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A NOTE ON HELICES OF MINKOWSKI SPACE

D. Sağlam, G. Koru, Ö. Kalkan

Abstract. The curve α is called a general helix if ⟨V1,W ⟩ is a constant function,
where W is a constant vector field different from zero. We define the second kind
of harmonic curvatures and Darboux vector of a non-null unit speed curve and give
different characterizations of general helices with this curvatures and with the second
kind of Darboux vector.
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1. Introduction

Helix is a space curve with a lot of work on it. Helices have been focus for a number
of authors [1-16]. In 1845, Venant obtained that κ/τ is a constant function iff a
curve is a helix [17]. Helices by the fact that the function(

κ1
κ2

)2

+

(
1

κ3

(
κ1
κ2

)′)2

is constant with the second curvature κ2 and the third curvature κ3 into E4. See
also [12].

In this work we study general helices with the second kind of harmonic curvatures
in Minkowski space. We consider Minkowski space En

ν with Lorentzian metric

⟨ , ⟩ = −
ν∑

i=1

dx2i +

n∑
i=ν+1

dx2i ,

where (x1, ..., xn) is a coordinate system of Rn. Let be w ∈ En
ν .

1. If⟨w,w⟩ > 0 or w = 0, then the vector w is called spacelike.
2. If ⟨w,w⟩ < 0, then the vector w is called timelike.
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3. If ⟨w,w⟩ = 0 and w ̸= 0, then the vector w is called lightlike.
The arbitrary timelike vectors u and w are in the same timecone iff ⟨u,w⟩ < 0. The
magnitude of a vector w is defined by ∥w∥ =

√
|⟨w,w⟩| [18].

Let α : I ⊂ R →En
ν be a regular curve, i.e. α′(s) ̸= 0, where α′(s) = dα/dt. The

curve α is named as
1. spacelike, if α′(s) is spacelike for all s ∈ I.
2. timelike, if α′(s) is timelike for all s ∈ I.
3. null(lightlike), if α′(s) is null(lightlike) for all s ∈ I.

If α is spacelike or timelike, then α is called a non-null curve. We parametrize a non-
null or null curve α with the pseudo-arc length parameter t, if ⟨α′(t), α′(t)⟩ = ±1 or
⟨α′′(t), α′′(t)⟩ = 1, respectively. In either case α is a unit speed curve [18]. In whole
this article we use non-null curve with the pseudo-arc length parameter. For the
sake of simplicity, in the whole article we will understand the non-null curve with
the pseudo-arc length parameter curves, when we say curve.

Definition 1.1. We assume that α : I→En
ν , I ⊂ R is a curve and {V1(s), ..., Vn(s)}

is the Frenet frame of α. i−th curvature of α is ki : I → R, κi(s) = εi+1

〈
V

′
i (s), Vi+1(s)

〉
with 1 ≤ i ≤ n− 1 and εi = ⟨Vi, Vi⟩ [5].

Theorem 1.1. Let α be a curve in En
ν with the Frenet frame {V1(s), ..., Vn(s)}

and curvature functions ki. One get the Frenet equations following by

V ′
1 = κ1V2 (1)

V ′
i = −εi−1εiκi−1Vi−1 + κiVi+1,

V ′
n = −εn−1εnκn−1Vn−1

where εi = ⟨Vi, Vi⟩ = ±1 and 1 ≤ i ≤ n− 1 [5].

For special case we assume that α = α(s) is a curve in E3
1 , {T,N,B} the Frenet

frame and κi be i− th curvature functions of the curve (i = 1, 2). Then the Frenet
equations are given as

T ′ = κ1V2

N ′ = −ε1ε2κ1T + κ2B

B′ = −ε2ε3κ2N

with ⟨T, T ⟩ = ε1 = ±1, ⟨N,N⟩ = ε2 = ±1 and ⟨B,B⟩ = ε3 = ±1. Moreover the
curvature functions of the curve α is following

κ1 = ε2

〈
T

′
, N
〉
, κ2 = ε3

〈
N

′
, B
〉
.
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Definition 1.2. The angles between the vectors y and z in the Minkowski space
are defined following:

1. If y and z are timelike vectors such that they lying in the same timecone,
then < y, z >= −∥y∥ ∥z∥ coshϕ with a unique real number ϕ ≥ 0. ϕ is named as
the hyperbolic angle.

2. If y and z are spacelike vectors such that they span a timelike vector space,
then |< y, z >| = ∥y∥ ∥z∥ coshϕ with a unique real number ϕ ≥ 0. ϕ is named as
the central angle.

3. If y and z are spacelike vectors such that they span spacelike vector space,
then < y, z >= ∥y∥ ∥z∥ cosϕ with a unique real number 0 < ϕ < π. ϕ is named as
the spacelike angle.

4. If y is a spacelike vector and z is a timelike vector, then |< y, z >| =
∥y∥ ∥z∥ sinhϕ with a unique real number ϕ ≥ 0. ϕ is named as the Lorentzian
timelike angle [4, 18].

2. Second kind of harmonic curvatures with general helices in En
υ

Ekmekçi et. al. in [6] gave harmonic curvatures of a curve following:

Definition 2.1. Harmonic curvatures Hi : I → R, I ⊂ R, 1 ≤ i ≤ n − 1 of a
curve α : I → En

ν are defined following

Hi =


0, i = 0,

ε1ε2
κ1
κ2

, i = 1,

1

κi+1

[
εiεi+1κiHi−2 +H

′
i−1

]
, i = 2, 3, ..., n− 2.

(2)

with non-zero curvatures κi, 1 ≤ i ≤ n− 1.
We refer to functions Hi as the first kind of harmonic curvatures of the curve.

Now, we obtain several characterizations for general helix by using the new functions
Si called the second kind of harmonic curvatures of the curve.

Definition 2.2. If the function < V1,W > is constant for tangent vector field
V1 of a curve α : I → En

ν and a different from zero constant vector field W , then
the curve α is called general helix.

Theorem 2.1. A curve α is a general helix in En
ν iff there exist differentiable
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functions Si : I → R, I ⊂ R, 1 ≤ i ≤ n satisfying the equations

Si =


1, i = 1,
0, i = 2,
εi−1εi
κi−1

[
κi−2Si−2 + S

′
i−1

]
, i = 3, 4, ..., n.

(3)

with the condition
S′
n = −κn−1Sn−1. (4)

Proof. We assume that α is a general helix. Then the function ⟨V1,W ⟩ is a constant
for a fixed axis W. Consider the differentiable vector field

W =
n∑

i=1

wiVi, (5)

where
wi = εi ⟨Vi,W ⟩ , 1 ≤ i ≤ n (6)

are differentiable functions. Since α is a general helix, then the function w1 =
ε1 ⟨V1,W ⟩ is constant. If we differentiate (6) with respect to s and from the equations
(1), then one obtain

w′
1(s) = ε1ε2κ1w2 = 0.

If w2 = 0 and the vector field W is constant, then W ∈ sp{V1, V3, ..., Vn}. Since the
vector field W is constant, by differentiating the equation (5) and using (1), then
we obtain the O.D.E system

−κ1w1 + ε2ε3κ2w3 = 0
w′
3 − ε3ε4κ3w4 = 0

w′
4 + κ3w3 − ε4ε5κ4w5 = 0

...

w
′
n−1 + κn−2wn−2 − εn−1εnκn−1wn = 0

w′
n + κn−1wn−1 = 0.


(7)

Let be
wj = Sjw1, 3 ≤ j ≤ n. (8)

The functions Sj : I → R for 3 ≤ j ≤ n are differentiable. It must be w1 ̸= 0,
otherwise from (7) it would be wj = 0, for 3 ≤ j ≤ n. Hence W = 0 and this is a
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contradiction. According to (7), we obtain

S3 = ε2ε3
κ1
κ2

S4 =
ε3ε4
κ3

S′
3

S5 =
ε4ε5
κ4

[κ3S3 + S′
4]

...

Sn−1 =
εn−2εn−1

κn−2
[κn−3Sn−3 + S′

n−2]

Sn =
εn−1εn
κn−1

[κn−2Sn−2 + S′
n−1]


(9)

At the end of (7) one obtain (4). Conversely, we assume that α is a curve with dif-
ferentiable functions Sj for 1 ≤ j ≤ n satisfying the equations (3) and (4). Consider
the unit vector field W is defined by the following equation

W = w1

V1 +

n∑
j=3

SjVj


with w1 ∈ R. If we differentiate W and use the equations (3) and (4), then we
obtain W ′ = 0. Also W is a constant vector field and < V1,W >= ε1w1 is a
constant function. Therefore the curve α is a general helix.

Now, we are in a position to define the second kind of harmonic curvatures of a
curve.

Definition 2.3. Let α : I → En
ν be a curve with non-zero curvatures ki

(i = 1, 2, ..., n− 1). We define the second kind of harmonic curvatures of α denoted
by Si : I ⊂ R → R, i = 1, 2, ..., n, given by the equation (3) such that

Si =


1, i = 1,
0, i = 2,
εi−1εi
κi−1

[
κi−2Si−2 + S

′
i−1

]
, i = 3, 4, ..., n.

Corollary 2.1. A curve α is a general helix in En
ν iff the second kind of harmonic

curvatures Sn and Sn−1 satisfy the equation (4), that is

S′
n = −κn−1Sn−1.

By making the variation of parameter, we get different characterization

u(t) =

∫ t

0
κn−1(x)dx,

du

dt
= κn−1(t).
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Since S′
n = −κn−1Sn−1 in the equation (4), one obtain the following equation

S′
n−1(u) = εn−1εnSn(u)−

(
κn−2(u)

κn−1(u)

)
Sn−2(u).

Substitutite this equation into (3), we get the equation

S′′
n(u) + εn−1εnSn(u) =

κn−2(u)Sn−2(u)

κn−1(u)
.

Making change of variables, depending on the value of εn−1εn, we have two general
solution of this equation:
1) If εn−1εn = 1, then

Sn(u) =

(
m−

∫
κn−2(u)Sn−2(u)

κn−1(u)
sinudu

)
cosu+

(
n+

∫
κn−2(u)Sn−2(u)

κn−1(u)
cosudu

)
sinu

where m and n are arbitrary constants. Also this solution is the same for any general
helix in Euclidean space [1]. Because of that in this paper we give proofs for only
the following solution.
2) If εn−1εn = −1, then

Sn(u) =

(
m−

∫
κn−2(u)Sn−2(u)

κn−1(u)
sinhudu

)
coshu+

(
n+

∫
κn−2(u)Sn−2(u)

κn−1(u)
coshudu

)
sinhu

(10)
where m and n are arbitrary constants. From the equation (10), we get

Sn(t) =
(
m−

∫ [
κn−2(t)Sn−2(t) sinh

∫
κn−1(t)dt

]
dt
)
cosh

∫ t
κn−1(x)dx

+
(
n+

∫ [
κn−2(t)Sn−2(t) cosh

∫
κn−1(t)dt

]
dt
)
sinh

∫ t
κn−1(x)dx.

(11)

According to (4), we obtain

Sn−1(t) =
−S

′

n(t)

κn−1(t)
=

(
−m+

∫ [
κn−2(t)Sn−2(t) sinh

∫
κn−1(t)dt

]
dt
)
sinh

∫ t
κn−1(x)dx

−
(
n+

∫ [
κn−2(t)Sn−2(t) cosh

∫
κn−1(t)dt

]
dt
)
cosh

∫ t
κn−1(x)dx.

(12)

From Corollary 2.1, we can give the following theorems.

Theorem 2.2. We assume that α : I → En
ν is parameterized the pseudo-arc length

parameter t with εn−1εn = −1. Then α is a general helix iff

Sn−1(t) =
(
−m+

∫ [
κn−2(t)Sn−2(t) sinh

∫
κn−1(t)dt

]
dt
)
sinh

∫ t
κn−1(x)dx

−
(
n+

∫ [
κn−2(t)Sn−2(t) cosh

∫
κn−1(t)dt

]
dt
)
cosh

∫ t
κn−1(x)dx

(13)

where m and n are constants.
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Proof. Suppose that α is a general helix. Let us define f(t) and g(t) by

f(t) = Sn(t) coshϕ+ Sn−1(t) sinhϕ+
∫
κn−2(t)Sn−2(t) sinhϕdt

g(t) = −Sn(t) sinhϕ− Sn−1(t) coshϕ−
∫
κn−2(t)Sn−2(t) coshϕdt

(14)

where

ϕ(t) =

∫ t

κn−1(x)dx,

and the functions Sn−2, Sn−1, Sn are as in Theorem 2.1. If we differentiate equations (14)
with respect to t and taking into account of (3) and (4), we obtain

df

du
= S′

n coshϕ+ Snκn−1 sinhϕ+ S′
n−1 sinhϕ

+Sn−1κn−1 coshϕ+ κn−2Sn−2 sinhϕ

= −κn−1Sn−1 coshϕ+ Snκn−1 sinhϕ− (κn−1Sn + κn−2Sn−2) sinhϕ

+Sn−1κn−1 coshϕ+ κn−2Sn−2 sinhϕ

= 0

and

dg

dt
= −S′

n sinhϕ− Snκn−1 coshϕ− S′
n−1 coshϕ

−Sn−1κn−1 sinhϕ− κn−2Sn−2 coshϕ

= κn−1Sn−1 sinhϕ− Snκn−1 coshϕ+ (κn−1Sn + κn−2Sn−2) coshϕ

−Sn−1κn−1 sinhϕ− κn−2Sn−2 coshϕ

= 0.

Also we get f(t) = m and g(t) = n with constants m,n.

Sn−1(t) =

(
−m+

∫
[κn−2Sn−2 sinhϕdt]

)
sinhϕ−

(
n+

∫
[κn−2Sn−2 coshϕdt]

)
coshϕ.

Conversely, we assume that the equation (13) is true. According to Theorem 2.1, Sn(t) is
defined by following equation

Sn(t) =

(
m−

∫
[κn−2Sn−2 sinhϕdt]

)
coshϕ+

(
n+

∫
[κn−2Sn−2 coshϕdt]

)
sinhϕ

with ϕ(t) =
∫ t

κn−1(x)dx. A direct differentiation of (13) gives

S′
n−1 = κn−2Sn−2 sinh

2 ϕ+

(
−m+

∫
[κn−2Sn−2 sinhϕdt]

)
κn−1 coshϕ

−κn−2Sn−2 cosh
2 ϕ−

(
n+

∫
[κn−2Sn−2 coshϕdt]

)
κn−1 sinhϕ

= −κn−2Sn−2 − κn−1Sn.

This verifies the equation (3) for i = n. In addition we get S′
n = −κn−1Sn−1, which finishes

the proof.

7
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Theorem 2.3. We assume that α : I → En
ν is parameterized the pseudo-arc length

parameter t with εn−1εn = 1. Then α is a general helix iff

Sn−1(t) =
(
m−

∫ [
κn−2Sn−2 sin

∫
κn−1dt

]
dt
)
sin
∫ t

κn−1(x)dx

−
(
n+

∫ [
κn−2Sn−2 cos

∫
κn−1dt

]
dt
)
cos
∫ t

κn−1(x)dx
(15)

where m and n are constants.

3. Second kind of Darboux vector with general helices in En
ν

Now we characterize general helices with the second kind of harmonic curvatures and Dar-
boux vector. Firstly, we get an important theorem following:

Theorem 3.1. We suppose that α : I → En
ν is a curve with its Frenet frame

{V1, V2, ..., Vn} and second kind of harmonic curvatures {S1, S2, ..., Sn}. Then α is a general
helix iff

n∑
j=1

εjS
2
j = C, (16)

where C is a constant different from zero.

Proof. According to Theorem 2.1 and since W is a unit vector, then the proof is obviously.

This theorem gives generalization of n = 3 and n = 4. Thus, for n = 3, from the equation

(16), we can write
κ1

κ2
= C. For n = 4, from the equation (16), we can write

ε3

(
κ1

κ2

)2

+ ε4

[
1

κ3

(
κ1

κ2

)′
]2

= C.

Corollary 3.1. Depending on the angle ϕ, the constant C given by above theorem is
1) If ϕ is a hyperbolic angle, then C = − sech2ϕ.
2) If ϕ is a central angle, then C = sech2ϕ.
3) If ϕ is a spacelike angle, then C = sec2 ϕ.
4) If ϕ is a Lorentzian angle, then C = −ε1 csch

2ϕ.

Proof. 1) Since V1 and W are timelike vectors in the same timecone, then

w1 = −⟨V1,W ⟩ = coshϕ.

From ⟨W,W ⟩ = −1 and (8), with (3), we have

C =

n∑
j=1

εjS
2
j = −1 +

1

w2
1

n∑
j=3

εjw
2
j = −1 +

−1 + w2
1

w2
1

= − sech2ϕ.

Proof of the other cases is similar to above.
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All curvatures of a curve are constant different from zero, then the curve is a W-curve
[10]. Additionally all the curvature ratios of a curve are constant, then the curve is called a
ccr (constant curvature ratios)-curve [9].

Corollary 3.2. Let the curve α : I ⊂ R → En
ν be a general helix. If the curve is a

W-curve, then the second kind of harmonic curvatures Sj given in (3) satisfy the following
properties:

Sj = 0, if j is even (17)

Sj =

j−1
2∏

i=1

ε2iε2i+1
κ2i−1

κ2i
, if j is odd (j ̸= 1).

Proof. Let α be a W-curve. From (3) if j is odd

S3 = ε2ε3
κ1

κ2
= constant,

S5 =
ε4ε5
κ4

[κ3S3 + S′
4] = ε2ε3ε4ε5

κ1κ3

κ2κ4
,

S7 =
ε6ε7
κ6

[κ5S5 + S′
6] = ε2ε3ε4ε5ε6ε7

κ1κ3κ5

κ2κ4κ6
,

...

Sj−2 =
εj−3εj−2

κj−3
[κj−4Sj−4 + S′

j−3] = ε2ε3ε4...εj−2εj−1
κ1κ3κ5...κj−4

κ2κ4κ6...κj−3

Sj =
εj−1εj
κj−1

[κj−2Sj−2 + S′
j−1] = ε2ε3ε4...εj−1εj

κ1κ3κ5...κj−2

κ2κ4κ6...κj−1

...

If j is even

S2 = 0, S4 = ε2ε3
ε3ε4
κ3

(
κ1

κ2
)′ = 0, S6 = 0, ...Sj = 0, ...

Therefore from this equations we obtain (17).

Corollary 3.3. Let the curve α : I ⊂ R → En
ν be a general helix. We suppose that

the curve is a ccr-curve, then the second kind of harmonic curvatures Sj given in (3) are
constant.

Proof. Proof is the same as the proof Corollary 3.2.

Besides, from the definition of the second kind of harmonic curvature functions, we
obtain following lemma.

Lemma 3.1. We suppose that α : I → En
ν is a curve with its Frenet frame {V1, V2, ..., Vn},

and second kind of harmonic curvatures {S1, S2, ..., Sn}. If the curve α : I ⊂ R → En
ν is a

general helix, then
εj ⟨Vj ,W ⟩ = ε1Sj ⟨V1,W ⟩ , 1 ≤ j ≤ n (18)

9
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with W is a fixed axis of the general helix α.
From this lemma, we obtain the following corollary.
Corollary 3.4. If W is an axis of the general helix α, then we can write

W =

n∑
j=1

wjVj .

From the Lemma 3.4 we get

wj = εj ⟨Vj ,W ⟩ = ε1Sj ⟨V1,W ⟩ , 1 ≤ j ≤ n

where ⟨V1,W ⟩ = ε1w1 is constant. By the definition of the second kind of harmonic curva-
tures of the curve, we obtain

W = w1

 n∑
j=1

SjVj

 .

Also the vector field

D =

n∑
j=1

SjVj

is an axis of the general helix α.
Definition 3.1. We suppose that α : I → En

ν is a curve with its Frenet frame
{V1, V2, ..., Vn} and second kind of harmonic curvatures {S1, S2, ..., Sn}. We call the vector

D =

n∑
j=1

SjVj (19)

is called the second kind of Darboux vector of the curve α.
Theorem 3.2. We assume that α : I → En

ν is a curve with its Frenet frame
{V1, V2, ..., Vn}, and second kind of harmonic curvatures {S1, S2, ..., Sn}. Then α is a general
helix iff the second kind of Darboux vector D is a constant.

Proof. If α is a general helix in Minkowski space En
ν . Then from Corollary 3.5 we get

W = w1

 n∑
j=1

SjVj

 .

Since w1 is a constant, then D is a constant vector field.
Conversely, let the second kind of Darboux vector D be constant, then we obtain

⟨D,V1⟩ = ε1. Also one get w1 =
1

∥D∥
is constant. For W = w1D, where ⟨W,V1⟩ = ε1w1 is

constant. Hence W is a constant vector field. So α is a general helix in Minkowski space
En

ν . This finishes the proof.

10
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From the definitions of Si in (3), we intend to express the functions Si in terms of S3

and the curvatures of α as follows:

Sj =

j−3∑
i=0

AjiS
(i)
3 , 3 ≤ j ≤ n, (20)

where

S
(i)
3 =

d(i)S3

dsi
, S

(0)
3 = S3 = ε2ε3

κ1

κ2
.

Then

S4 = ε3ε4κ
−1
3 S′

3 = A41S
′
3 +A40S3,

S5 = A52S
′′

3 +A51S
′
3 +A50S3,

S6 = A63S
′′′

3 +A62S
′′

3 +A61S
′
3 +A60S3

where

A41 = ε3ε4κ
−1
3 , A40 = 0,

A52 = ε3ε5κ
−1
4 κ−1

3 , A51 = ε3ε5κ
−1
4 (κ−1

3 )′, A50 = ε4ε5κ
−1
4 κ3,

A63 = ε3ε6κ
−1
5 κ−1

4 κ−1
3 , A62 = ε3ε6κ

−1
5 [κ−1

4 (κ−1
3 )′ + (κ−1

4 κ−1
3 )′],

A61 = ε5ε6κ
−1
5 [ε3ε4κ4κ

−1
3 + ε3ε5(κ

−1
4 (κ−1

3 )′)′ + ε4ε5κ
−1
4 κ3], A60 = ε4ε6κ

−1
5 (κ−1

4 κ3)
′

and so on. Define the following functions:

A30 = 1, A40 = 0

Aj0 = εj−1εj

[
κ−1
j−1κj−2A(j−2)0 + κ−1

j−1A
′
(j−1)0

]
, 5 ≤ j ≤ n

Aj(j−3) = ε3εjκ
−1
j−1κ

−1
j−2κ

−1
j−3...κ

−1
4 κ−1

3 , 4 ≤ j ≤ n

Aj(j−4) = ε3εj [κ
−1
j−1

(
κ−1
j−2κ

−1
j−3...κ

−1
4 κ−1

3

)′
+ κ−1

j−1κ
−1
j−2

(
κ−1
j−3...κ

−1
4 κ−1

3

)′
+...+ κ−1

j−1κ
−1
j−2κ

−1
j−3...κ

−1
4 (κ−1

3 )′], 5 ≤ j ≤ n

Aji = εj−1εj

[
κ−1
j−1κ

−1
j−2A(j−2)i + κ−1

j−1(A
′
(j−1)i +A(j−1)(i−1))

]
, 1 ≤ i ≤ j−5, 6 ≤ j ≤ n

and Aji = 0 otherwise.
As a consequence of Theorem 2.2, according to the functions Aji, we have the following

equation. (4) leads the followig condition

An(n−3)S
(n−2)
3 +

(
A′

n(n−3) +An(n−4)

)
S
(n−3)
3

+
n−4∑
i=1

[
A′

ni +An(i−1) + κn−1A(n−1)i

]
S
(i)
3

+(A′
n0 + κn−1A(n−1)0)S3 = 0, n ≥ 3.

(21)
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As a consequence of (21) and Theorem 2.1 according to the functions Aji, one can write
this corollary.

Corollary 3.5. The properties are equivalent:
1. α is a general helix.
2. For n ≥ 3

0 = An(n−3)

(
κ1

κ2

)(n−2)

+
(
A′

n(n−3) +A′
n(n−4)

)(κ1

κ2

)(n−3)

+
n−4∑
i=1

[
A′

ni +An(i−1) + κn−1A(n−1)i

](κ1

κ2

)(i)

+
(
A′

n0 + κn−1A(n−1)0

)(κ1

κ2

)
.

3. The function
n∑

j=3

j−3∑
i=0

j−3∑
k=0

εjAjiAjk

(
κ1

κ2

)(i)(
κ1

κ2

)(k)

= C

where C is constant, j − i ≥ 3, j − k ≥ 3.

Example 3.1. α(t) =
(
cosh t√

2
, sinh t√

2
, t√

2

)
is a general helix curve in E3

1 (Figure 1).

Tangent vector T makes a constant angle with a fixed direction W = (0, 0, 1) and also it is
clear that α is a unit speed spacelike curve with a timelike principal normal N . The Frenet
vectors of α are

T = α′ =

(
1√
2
sinh

t√
2
,
1√
2
cosh

t√
2
,
1√
2

)
,

N =
T ′

κ
=

(
cosh

t√
2
, sinh

t√
2
, 0

)
,

B = T ×N =

(
1√
2
sinh

t√
2
,
1√
2
cosh

t√
2
,− 1√

2

)
and the curvature κ1, the torsion κ2 of α are

κ1 = −⟨T ′, N⟩ = 1

2
, κ2 = ⟨N ′, B⟩ = 1

2
.

For n = 3 the equation (16) is

C = ε1 + ε3S
2
3 = 1 +

[
ε2ε3
κ2

κ1S1

]2
= 2.

On the other hand from Definition 2.2, ⟨T,W ⟩ = cosϕ =
1√
2
. Using this result in Corollary

3.1, we get C = sec2 ϕ = 2.

12



D. Sağlam, G. Koru, Ö. Kalkan – A note on helices . . .

Example 3.2. α(t) =
(

t√
2
, cos

√
3t√
2
, sin

√
3t√
2

)
is a general helix curve in E3

1 (Figure 2).

The tangent vector T makes a constant angle with a fixed direction W = (1, 0, 0) and also
it is clear that α is a unit speed spacelike curve with a spacelike principal normal N . The
Frenet vectors of α are

T = α′ =

(
1√
2
,−

√
3√
2
sin

√
3t√
2
,

√
3√
2
cos

√
3t√
2

)
,

N =
T ′

κ
=

(
0,− cos

√
3t√
2
,− sin

√
3t√
2

)
,

B = T ×N =

(
−
√
3√
2
,
1√
2
sin

√
3t√
2
,− 1√

2
cos

√
3t√
2

)
and the curvature κ1, the torsion κ2 of α are

κ1 = ⟨T ′, N⟩ = 3

2
, κ2 = −⟨N ′, B⟩ =

√
3

2
.

For n = 3 the equation (16) is

C = ε1 + ε3S
2
3 = 1−

[
ε2ε3
κ2

κ1S1

]2
= −2.

On the other hand from Definition 2.2, ⟨T,W ⟩ = sinhϕ =
1√
2
. Using this result in Corollary

3.1, we get C = −ε1 csch
2ϕ = −2.

Example 3.3. α(t) =
(
sinh

√
3t√
2
, cosh

√
3t√
2
, t√

2

)
is a general helix curve in E3

1 (Figure

3). The tangent vector T makes a constant angle with a fixed direction W = (0, 0, 1) and
also it is clear that α is a unit speed timelike curve. The Frenet vectors of α are

T = α′ =

(√
3√
2
cosh

√
3t√
2
,

√
3√
2
sinh

√
3t√
2
,
1√
2

)
,

N =
T ′

κ
=

(
sinh

√
3t√
2
, cosh

√
3t√
2
, 0

)
,

B = T ×N =

(
1√
2
cosh

√
3t√
2
,
1√
2
sinh

√
3t√
2
,

√
3√
2

)
and the curvature κ1, the torsion κ2 of α are

κ1 = ⟨T ′, N⟩ = 3

2
, κ2 = ⟨N ′, B⟩ = −

√
3

2
.

For n = 3 the equation (16) is

C = ε1 + ε3S
2
3 = −1 +

[
ε2ε3
κ2

κ1S1

]2
= 2.

13
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On the other hand from Definition 2.2, ⟨T,W ⟩ = sinhϕ =
1√
2
. Using this result in Corollary

3.1, we get C = −ε1 csch
2ϕ = 2.

Figure 1 Figure 2 Figure 3
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[4] M. Bilici, M. Çalışkan, On the involutes of the spacelike curve with a timelike binormal
in Minkowski 3-space, International Mathematical Forum 4(31) (2009) 1497–1509.
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[14] D. Sağlam, Ö.B. Kalkan, Some Characterizations of Slant Helices in Minkowski n-
Space, Comptes Rendus de l’Academie Bulgare des Sciences, Tome 64, No 2 (2011) 173–184.
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