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THE BALANCING-LIKE SEQUENCES IN GROUPS

E. K. Çetinalp, N. Yılmaz, Ö. Deveci

Abstract. In this paper, we extend the balancing sequences to groups. In the
first part of paper, we study the balancing sequences in 2-generator groups and then
give some useful results concerning the periods of the balancing sequences in finite
groups. Also, we calculate the periods of balancing sequences in the polyhedral
groups (2, 2, 2), (n, n, 2), (2, n, 2) and (2, 2, n) with respect to the generating pair
(x, y). In the later part of the paper, to improve balancing sequences, we define the
k-step balancing sequences and examine the periods of these sequences when read
modulo m. Furthermore, we redefine the k-step balancing sequences by means of
group elements and then examine them in finite groups. Finally, we compute the
periods of the 3-step balancing sequences in the polyhedral groups (2, 2, 2), (2, 2, n),
(2, n, 2) and (2, 2, n) with respect to the generating triple (x, y, z) applications of the
results obtained.
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1. Introduction and Preliminaries

Since the beginning of time, mathematicians have been drawn to the study of number
sequences. Since then, a lot of them have focused their attention on the intriguing
topic of triangular numbers. In 1999, Behera and Panda [1] introduced the notion of
balancing numbers (Bn)n∈N as solutions to a certain Diophantine equation. Then,
the recurrence relation of this number is Bn+1 = 6Bn−Bn−1 for n ⩾ 1, where B0 =
0, B1 = 1. A study on the Lucas-balancing numbers Cn =

√
8B2

n + 1 was published
in 2006 by Panda [14]. The recurrence relation of this number is Cn+1 = 6Cn−Cn−1

for n ⩾ 1, where C0 = 1, C1 = 3. Also, the authors examined the periodicity of
these numbers in [15, 16].
Additionally, the matrices can be used to represent the balancing numbers and can
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be extended to related sequences. In [17], the author introduced balancing Q-matrix
as follows

Q =

(
6 −1
1 0

)
and gave a general formula for the nth powers of this matrix

Qn =

(
Bn+1 −Bn

Bn −Bn−1

)
.

Kalman [11] said that these sequences are particular examples of the sequence,
which is defined recursively as a linear combination of the preceding k-step terms:

an+k = c0an + c1an+1 + c2an+2 + · · ·+ ck−2an+k−2 + ck−1an+k−1,

where c0, c1, c2, . . . , ck−1 are real constants. In [11], Kalman derived a number of
closed-form formulas for the generalized sequence by companion matrix method as
follows:

Ak =



0 1 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 0 1
1 1 1 1 · · · 1 1 1


k×k

. (1)

By inductive argument it is obtained

An
k



a0
a1
a2
...

ak−2

ak−1


=



an
an+1

an+2
...

an+k−2

an+k−1


(2)

for n ≥ 0.
Let G be a finite k-generator group and let X be the subset of G×G× · · · ×G︸ ︷︷ ︸

k
such that x1, x2, . . . , xk ∈ X if and only if G is generated by x1, x2, . . . , xk. We call
(x1, x2, . . . , xk) a generating k-tuple for G.

For a finitely generated groupG = ⟨A⟩, where A = {a1, a2, . . . , an }, the sequence
xu = au+1, 0 ≤ u ≤ n− 1, xn+u =

n∏
v=1

xu+v−1, u ≥ 0 is called the Fibonacci orbit of

G with respect to the generating set A, denoted FA(G) (see [2, 3, 4]).
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A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group
elements x0, x1, x2, . . ., xn, . . . for which, given an initial (seed) set x0, x1, x2, . . .,
xj−1, each element is defined by

xn =

{
x0x1 · · ·xn−1 for j ≤ n < k,

xn−kxn−k+1 · · ·xn−1 for n ≥ k.

The k-nacci sequence is forced to mirror the structure of the group since we also
demand that the beginning elements of the sequence x0, x1, x2, . . ., xj−1 generate
the group. The k-nacci sequence of a group G generated by x0, x1, x2, . . ., xj−1 is
denoted by Fk (G;x0, x1, x2, . . . , xj−1) in [13].

Notice that the orbit of a k-generated group is a k-nacci sequence.

Definition 1. The polyhedral (triangle) group (l,m, n) for l,m, n > 1 is defined by
the presentation 〈

x, y, z | xl = ym = zn = xyz = 1
〉
,

or 〈
x, y | xl = ym = (xy)n = 1

〉
.

The polyhedral group (l,m, n) is finite if and only if the number

µ = lmn

(
1

l
+

1

m
+

1

n
− 1

)
= mn+ nl + lm− lmn

is positive, that is, in the cases (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5). Its order is
2lmn/µ. Also, A4, S4 and A5 are the groups (2, 3, 3), (2, 3, 4) and (2, 3, 5), respec-
tively. By using Tietze transformations, we may show that (l,m, n) ∼= (m,n, l) ∼=
(n, l,m). For more information on these groups see [5, 6].

A sequence is considered periodic if, after a given point, all it consists of is rep-
etitions of a predetermined subsequence. The period of the sequence is equal to the
number of elements in the repeating subsequence. In [18], the investigation of com-
mon Fibonacci sequences in cyclic groups served as the foundation for the research of
linear recurrence sequences in groups. Many writers have recently examined various
unique groupings of linear recurrence sequences; for instance, [7, 8, 9, 10, 12, 13, 19] .

In Section 2, we study the balancing sequences in 2-generator groups and obtain
some results concerning the periods of the balancing sequences in finite groups.
Then, we calculate the periods of balancing sequences in the polyhedral groups
(2, 2, 2), (n, n, 2), (2, n, 2) and (2, 2, n) with respect to the generating pair (x, y).
In Section 3, we define the k-step balancing sequences and examine the periods of
these sequences when read modulo m. Additionally, we redefine the k-step balancing
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sequences by means of group elements and then examine them in finite groups.
Finally, we compute the periods of the 3-step balancing sequences in the polyhedral
groups (2, 2, 2), (2, 2, n), (2, n, 2) and (2, 2, n) with respect to the generating triple
(x, y, z).

2. The Balancing Sequences in Finite Groups

In this section, we define the balancing orbit of a 2-generator group. Then, we obtain
some results concerning the periods of the balancing orbits of finite 2-generator
groups. Finally, we calculate the lengths of the periods of balancing orbits of the
polyhedral groups (2, 2, 2), (n, 2, 2), (2, n, 2) and (2, 2, n) for the generating pair
(x, y).

Definition 2. Let G be a 2-generator group. For the generating pair (x, y), we
define the balancing orbit of G is as follows:

x0 = x, x1 = y, xi+2 = x−1
i x6i+1, (i ≥ 0) .

For the generating pair (x, y), we denote the balancing orbit of the group G by
Bx,y(G).

Theorem 1. Let G be a 2-generator group and let (x, y) be a generating pair of G.
If G is finite, then the sequence Bx,y(G) is simply periodic.

Proof. Let n be the order of G. Since there n2 distinct 2-tuples of elements of G,
at least one of the 2-tuples appears twice in a balancing orbit of G. Thus, the
subsequence following this 2-tuples. Because of the repeating, the balancing orbit
is periodic. Since the balancing orbit periodic, there exist natural numbers i and j,
with i > j, such that xi+1 = xj+1 and xi+2 = xj+2. By the defining relation of a
balancing orbit, we know that

xi = (xi+1)
6(xi+2)

−1 and xj = (xj+1)
6(xj+2)

−1.

Then, from xi = xj and it follows that

xi−j = xj−i = x0 and xi−j+1 = xj−i+1 = x1.

Thus, the balancing orbit is simply periodic.

The length of the period of the balancing orbit Bx,y(G) is denoted by LB(G, x, y).
It is called the balancing length of G with respect to generating pair (x, y).
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Theorem 2. Let Zn and Zm be finite cyclic groups generated by x and y, respec-
tively. Then the balancing length of Zn × Zm equals the least common multiple of
the balancing lengths of the groups Zn and Zm.

Proof. For the groups Zn = ⟨x | xn = 1⟩ and Zm = ⟨y | ym = 1⟩, we get the presen-
tation of direct product Zn × Zm as followings〈

x, y | xn = ym = (xy)2 = 1
〉
.

The balancing orbit of Zn × Zm is

x0 = x, x1 = y, x2 = y6x−1, x3 = y35x−6, x4 = y204x−35, . . . .

Now the proof is finished when we note that the balancing orbit will repeat when
xα = x and xα+1 = y. By examining this statement in more detail gives

yB(α)x−B(α−1) = x,

yB(α+1)x−B(α) = y.

The least non-trivial integer satisfying the above conditions occurs when
α = lcm[kB(n), kB(m)] (kB(n) is defined as in [15]).

Now we compute the balancing lengths of polyhedral groups (2, 2, 2), (2, n, 2)
and (2, 2, n) for the generating pair (x, y).

Theorem 3. For n > 2, we obtain the balancing lengths of polyhedral groups (2, 2, 2),
(n, 2, 2), (2, n, 2) and (2, 2, n) as follows:

i) LB((2, 2, 2) , x, y) = LB((2, 2, n) , x, y) = 2,

ii) LB((2, n, 2) , x, y) = LB((n, 2, 2) , x, y) = 4.

Proof. i) The polyhedral group (2, 2, 2) defined by the presentation〈
x, y | x2 = y2 = (xy)2 = 1

〉
has the balancing orbit as follows:

x0 = x, x1 = y, x2 = x−1, x3 = y−1, . . . .

So, LB((2, 2, 2) , x, y) = 2. Similarly, the polyhedral group (2, 2, n) is presented by〈
x, y | x2 = y2 = (xy)n = 1

〉
. The balancing orbit of this group is

x0 = x, x1 = y, x2 = x, x3 = y, . . . .

Then, LB((2, 2, n) , x, y) = 2.
ii) The polyhedral group (2, n, 2) defined by the presentation

〈
x, y | x2 = yn = (xy)2 = 1

〉
has the balancing orbit as follows:

x0 = x, x1 = y, x2 = xy6, x3 = y−1, x4 = x, x5 = y, x6 = xy6, . . . .
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Then, LB((2, n, 2) , x, y) = 4. In a similar way, for the presentation〈
x, y | xn = y2 = (xy)2 = 1

〉
, we have following the balancing orbit:

x0 = x, x1 = y, x2 = x−1, x3 = yx−6, x4 = x, x5 = y, x6 = x−1, . . . .

So, LB((n, 2, 2) , x, y) = 4.

3. k-step Balancing Sequences

In this section, firstly, we define the k-step balancing sequences and its generating
matrix and then give the relationship between the elements of these sequences and
the generating matrix. Next, we study the k-step balancing sequences modulo m.
After that, we extend the concept to groups and then obtain the lengths of the
periods of the k-step balancing sequences in the polyhedral groups (2, 2, 2), (2, n, 2),
(n, 2, 2) and (2, 2, n) considering 3-generator case by the aid of the periods of some
special sequences according to modulo m.

Definition 3. The k-step balancing sequences are defined as

Bk(n+ k) = 6Bk(n+ k − 1)−Bk(n+ k − 2) +Bk(n+ k − 3) + · · ·+Bk(n), (3)

where Bk(u) = 0, Bk(k − 1) = 1, 0 ≤ u < k − 1 and n ≥ 0.

• By taking k = 2 in the equation (3), these sequences reduces to the usual
balancing sequence {B2(n)} in OEIS A001109.

In equation (3), we may write the following companion matrix:

Ck = [cij ]k×k =



6 −1 1 1 · · · 1 1 1
1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 1 0


.

The matrix Ck is said to be the k-step balancing matrix and we have

Bk(n)
Bk(n− 1)
Bk(n− 2)

...
Bk(n− k + 2)
Bk(n− k + 1)


=



6 −1 1 1 · · · 1 1 1
1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 1 0





Bk(n− 1)
Bk(n− 2)
Bk(n− 3)

...
Bk(n− k + 1)
Bk(n− k)


.
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By inductive argument, we can write

Cn
k =



Bk(n+ k − 1) Bk(n+ k)− 6Bk(n+ k − 1) · · · Bk(n+ k − 2)
Bk(n+ k − 2) Bk(n+ k − 1)− 6Bk(n+ k − 2) · · · Bk(n+ k − 3)
Bk(n+ k − 3) Bk(n+ k − 2)− 6Bk(n+ k − 3) · · · Bk(n+ k − 4)

...
...

. . .
...

Bk(n+ 1) Bk(n+ 2)− 6Bk(n+ 1) · · · Bk(n)
Bk(n) Bk(n+ 1)− 6Bk(n) · · · Bk(n− 1)


.

Then we get the following matrix relation:

Cn
k



0
0
0
...
0
1


=



Bk(n+ k − 2)
Bk(n+ k − 3)
Bk(n+ k − 4)

...
Bk(n)

Bk(n− 1)


for n ≥ 1.

3.1. k-step Balancing Sequences Modulo m

In this subsection, we study the k-step balancing sequences modulo m and then
show that they are simply periodic sequences for any k ≥ 3.

Reducing the k-step balancing sequences modulo m, we can get a repeating
sequence, denoted by

{Bk,m(n)} = {Bk,m(0), Bk,m(1), . . . , Bk,m(k), . . .}

where Bk,m(i) ≡ Bk(i) ( mod m) and it has the same recurrence relation as in (3).

Theorem 4. {Bk,m(n)} is a simply periodic sequence.

Proof. Let Ak+1 = {(a0, a1, . . . , ak) | 0 ≤ ai ≤ m− 1, 0 ≤ i ≤ k}. Since there mk+1

distinct of elements of Ak+1, then we have |Ak+1| = mk+1. For any i ≥ 0, there
exist j ≥ i+ k such that

Bk,m(i+1) = Bk,m(j+1), Bk,m(i+2) = Bk,m(j+2), . . . , Bk,m(i+p+1) = Bk,m(j+p+1),

where 0 ≤ p ≤ k − 1. From definition of the k-step balancing sequences we have
Bk(n) = Bk(n+k)−6Bk(n+k−1)+Bk(n+k−2)−Bk(n+k−3)−· · ·−Bk(n+1)
so if Bk,m(i) = Bk,m(j), Bk,m(i − 1) = Bk,m(j − 1), . . . , Bk,m(1) = Bk,m(j − i +
1), Bk,m(0) = Bk,m(j− i), which implies that these sequences are simply periodic.
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Example 1. We have

{B4,3(n)} = {0, 0, 0, 1, 0, 2, 1, 2, 1, 1, 2, 2, 0, 1, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 2, 1, 0, 0, 0, 1, 0, 2, . . .},

and then repeat. So, we get kB4,3(n) = 26.

Given any integer matrix A = [aij ]k×k, A (modm) means that all entries of A
are modulo m, that is A (modm) = (aij(modm)). Let us consider the set ⟨A⟩m =
{(A)n(modm) | n ≥ 0}. In here, If (detA,m) = 1, then the set ⟨A⟩m is a cyclic
group. Since detCn

k = (−1)n(k+1), the set ⟨Ck⟩m is a cyclic group for every positive
integer k > 2. From the above matrix relation, it is easy to see that the order of the
set ⟨Ck⟩m equals to the period of {Bk,m(n)}.

3.2. k-step Balancing Sequences in Groups

In this subsection, we redefine the k-step balancing sequences by means of group
elements and then examine them in finite groups. Further, we define some particular
sequences and determine the periods of those according to modulo m with respect
to various matrix relations. Finally, we give the lengths of the periods of the k-step
balancing sequences in the polyhedral groups (2, 2, 2), (2, n, 2), (n, 2, 2) and (2, 2, n)
for the generating triple (x, y, z) by using the periods of the defined those particular
sequences.

Let G be a 3-generator group. For the generating triple (x, y, z), we define the
balancing orbit of G is as follows:

x0 = x, x1 = y, x2 = z, xi+3 = xix
−1
i+1x

6
i+2, (i ≥ 0) .

For the generating triple (x, y, z), we denote the balancing orbit of the group G by
Bx,y,z(G).

Definition 4. A k-step balancing sequence in a finite group is a sequence of group
elements a0, a1, . . . , an, . . . , for which, given an initial set a0 = x0, a1 = x1, a2 =
x2, . . . , aj−1 = xj−1, aj = xj, each element is defined by

an =

{
a0a1a2 · · · an−3a

−1
n−2a

6
n−3 j < n < k

an−kan−k+1 · · · an−3a
−1
n−2a

6
n−3 n ≥ k

.

It is require that the initial elements of the sequence x0, x1, x2, . . . , xj−1 generate
the group, thus, forcing the k-step balancing sequences to reflect the structure of the
group. The k-step balancing sequences in a groupG generated by x0, x1, x2, . . . , xj−1

is denoted by Bx0,x1,...,xj−1 (G).

Theorem 5. A k-step balancing sequence in a finite group is periodic.
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Proof. Let G be a finite group and |G| be the order of G. Since there are |G|k+1

distinct k+1-tuples of elements of the groupG, at least one of the k+1-tuples appears
twice in a k-step balancing sequences in the group G. Because of the repeating, the
k-step balancing sequences are periodic.

Let LBx0,x1,...,xj−1 (G) denote the length of the period of the sequenceBx0,x1,...,xj−1 (G).
From the definitions, it is clear that the periods of the sequences Bx0,x1,...,xj−1 (G) for
i ≥ 2 depend on the chosen generating set and the order in which the assignments
of x0, x1, x2, . . . , xj−1.

Theorem 6. The group defined by the presentation
〈
x, y, z | x2 = y2 = z2 = xyz = 1

〉
has the balancing length LBx,y,z((2, 2, 2)) = 7.

Proof. It is important to note that x = zy, y = xz and z = xy. By a simple
calculation, we obtain the balancing orbit of the polyhedral (2, 2, 2) as shown:

x0 = x, x1 = y, x2 = z = xy, x3 = z, x4 = x, x5 = 1, x6 = zx, x7 = x, x8 = y, x9 = z, . . . .

So, Bx,y,z((2, 2, 2)) = 7.

In the following Theorem 7, 8 and Theorem 9, a generator matrix will be obtained
and the solution with cyclic groups will be provided to calculate the periods of the
k-step balancing sequences in the polyhedral groups (2, n, 2), (n, 2, 2) and (2, 2, n).

Consider the sequences

a0 = 0, a1 = 1, a2 = 1, an =



6an−1 − an−2 + an−3 if n ≡ 0 (7),
−an−2 + an−3 if n ≡ 1 (7),
6an−1 − an−2 + an−3 if n ≡ 2 (7),
−an−2 + an−3 if n ≡ 3 (7),
an−2 − an−3 if n ≡ 4 (7),
an−2 − an−3 if n ≡ 5 (7),
6an−1 + an−2 − an−3 if n ≡ 6 (7),

b0 = 1, b1 = 0, b2 = 1, bn =



−bn−2 + bn−3 if n ≡ 0 (7),
bn−2 − bn−3 if n ≡ 1 (7),

bn−2 − bn−3 if n ≡ 2 (7),
6bn−1 + bn−2 − bn−3 if n ≡ 3 (7),
6bn−1 − bn−2 + bn−3 if n ≡ 4 (7),
−bn−2 + bn−3 if n ≡ 5 (7),
6bn−1 + bn−2 − bn−3 if n ≡ 6 (7),
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and

c0 = 1, c1 = −1, c2 = 0, cn =



−cn−2 + cn−3 if n ≡ 0 (7),
−6cn−1 + cn−2 − cn−3 if n ≡ 1 (7),

cn−2 + cn−3 if n ≡ 2 (7),
cn−2 + cn−3 if n ≡ 3 (7),
−cn−2 + cn−3 if n ≡ 4 (7),

6cn−1 − cn−2 + cn−3 if n ≡ 5 (7),
−6cn−1 + cn−2 + cn−3 if n ≡ 6 (7),

where n ≥ 3. It is easy to prove that the sequences {an}, {bn} and {cn} for modulo
m are periodic. Reducing the sequences {an}, {bn} and {cn} by a modulus m, then
we get the repeating sequences, respectively denoted by

{an (m)} = {a0 (m) , a1 (m) , . . . aτ (m) , . . .} ,

{bn (m)} = {b0 (m) , b1 (m) , . . . bτ (m) , . . .}

and
{cn (m)} = {c0 (m) , c1 (m) , . . . cτ (m) , . . .} .

They have the same recurrence relation as in the definitions of the sequences {an},
{bn} and {cn}. We denote the lengths of the periods of the sequences {an (m)},
{bn (m)} and {cn (m)} by han (m), hbn (m) and hcn (m), respectively. Let us consider
the generating matrix

A1=A6=


0 −1 1
1 0 0
0 1 0

,A2=A3=


0 1 −1
1 0 0
0 1 0

,A4=A7=


6 1 −1
1 0 0
0 1 0

,A5=


6 −1 1
1 0 0
0 1 0

,

A
′
1=A

′
4=


6 1 −1
1 0 0
0 1 0

,A′
2=


6 −1 1
1 0 0
0 1 0

,A′
3=A

′
5=


0 −1 1
1 0 0
0 1 0

,A′
6=A

′
7=


0 1 −1
1 0 0
0 1 0


and

A
′′
1=A

′′
7=


0 1 1
1 0 0
0 1 0

,A′′
2=A

′′
5=


0 −1 1
1 0 0
0 1 0

,A′′
3=


6 −1 1
1 0 0
0 1 0

,A′′
4=A

′′
6=


−6 1 1
1 0 0
0 1 0

.

By direct calculation it is easy to see that the sequences {an}, {bn} and {cn} conform
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to the following patterns:

A1

 1
1
0

 =

 a3
a2
a1

 , A2A1

 1
1
0

 =

 a4
a3
a2

 , . . . , A7A6A5A4A3A2A1

 1
1
0

 =

 a9
a10
a11

 ,

A1A7A6 · · ·A1

 1
1
0

 =

 a10
a11
a12

 , . . . , A6A5 · · ·A1A7A6 · · ·A1

 1
1
0

 =

 a15
a16
a17

 ,

A7A6 · · ·A1A7A6 · · ·A1

 1
1
0

 =

 a16
a17
a18

 , A1A7A6 · · ·A1A7A6 · · ·A1

 1
1
0

 =

 a17
a18
a19

 , . . . ,

A
′

1

 1
0
1

 =

 b3
b2
b1

 , A
′

2A
′

1

 1
0
1

 =

 b4
b3
b2

 , . . . , A
′

7A
′

6 · · ·A
′

1

 1
0
1

 =

 b9
b10
b11

 ,

A
′

1A
′

7A
′

6 · · ·A
′

1

 1
0
1

 =

 b10
b11
b12

 , . . . , A
′

6A
′

5 · · ·A
′

1A
′

7A
′

6 · · ·A
′

1

 1
0
1

 =

 b15
b16
b17

 ,

A
′

7A
′

6 · · ·A
′

1A
′

7A
′

6 · · ·A
′

1

 1
0
1

 =

 b16
b17
b18

 , A
′

1A
′

7A
′

6 · · ·A
′

1A
′

7A
′

6 · · ·A
′

1

 1
0
1

 =

 b17
b18
b19

 , . . .

and

A
′′

1

 1
−1
0

 =

 c3
c2
c1

 , A
′′

2A
′′

1

 1
−1
0

 =

 c4
c3
c2

 , . . . , A
′′

7A
′′

6 · · ·A
′′

1

 1
−1
0

 =

 c9
c10
c11

 ,

A
′′

1A
′′

7A
′′

6 · · ·A
′′

1

 1
−1
0

 =

 c10
c11
c12

 , . . . , A
′′

6A
′′

5 · · ·A
′′

1A
′′

7A
′′

6 · · ·A
′′

1

 1
−1
0

 =

 c15
c16
c17

 ,

A
′′

7A
′′

6 · · ·A
′′

1A
′′

7A
′′

6 · · ·A
′′

1

 1
−1
0

 =

 c16
c17
c18

 , A
′′

1A
′′

7A
′′

6 · · ·A
′′

1A
′′

7A
′′

6 · · ·A
′′

1

 1
−1
0

 =

 c17
c18
c19

 , . . . .

Suppose thatA7A6A5A4A3A2A1 = B, A
′

7A
′

6A
′

5A
′

4A
′

3A
′

2A
′

1 = B
′
andA

′′

7A
′′

6A
′′

5A
′′

4A
′′

3A
′′

2A
′′

1 =
B

′′
. Using the above, we define the following matrices:

Mn = AuAu−1 · · ·A1B
k,(

M
′
)n

= A
′

uA
′

u−1 · · ·A
′

1

(
B

′
)k

and (
M

′′
)n

= A
′′

uA
′′

u−1 · · ·A
′′

1

(
B

′′
)k
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where n = 7k + u such that u, k,∈ N. So we get

Mn

 1
1
0

 =

 an+2

an+1

an


,

(
M

′
)n

 1
0
1

 =

 bn+2

bn+1

bn


and (

M
′′
)n

 0
−1
1

 =

 cn+2

cn+1

cn


for n = 7k + u such that u, k,∈ N. From these equations we immediately deduce:

• han
(m) is the smallest positive integer α such that Mα ≡ I(mod m).

• hbn (m) is the smallest positive integer α such that
(
M

′
)α

≡ I(mod m).

• hcn (m) is the smallest positive integer α such that
(
M

′′
)α

≡ I(mod m).

Now we give the lengths of the periods of the sequences Bx,y,z((2, n, 2)), Bx,y,z((2, 2, n))
and Bx,y,z((n, 2, 2)) by the aid of the above useful results.

Theorem 7. For n > 2,
LB((2, n, 2) , x, y, z) = han (n) .

Proof. The polyhedral group (2, n, 2) is defined by the presentation
〈
x, y, z | x2 = yn = z2 = xyz = 1

〉
,

then the balancing orbit of (2, n, 2) is as follows:

x0 = x, x1 = y, x2 = xy, x3 = xy−1, x4 = x, x5 = y−2, x6 = y−11,

x7 = xy−64, x8 = y9, x9 = xy, x10 = xy−73, x11 = xy−8, x12 = y−74, x13 = y−379,

x14 = xy−2208, x15 = y305, x16 = xy, x17 = xy−2513, x18 = xy−304, x19 = y−2514, x20 = y−12875,

x21 = xy−75040, x22 = y10361, x23 = xy, x24 = xy−85401, x25 = xy−10360, x26 = y−85402, x27 = y−437371,

. . . .

By direct calculation it is easy to see that the sequence Bx,y,z((2, n, 2)) conforms to the
following pattern:

x0 = xya0 , x1 = ya1 , x2 = xya2 , x3 = xya3 , x4 = xya4 , x5 = ya5 , x6 = ya6 , . . . .

Since the sequence {an} appear as the power of y and the order of y is n, the period of the
sequence {an (n)} with the balancing length of group (2, n, 2) are the same.

So we have the conclusion.

Theorem 8. For n > 2, the balancing length of the polyhedral group (2, 2, n) is hbn (n).
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Proof. We prove this by direct calculation. We first note that in the group defined by〈
x, y, z | x2 = y2 = zn = xyz = 1

〉
, x = yz, y = zx and z = yx. We have the sequence

x, y, z, z5, yz29, z−4, yz33, yz4, z33, z169, yz985, z−136, yz680, yz1121, yz816, z441, z2341,

yz14421, z−1900, yz680, yz16321, yz2580, z15641, z93846, z80105, yz467569, z−64464, yz680, . . . .

So we get

x0 = yzb0 , x1 = yzb1 , x2 = zb2 , x3 = zb3 , x4 = yzb4 , x5 = zb5 , x6 = yzb6 , . . . .

Since the sequence {bn} appear as the power of z and the order of z is n, we obtain

LB((2, 2, n) , x, y, z) = hbn (n) .

Theorem 9. The group defined by the presentation
〈
x, y, z | xn = y2 = z2 = xyz = 1

〉
has

the balancing length hcn (n) for n > 2.

Proof. It is important to note that x = zy, y = x−1z and z = xy. By a simple calculation,
we obtain the balancing orbit of the polyhedral (2, 2, n) as shown:

x, y, z, z, x−1, x−6, x35z, x5, x−1z, x40z, x4z, x−41, x−210, x1223z, x169, x−1z,

x1392z, x168z, x−1393, x−7134, x41579z, x5741, x−1z, x47320z, x5740z, x−47321,

x−242346, x1412495z, x195025, x−1z, x1607520z, x195024z, . . . .

By using the balancing orbit given above, we derive

x0 = xc0 , x1 = xc1z, x2 = xc2z, x3 = xc3z, x4 = xc4 , x5 = xc5 , x6 = xc6z, . . . .

Therefore, considering the order of x, we conclude that

LB((n, 2, 2) , x, y, z) = hcn (n) .

Now we concentrate on finding the lengths of the periods of the balancing orbits of the
polyhedral groups (2, 3, 3), (2, 3, 4) and (2, 3, 5) for the 2-generator (x, y) and the 3-generator
(x, y, z). The results are summarized in the following table:

Gn LB(x,y)(Gn) LB(x,y,z)(Gn)
(2, 3, 3) 4 40
(2, 3, 4) 4 294
(2, 3, 5) 4 2588

These calculations are obtained by using the program “Magma Computer Algebra”.
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