x_{n}-x^{*}\right)\right\rangle+\gamma_{n}\left\langle T x_{n}-x^{*}, j\left(x-x^{*}\right)\right\rangle \\
& \leq\left(1-\gamma_{n}\right) \| \frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right) \\
& +\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\| \| x_{n}-x^{*}\left\|+\gamma_{n}\right\| x_{n}-x^{*} \|^{2}
\end{aligned}
$$

implies

$$
\begin{align*}
\left\|x_{n}-x^{*}\right\| & \leq\left\|\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right\| \tag{4}\\
& \leq \frac{\alpha_{n}}{1-\gamma_{n}}\left\|u-x^{*}\right\|+\frac{\beta_{n}}{1-\gamma_{n}}\left\|x_{n-1}-x^{*}\right\|+\frac{\delta_{n}}{1-\gamma_{n}}\left\|u_{n}-x^{*}\right\| \\
& \leq \frac{\alpha_{n}}{1-\gamma_{n}}\left\|u-x^{*}\right\|+\frac{\beta_{n}}{1-\gamma_{n}}\left\|x_{n-1}-x^{*}\right\|+M_{1} \frac{\delta_{n}}{1-\gamma_{n}} \\
& \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{n-1}-x^{*}\right\|, M_{1}\right\} .
\end{align*}
$$

Now, induction yields

$$
\left\|x_{n}-x^{*}\right\| \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|, M_{1}\right\},
$$

implies $\left\{x_{n}\right\}$ is bounded and so is $\left\{T x_{n}\right\}$. Let

$$
M=\sup _{n \geq 1}\left\|x_{n}-x^{*}\right\|+\sup _{n \geq 1}\left\|T x_{n}-x^{*}\right\|+M_{1} .
$$

Finally, we prove that $x_{n} \rightarrow x^{*}$. Since $\delta_{n}=o\left(\alpha_{n}\right)$, implies there exist a sequence $\left\{t_{n}\right\}$ such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\delta_{n}=t_{n} \alpha_{n}$. Now

$$
\begin{aligned}
& \left\|\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right\| \leq \frac{\alpha_{n}}{1-\gamma_{n}}\left\|u-x^{*}\right\|+\frac{\delta_{n}}{1-\gamma_{n}}\left\|u_{n}-x^{*}\right\|(5) \\
& \leq \frac{\alpha_{n}}{1-\gamma_{n}}\left\|u-x^{*}\right\|+M \frac{\delta_{n}}{1-\gamma_{n}}=\frac{\alpha_{n}}{1-\gamma_{n}}\left(\left\|u-x^{*}\right\|+M t_{n}\right) .
\end{aligned}
$$

From Lemma 1 and relations (4), (5), we have

$$
\begin{aligned}
\left\|x_{n}-x^{*}\right\|^{2} & =\left\|\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right\|^{2} \\
& \leq\left(\frac{\beta_{n}}{1-\gamma_{n}}\right)^{2}\left\|x_{n-1}-x^{*}\right\|^{2}+(p-1)\left\|\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right\|^{2} \\
& +2\left\langle\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right), j\left(\frac{\beta_{n}}{1-\gamma_{n}}\left(x_{n-1}-x^{*}\right)\right)\right\rangle \\
& \leq\left(1-\frac{\alpha_{n}}{1-\gamma_{n}}\right)\left\|x_{n-1}-x^{*}\right\|^{2}+(p-1) \| \frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right) \\
& +\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right) \|^{2} \\
& +2 \frac{\beta_{n}}{1-\gamma_{n}}\left\|\frac{\alpha_{n}}{1-\gamma_{n}}\left(u-x^{*}\right)+\frac{\delta_{n}}{1-\gamma_{n}}\left(u_{n}-x^{*}\right)\right\|\left\|x_{n-1}-x^{*}\right\| \\
& \leq\left(1-\frac{\alpha_{n}}{1-\gamma_{n}}\right)\left\|x_{n-1}-x^{*}\right\|^{2}+(p-1)\left(\frac{\alpha_{n}}{1-\gamma_{n}}\right)^{2}\left(\left\|u-x^{*}\right\|+M t_{n}\right)^{2} \\
& +2 M \frac{\alpha_{n} \beta_{n}}{\left(1-\gamma_{n}\right)^{2}}\left(\left\|u-x^{*}\right\|+M t_{n}\right) \\
& =\left(1-\frac{\alpha_{n}}{1-\gamma_{n}}\right)\left\|x_{n-1}-x^{*}\right\|^{2}+\frac{\alpha_{n}}{1-\gamma_{n}} \eta_{n},
\end{aligned}
$$

where

$$
\eta_{n}=\left[(p-1) \frac{\alpha_{n}}{1-\gamma_{n}}\left(\left\|u-x^{*}\right\|+M t_{n}\right)+2 M \frac{\beta_{n}}{1-\gamma_{n}}\right]\left(\left\|u-x^{*}\right\|+M t_{n}\right) .
$$

Now according to Lemma 2, we have $x_{n} \rightarrow x^{*}$.
Remark 1. Our results are true for L_{p} (or l_{p}), $p \geq 2$ space (Banach spaces) instead of uniformly smooth Banach spaces.

References

[1] F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach space, Bull. Amer. Math. Soc. 73 (1967), 875-882.
[2] C. E. Chidume, Iterative approximation of fixed point of Lipschitzian strictly pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283-288.
[3] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19(1967), 508-520.
[4] X. L. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.
[5] Y. Yao et al., Strong convergence of an iterative algorithm for pseudo contractive mapping in Banach space, Nonlinear Anal. 67 (2007), 3311-3317.

Authors:

Arif Rafiq
Department of Mathematics
COMSATS Institute of Information Technology
Islamabad, Pakistan
e-mail:arafiq@comsats.edu.pk

Ana Maria Acu
Department of Mathematics
"Lucian Blaga" University
Sibiu, Romania
e-mail:acuana77@yahoo.com

