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1. Introduction

The Hestock-Kurzweil integral was independently introduced by Kurzweil and Hen-
stock in 1957 and 1958 respectively. The concept of Henstock integral [9] for real
valued functions was first defined by Henstock in 1963, and it is seen to be easier
and simpler than the McSchane integral [11], Lebesgue integral [10], Denjoy inte-
gral [6] and Perron integral [13]. Recently, there have been tremendous research in
the study of Henstock integral. Many authors have investigated Henstock integrals
dealing with certain valued functions on time scales. For instance, Peterson and
Thompson [14] introduced Henstock delta integral on time scales and gave some of
its basic properties. In [15], Thompson studied Henstock integrals on time scales.
Other studies of integrals on time scales can be found in [2, 3, 4, 5], [12] and [15]. The
study of Double Henstock integral on time scales has not received enough attention
in the literature. But, Afariogun et al. [1] recently studied Henstock-Kurzweil-
Stieltjes-♢-double integrals of interval-valued functions on time scales. For further
study of such valued-functions integrals and other important properties (see [7] and
[8]).
The aim of this paper is to introduce Henstock-Kurzweil double integral on time
scales which is a generalization of the Henstock-typed integrals in [7], [8], [9], and
[11]. Also, some basic properties of the integral are established with an example.
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The following concepts are important in T1 × T2. Let a, b ∈ T1, c, d ∈ T2, where
a < b, c < d, and R = [a, b)T1 × [c, d)T2 = {(t, s) : t ∈ [a, b), s ∈ [c, d), t ∈ T1, s ∈ T2}.
Let F : T1 × T2 → R be bounded on R. Let P1 and P2 be two partitions of
[a, b]T1 and [c, d]T2 such that P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 and P2 = {s0, s1, ..., sn} ⊂
[c, d]T2 . Let {ξ1, ξ2, ..., ξn} denote an arbitrary selection of points from [a, b]T1 with
ξi ∈ [ti−1, ti)T1 , i = 1, 2, ..., n. Similarly, let {ζ1, ζ2, ..., ζn} denote an arbitrary selec-
tion of points from [c, d]T2 with ζj ∈ [sj−1, sj)T2 , j = 1, 2, ..., k.

Definition 1. [1] A pair δ = (δL, δR) of real-valued functions defined on [a, b]T1 ×
[c, d]T2 is said to be a ∆-gauge for [a, b]T1 × [c, d]T2 if

δL(t, s) > 0 on (a, b]T1 × (c, d]T2

δR(t, s) > 0 on [a, b)T1 × [c, d)T2

δL(a) ≥ 0, δR(b) ≥ 0 δL(c) ≥ 0 δR(d) ≥ 0

δR(t, s) ≥ σ(t, s)− (t, s) for all t ∈ [a, b)T1 , s ∈ [c, d)T2 .

A pair γ = (γL, γR) of real-valued functions defined on [a, b]T1 × [c, d]T2 is said to be
a ▽-gauge for [a, b]T1 × [c, d]T2 if

γL(t, s) > 0 on (a, b]T1 × (c, d]T2

γR(t, s) > 0 on [a, b)T1 × [c, d)T2

γL(a) ≥ 0, γR(b) ≥ 0, γL(c) ≥ 0, γR(d) ≥ 0

γR(t, s) ≥ (t, s)− ρ(t, s) for all t ∈ (a, b]T1 , s ∈ (c, d]T2

where the function σ : T → T defined by σ(t) = inf{s ∈ T : s > t} and the function
ρ(t) defined by ρ(t) = sup{s ∈ T : s < t} are respectively the forward and backward
jump operators.
Given a ∆-gauge δ and a ▽-gauge γ, the partitions P1 = {t0, t1, ..., tn} ⊂ [a, b]T1

with tag points ξi ∈ [ti−1, ti]T1 and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2 with tag points
ζj ∈ [sj−1, sj ]T2 , j = 1, 2, ..., k, is said to be:

• δ-fine if (ξi, ζj)− δL ≤ (ti−1, sj−1) < (ti, sj) ≤ ((ξi, ζj) + δR(ξi, ζj)) and
• γ-fine if (ξi, ζj)− γL ≤ (ti−1, sj−1) < (ti, sj) ≤ ((ξi, ζj) + γR(ξi, ζj)).

Definition 2. [1] Let F : [a, b)T1 × [c, d)T2 → R be a real-valued function on R
with partitions P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i =
1, 2, ..., n and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2 with tag points ζj ∈ [sj−1, sj ]T2 for j =
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1, 2, ..., k. Then

S(P1, P2, F ) =
n∑

i=1

k∑
j=1

F (ξi, ζj)[(ti)− (ti−1)][((sj)− (sj−1)]

is defined as Henstock-Kurzweil double sum of F .

Let P = P1 × P2 and ♢ti♢tj = [(ti)− g1(ti−1)][(sj)− (sj−1)] where ♢ represents
either ∆ or ▽, then the Henstock-Kurzweil double sum of F is denoted by S(P, F )
is written as

S(P, F ) =
n∑

i=1

k∑
j=1

F (ξi, ζj)♢ti♢sj , (i = 1, ..., n; j = 1, ..., k).

Definition 3. [2] Let F : [a, b)T1 × [c, d)T2 → R be a real-valued function on R =
[a, b)T1 × [c, d)T2. Then F is said to be Henstock-Kurzweil integrable if there exists a
number α ∈ R such that for every ε > 0, there are ♢-gauges δ1 and δ2 (or γ1 and γ2
) for [a, b)T1 and [c, d)T2 respectively such that

|S(P, F )− α| < ε

provided that P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i =
1, ..., n is a δ1-fine (or γ1) and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2 with tag points ζj ∈
[sj−1, sj ]T2 , j = 1, 2, ..., k is a δ2-fine (or γ2) are δ-fine (or γ) partitions of [a, b)T1 and [c, d)T2

respectively.

α is the Henstock-Kurzweil double integral of F defined on [a, b)T1 × [c, d)T2 , and
write ∫ ∫

R
F (t, s)dtds = α.

2. Main Results

Now our main results are as follows:

Theorem 1. If F : (a, b]T1 × (c, d]T2 → R is Henstock-Kurzweil double integrable on
(a, b]T1 × (c, d]T2, then the Henstock-Kurzweil double integral of F is unique.

Proof. Suppose that α1 and α2 are both Henstock-Kurzweil double integrals of F
on [a, b)T1 × [c, d)T2 . With the assumption that α1 and α2 are not unique, then F
is said to be Henstock-Kurzweil double integrable on (a, b]T1 × (c, d]T2 if it satisfies
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the following point wise integrability criterion: for every ε > 0 there are ♢-gauges
δ1 and δ2 (or γ1 and γ2) defined on (a, b]T1 and (c, d]T2 respectively, such that for
every ε > 0, there are ♢-gauges δ11 and δ12 (or γ11 and γ12) for [a, b)T1 and δ21 and δ22
(or γ21 and γ22) for [c, d)T2 such that

|S(P 1, F )− α1| <
ε

2
and |S(P 2, F )− α2| <

ε

2
for all pairs P 1 = P 1

1 × P 1
2 and

P 2 = P 2
1 × P 2

2 of δ1-fine (or γ1)

and for every ε > 0 and i ∈ {1, 2}, there are ♢-gauges δi1 and δi2 (or γi1 and γi2) for
[a, b)T1 and [c, d)T2 respectively such that

|S(P i, F )− αi| <
ε

2

provided that P i = P i
1 × P i

2 is a pair of δi1-fine (or γi1) and δi2-fine (or γi2) partitions
of [a, b)T1 and [c, d)T2 respectively.
Let δ1 = min{δ11 , δ21} i.e. (δ1)L = min{(δ11)L, (δ21)L} and (δ1)R = min{(δ11)R, (δ21)R}
and
δ2 = min{δ12 , δ22} i.e. (δ2)L = min{(δ12)L, (δ22)L} and (δ2)R = min{(δ12)R, (δ22)R}, δ1
and δ2 are ♢-gauges for (a, b]T1 and (c, d]T2 respectively, and given a pair P = P1×P2

of δ1-fine and δ2-fine partitions of [a, b)T1 and [c, d)T2 , P1 is a δ11-fine and δ21-fine
partition of (a, b]T1 , P2 is a δ12-fine and δ22-fine partition of [c, d)T2 , hence

|α1 − α2| ≤ |(α1 − S(P, F ) + S(P, F )− α2)|
≤ |S(P, F )− α1|+ |S(P, F, g)− α2|

<
ε

2
+

ε

2
= ε.

since for all ε > 0, there are ♢-gauges δ1 and δ2 (or γ1 and γ2), then it follows that
α1 = α2.
Hence, the Henstock-Kurzweil double integral of F on [a, b)T1 × [c, d)T2 is unique.

Theorem 2 (Bolzano Cauchy Criterion). .
Let F : (a, b]T1 × (c, d]T2 → R be a real-valued function over a rectangle (a, b]T1 ×
(c, d]T2. Then, F is Henstock-Kurzweil double integrable on (a, b]T1 × (c, d]T2 if and
only if for each ε > 0 there exists ♢-gauges δ1 and δ2 (or γ1 and γ2) for [a, b)T1 and
[c, d)T2 respectively, such that |S(P 1, F )− S(P 2, F )| < ε for all pairs P 1 = P 1

1 × P 1
2

and P 2 = P 2
1×P 2

2 of δ1 (or γ1)-fine partitions of [a, b)T1 and δ2 (or γ2)-fine partitions
of [c, d)T2.

Proof. Suppose F is Henstock-Kurzweil double integrable on (a, b]T1 × (c, d]T2 , and
let

α =

∫ ∫
R
F (t, s)dtds.
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Let ε > 0. There are ♢-gauges δ1 and δ2 for [a, b)T1 and [c, d)T2 respectively such

that |S(P, F, g) − α| < ε

2
provided that P = P1 × P2 where P1 is a δ1 (or γ1) fine

partition of [a, b)T1 and P2 is a δ2 (or γ2) fine partition of [c, d)T2 . Therefore, if
P = P1 ×P2 and P = P

′
1 ×P

′
2 are pairs of δ1 (or γ1) fine partition of [a, b)T1 and P2

is a δ2 (or γ2) fine partition of [c, d)T2 , then

|S(P, F )− S(P 1, F )| ≤ |S(P, F )− α|+ |α− S(P 1, F )|

<
ε

2
+

ε

2
= ε.

Conversely, suppose that for all ε > 0 there are ♢-gauges δ1 and δ2 (or γ1 and γ2)
for [a, b)T1 and [c, d)T2 respectively such that |S(P 1, F )−S(P 2, F )| < ε for all pairs
P 1 = P 1

1 × P 1
2 and P 2 = P 2

1 × P 2
2 of δ1 (or γ1)-fine partitions of [a, b)T1 and δ2 (or

γ2)-fine partitions of [c, d)T2 .

Let n ∈ N. Taking ε =
1

n
, there are ♢-gauges δ1,n and δ2,n (or γ1,n and γ2,n) for

[a, b)T1 and [c, d)T2 respectively such that |S(P ′
, F ) − S(P 2, F )| < ε for all pairs

P 1 = P 1
1 × P 1

2 and P 2 = P 2
1 × P 2

2 of δ1,n (or γ1,n)-fine partitions of [a, b)T1 and δ2,n
(or γ2,n)-fine partitions of [c, d)T2 .
By replacing δi,n by min{δi,1, δi,2, ..., δi,n} with i ∈ {1, 2}, we may assume that
δi,n+1 ≤ δi,n. Thus, for all j > n δi,j ≤ δi,n so any pair Pn = Pn

1 × Pn
2 of δ1,n

(or γ1,n)-fine partitions of [a, b)T1 and δ2,n (or γ2,n)-fine partitions of [c, d)T2 is also
a pair of δ1,j (or γ1,j)-fine partitions of [a, b)T1 and δ2,j (or γ2,j)-fine partitions of
[c, d)T2 , hence

|S(Pn, F )− S(P j , F )| < 1

j
.

This shows that {S(Pn, F )}n∈N is a Cauchy sequence.

Let α be the limit of {S(Pn, F )}n∈N. For all ε > 0, choosing N >
2

ε
, for ♢-gauges

δ1,N and δ2,N (or γ1,N and γ2,N ) for [a, b)T1 and [c, d)T2 respectively,

|S(P, F )− α| ≤ |S(P, F )− S(PN , F )|+ |S(PN , F )− α|

<
1

N
+

ε

2
<

ε

2
+

ε

2
= ε.

for pair P = P1×P2 such that P1 is a δ1,N (or γ1,N ) fine partition of [a, b)T1 and P2

is a δ2,N (or γ2,N ) fine partition of [c, d)T2 .

The next theorem gives the linearity properties of Henstock-Kurzweil double
integral on time scales.

Theorem 3. Let F and G be Henstock-Kurzweil double integrable on [a, b]T1 ×
[c, d]T2, then
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(i) λF is Henstock-Kurzweil double integrable on [a, b]T1 × [c, d]T2 for each λ ∈ R
with ∫ ∫

R
λF (t, s)dtds = λ

∫ ∫
R
F (t, s)dtds;

(ii) F +G is Henstock-Kurzweil double integrable on [a, b]T1 × [c, d]T2 with∫ ∫
R
[F (t, s) +G(t, s)]dtds =

∫ ∫
R
F (t, s)dtds+

∫ ∫
R
G(t, s)dtds.

Proof. (i). Let ε > 0. By assumption F is Henstock-Kurzweil integrable. So for
ε

|λ|
there are ♢-gauges δ1 and δ2 (or γ1 and γ2 ) for [a, b)T1 and [c, d)T2 respectively such
that ∣∣∣∣S(P, F )−

∫ ∫
R
F (t, s)dtds

∣∣∣∣ ≤ ε

|λ|
provided that P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i =
1, ..., n is a δ1-fine (or γ1) and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2 with tag points ζj ∈
[sj−1, sj ]T2 , j = 1, 2, ..., k is a δ2-fine (or γ2) are δ-fine (or γ) partitions of [a, b)T1 and [c, d)T2

respectively.
Now we have that

∣∣∣∣S(P, λF ) − λ

∫ ∫
R

F (t, s)dtds

∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

λF (ξi, ζj)[(ti) − (ti−1)][((sj) − (sj−1)] − λ

∫ ∫
R

F (t, s)dtds

∣∣∣∣∣∣
= |λ|

∣∣∣∣S(P, F ) − k

∫ ∫
R

F (t, s)dtds

∣∣∣∣
≤ |λ|

ε

|λ|
= ε.

Since ε > 0 was arbitrary, therefore λF is Henstock-Kurzweil double integrable on
[a, b]T1 × [c, d]T2 for each λ ∈ R with∫ ∫

R
λF (t, s)dtds = λ

∫ ∫
R
F (t, s)dtds.

(ii). Let ε > 0. By assumption F and G are Henstock-Kurzweil double integrable.

For
ε

2
there exist ♢-gauges δ1 and δ2 (or γ1 and γ2 ) for [a, b)T1 and [c, d)T2 respec-

tively such that ∣∣∣∣S(P1, F )−
∫ ∫

R
F (t, s)dtds

∣∣∣∣ ≤ ε

2

and ∣∣∣∣S(P2, G)−
∫ ∫

R
F (t, s)dtds

∣∣∣∣ ≤ ε

2

provided that P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points ξi ∈ [ti−1, ti]T1 for i =
1, ..., n is a δ1-fine (or γ1) and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2 with tag points ζj ∈
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[sj−1, sj ]T2 , j = 1, 2, ..., k is a δ2-fine (or γ2) are δ-fine (or γ) partitions of [a, b)T1 and [c, d)T2

respectively.
Now define δi,n by min{δi,1, δi,2, ..., δi,n} with i ∈ {1, 2}, we may assume that δi,n+1 ≤
δi,n. Thus, for all j > n δi,j ≤ δi,n so any pair Pn = Pn

1 × Pn
2 of δ1,n (or γ1,n)-fine

partitions of [a, b)T1 and δ2,n (or γ2,n)-fine partitions of [c, d)T2 is also a pair of δ1,j
(or γ1,j)-fine partitions of [a, b)T1 and δ2,j (or γ2,j)-fine partitions of [c, d)T2 , hence

S(F + G,P
n
) =

n∑
i=1

k∑
j=1

(F + G)(ξi, ζj)[(ti) − (ti−1)][((sj) − (sj−1)]

=
n∑

i=1

k∑
j=1

[F (ξi, ζj)[(ti) − (ti−1)][((sj) − (sj−1)] + G(ξi, ζj)[(ti) − (ti−1)][((sj) − (sj−1)]

=

n∑
i=1

k∑
j=1

F (ξi, ζj)[(ti)−(ti−1)][((sj)−(sj−1)]+
n∑

i=1

k∑
j=1

G(ξi, ζj)[(ti)−(ti−1)][((sj)−(sj−1)]

= S(F, P ) + S(G,P ).

For all ε > 0, choosing N >
2

ε
, for ♢-gauges δ1,N and δ2,N (or γ1,N and γ2,N ) for

[a, b)T1 and [c, d)T2 respectively. Then for pair P = P1 × P2 such that P1 is a δ1,N
(or γ1,N ) fine partition of [a, b)T1 and P2 is a δ2,N (or γ2,N ) fine partition of [c, d)T2 .
We have that ∣∣∣∣S(F +G,P )−

(∫ ∫
R
F (t, s)dtds+

∫ ∫
R
G(t, s)dtds

)∣∣∣∣
≤

∣∣∣∣S(P, F )−
∫ ∫

R
F (t, s)dtds

∣∣∣∣+ ∣∣∣∣S(P,G)−
∫ ∫

R
G(t, s)dtds

∣∣∣∣
≤ ε

2
+

ε

2
= ε.

Since ε > 0 was arbitrary, therefore F + G is Henstock-Kurzweil double integrable
on [a, b]T1 × [c, d]T2 with∫ ∫

R
[F (t, s) +G(t, s)]dtds =

∫ ∫
R
F (t, s)dtds+

∫ ∫
R
G(t, s)dtds.

This ends the proof.

Theorem 4 (Existence Theorem). Let F : [a, b]T1 × [c, d]T2 → R be a continu-
ous function and F is also be of bounded variation on [a, b]T1 × [c, d]T2, then F is
Henstock-Kurzweil double integrable on [a, b]T1 × [c, d]T2.
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Proof. Let ε > 0. Since F is of bounded variation, VarF ∈ R2. This means that
there exists M > 0 such that VarF (t, s) ≤ M for all t, s ∈ [a, b]T1 × [c, d]T2 . Since
F is continuous on [a, b]T1 × [c, d]T2 , for all t0, s0 ∈ [a, b]T1 × [c, d]T2 there exists a
positive δ0(t0, s0) such that whenever t, s ∈ [a, b]T1 × [c, d]T2 with

|(t, s)− (t0, s0)| < δ0,

we have
|(F (t, s)− F (t0, s0)| < ε.

Let a positive gauge δ be defined on [a, b]T1 × [c, d]T2 by δ =
δ0
2
, for all t, s ∈

[a, b]T1 × [c, d]T2 . Let

P1 = {([a, t1], ξ1), ([t1, t2], ξ2), ..., ([tn−1, b], ξn)} ⊂ [a, b]T1

and
P2 = {([c, s1], ζ1), ([s1, s2], ζ2), ..., ([sk−1, d], ζk)} ⊂ [c, d]T2

be δ-fine tagged divisions of [a, b]T1 × [c, d]T2 . Then, there exists a tagged divi-
sion P0 such that P1 < P0 and P2 < P0. Now, for every ([ti−1, ti], ξi) ∈ P1 and
([sj−1, sj ], ζj) ∈ P2; i = 1, 2, ..., n; j = 1, 2, ..., k. Now we have the difference

|(ti−1, sj−1)− (ti, sj)| = F (ξi, ζj)[(ti)− (ti−1))(sj)− (sj−1))]− S(F, Pi,j)

where

Pi,j =
{([

X
(i,j)
q−1 , X

(i,j)
q

]
, s

(i,j)
q

)
, X

(i,j)
0 = (ti−1, sj−1), X

(i,j)
mi

= (ti, sj), q−1 < mi,j

is a refinement of ([(ti−1, sj−1), (ti, sj)], (ξi, ζj)) in P0. Then

|(ti−1, sj−1)− (ti, sj)| =
n∑

i=1

k∑
j=1

mi,j∑
q=1

F (ξi, ζj)− F (s(i,j)q )

(
X(i,j)

q −X
(i,j)
q−1

)
.

Now, si,jq , (ξi, ζj) ∈ ((ti−1, sj−1), (ti, sj)) ⊆ (ξi, ζj)− δ(ξi, ζj), (ξi, ζj) + δ(ξi, ζj) which
implies that ∣∣(ξi, ζj)− si,jq

∣∣ ≤ |(ti−1, sj−1)− (ti, sj | < δ(ξi, ζj).

By continuity of F at (ξi, ζj),

| si,jq − (ξi, ζj) |< δ(ξi, ζj) =
δ0(ξi, ζj)

2
< δ0(ξi, ζj)

it implies that
|F (si,jq )− F (ξi, ζj)| < ε.
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So,

|(ti−1, sj−1)− (ti, sj)| =
n∑

i=1

k∑
j=1

mi,j∑
q=1

F (ξi, ζj)− F (s(i,j)q )

(
X(i,j)

q −X
(i,j)
q−1

)
.

Hence, by bounded variation of F , we have

|S(P, F )− S(P0, F )|

=

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

F (ξi, ζj)[(ti)− (ti−1)((sj)− (sj−1)]−
n∑

i=1

k∑
j=1

S(Pi,j , F )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

{F (ξi, ζj)[(ti)− (ti−1)((sj)− (sj−1)]− S(Pi,j , F )}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

|(ti−1, sj−1)− (ti, sj)|

∣∣∣∣∣∣
≤

n∑
i=1

k∑
j=1

||(ti−1, sj−1)− (ti, sj)||

=

n∑
i=1

k∑
j=1

∣∣∣∣∣∣
mi,j∑
q=1

F (ξi, ζj)− F (s(i,j)q )(F (X(i,j)
q − F (X

(i,j)
q−1 ))

∣∣∣∣∣∣
≤

n∑
i=1

k∑
j=1

mi,j∑
q=1

∣∣∣F (ξi, ζj)− F (s(i,j)q )(F (X(i,j)
q − F (X

(i,j)
q−1 ))

∣∣∣


≤
n∑

i=1

k∑
j=1

mi,j∑
q=1

ε

K

∣∣∣(F (X(i,j)
q − F (X

(i,j)
q−1 ))

∣∣∣


≤ ε

K
.

n∑
i=1

k∑
j=1

mi,j∑
q=1

∣∣∣(F (X(i,j)
q − F (X

(i,j)
q−1 ))

∣∣∣


≤ ε

K
.

n∑
i=1

k∑
j=1

V ar[F, (ti−1, sj−1), (ti, sj)]

=
ε

K
V arF <

ε

K
K = ε.

Similarly,
|S(Q,F )− S(P0, F )| < ε.
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Thus,

|S(P, F )− S(Q,F )| ≤ |S(P, F )− S(P0, F )|+ |S(P0, F )− S(Q,F )|
< ε+ ε

= 2ε.

By Cauchy criterion Theorem 2, F is Henstock-Kurzweil-Stieltjes-♢-double inte-
grable on [a, b]T1 × [c, d]T2 .

Example 1. Let F : [a, b)T1 × [c, d)T2 → IR be a Dirichlet function defined by:

F (t, s) =

{
[0, 1] if (t, s) ∈ Q2

[−1, 0] if (t, s) /∈ Q2.

Then F (t, s) is Henstock-Kurzweil double integrable with∫ b

a

∫ d

c
F (t, s)dtds = 0.

To show this, let ε > 0. Enumerate the rational numbers in [a, b]T1 as {r1, r2, ..., }
and enumerate the rational numbers in [a, b]T2 as {q1, q2, ..., }. Now, define a ∆-
gauge δ1ε-fine for [a, b]T1, the partition P1 = {t0, t1, ..., tn} ⊂ [a, b]T1 with tag points
ξi ∈ [ti−1, ti]T1 for i = 1, ..., n is a δ1ε-fine (or γ1ε) and P2 = {s0, s1, ..., sk} ⊂ [c, d]T2

with tag points ζj ∈ [sj−1, sj ]T2 , j = 1, 2, ..., k is a δ2ε-fine (or γ2ε) are δ-fine (or γ)
partitions of [a, b)T1 and [c, d)T2 respectively.
It follows from Definition 1, that δ1 = (δ1L, δ1R) and δ2 = (δ2L, δ2R), then

δ1R(t) = δ1L(t) =


√
ε

2i
if t = ri

1 if t /∈ {r1, r2, ...}.

Similarly,

δ2R(s) = δ2L(s) =


√
ε

2j
if s = qj

1 if s /∈ {q1, q2, ...}.

Let g1(t) =
t
2 , t ∈ [a, b]T1 and g2(s) = 2s, s ∈ [a, b]T2. Then,

♢ε(t, s) =


√
ε

2i
,

√
ε

2j
if (t, s) = ri, qj

1 if t /∈ {t1, t2, ...}, s /∈ {q1, q2, ...}.
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If ξi ∈ {r1, r2, ...} is a tag on [ti−1, ti] and ζi ∈ {q1, q2, ...} is a tag on [sj−1, sj ], then
F (ξi, ζj) = [0, 1] and

((ti)− (ti−1)) ((sj)− (sj−1)) ≤ ♢ε(ξi, ζj) =

√
ε

2i
.

√
ε

2j
.

Thus we have:

F (ξi, ζj)

(
(
1

2
ti)− (

1

2
ti−1)

)
((2sj)− (2sj−1)) ≤ ♢ε(ξi, ζj) =

√
ε

2i
.

√
ε

2j
≤ ε

2i+j
.

If ξi /∈ {r1, r2, ...} and ζj /∈ {q1, q2, ...} are tags on [ti−1, ti] and [sj−1, sj ] respectively,
then F (ξi, ζj) = [−1, 0] and

((ti)− (ti−1)) ((sj)− (sj−1)) ≤ ♢ε(ξi, ζj) = [0, 1].

Therefore,

F (ξi, ζj)

(
(
1

2
ti)− (

1

2
ti−1)

)
[(2sj)− (2sj−1)] ≤ ♢ε(ξi, ζj) = {0} = α.

So subintervals with tags ξi ∈ {r1, r2, ...} and ζj ∈ {q1, q2, ...} do not contribute
to the Henstock-Kurzweil sum S(F, P ). Let µ be the set of indices i, j such that
ξi ∈ {r1, r2, ...} and ζj ∈ {q1, q2, ...} and ν be the set of indices i, j such that ξi ∈
{r1, r2, ...} and ζj ∈ {q1, q2, ...}. We conclude that:

|S(F, P )− α| = |S(F, P )− {0}|

=

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

F (ξi, ζj) ((ti)− (ti−1)) ((sj)− (sj−1))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈µ

∑
j∈µ

F (ξi, ζj) ((ti)− (ti−1)) ((sj)− (sj−1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
i∈ν

∑
j∈ν

F (ξi, ζj) ((ti)− (ti−1)) ((sj)− (sj−1))

∣∣∣∣∣∣
≤

∞∑
i=1

∞∑
j=1

√
ε

2i
·
√
ε

2j

≤
∞∑
i=1

√
ε

2i

∞∑
j=1

√
ε

2j

≤ ε

∞∑
i=1

∞∑
j=1

1

2i+j
< ε.
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Since ε was arbitrary, which holds for all ε > 0, therefore the Dirichlet function
F (t, s) is Henstock-Kurzweil double integrable on [a, b)T1 × [c, d)T2 with∫ b

a

∫ d

c
F (t, s)dtds = 0.

3. Conclusion

We obtained uniqueness and existence results for Hentock-Kurzweil double integrals
on time scales. These results generalized the existing Hentock-typed integrals in
classical sense. An example is provided to support our result.
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