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SOME VARIATIONS OF MULTICOLOR RADO NUMBERS

M. Budden and B. Collins

Abstract. Let Em denote a system of equations/inequalities in m variables.
Generalizing the concept of a Schur number, the Rado number Rt(Em) is defined
to be the least natural number such that every t-coloring of the elements of the
set {1, 2, . . . , Rt(Em)} contains a monochromatic solution to Em. In this paper, we
review the relevant background for Rt(Em) and consider two variations. First, we
define the weakened Rado number, in which solutions to Em are sought that use at
most s < t colors. We compute a few special cases, then turn our attention to the
rainbow Rado number RR(Em, n), defined to be the minimum number of colors such
that every coloring of {1, 2, . . . , n} contains a rainbow solution to Em (a solution in
which all m variables receive distinct colors). We evaluate rainbow Rado numbers
for two specific systems of inequalities, then conclude with some directions for future
work on this topic.
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1. Introduction

A classic problem in combinatorial number theory is the determination of Schur
numbers. Introduced as a tool for investigating the finite version of Fermat’s Last
Theorem, Schur [16] proved their existence in 1916. To define a (generalized) Schur
number (see [3]), consider the equation

Lm : x1 + x2 + · · ·+ xm−1 = xm,

and define a t-coloring of a set A to be a map c : A −→ {1, 2, . . . , t}. For m ≥ 3,
the Schur number St(m) is defined to be the least natural number such that every t-
coloring of {1, 2, . . . , St(m)} contains a monochromatic solution to Lm. It is currently
known that S2(m) = m2 −m− 1 [3], S3(3) = 14 [11], S3(4) = 43 [2], S3(5) = 94 [2],
S3(6) = 173 [2], S4(3) = 45 [11], and S5(3) = 161 [12].
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One variation of a Schur number is the strict Schur number (see Section 8.3
of [14]), called a weak Schur number in [9]. We denote it by Ŝt(m) and define it
analogously to St(m), but replace Lm by the system

L∗m :
x1 + x2 + · · ·+ xm−1 = xm
x1 < x2 < · · · < xm.

It is known that Ŝ2(3) = 9 [1], Ŝ3(3) = 24 [5], Ŝ4(3) = 67 [5], Ŝ5(3) ≥ 196 [9], and
Ŝ6(3) ≥ 572 [9].

In [4], Bialostocki and Schaal considered another variation of Schur numbers by
defining the systems of inequalities

Mm : x1 + x2 + · · ·+ xm−1 < xm and M∗
m :

x1 + x2 + · · ·+ xm−1 < xm
x1 < x2 < · · · < xm,

and calling the resulting numbers Rado numbers, due to their close connection with
Rado’s theorem. In Section 8.4 of Landman and Robertson’s book [14], Mm is
called a Schur inequality, which is considered in a strict sense in M∗

m. Following
the terminology introduced in [4], let Em denote a system of equations/inequalities
in m variables and define the Rado number Rt(Em) to be the least natural number
such that every t-coloring of {1, 2, . . . , Rt(Em)} contains a monochromatic solution
to Em. This notation generalizes Schur numbers and their strict variation since
Rt(Lm) = St(m) and Rt(L∗m) = Ŝt(m). In [4], it was shown that for m ≥ 3,
R2(Mm) = m2 −m + 1 and

R2(M∗
m) =



9
16m

3 −m2 + m + 1 if m ≡ 0 (mod 4)

9
16m

3 −m2 + 13
16m + 13

8 if m ≡ 1 (mod 4)

9
16m

3 −m2 + m + 1
2 if m ≡ 2 (mod 4)

9
16m

3 −m2 + 17
16m + 5

8 if m ≡ 3 (mod 4).

In this paper, we consider two variations of Rado numbers. The first variation
is considered in Section 2 and is called a weakened Rado number. It is defined in a
similar manner to the weakened Schur numbers considered in [7]. Rather than seek-
ing out monochromatic solutions to the system M∗

m, the weakened Rado numbers
we consider seek out solutions that use at most s < t colors. We evaluate several
classes of weakened Rado numbers when s > 1.

The second variation is considered in Section 3 and is called a rainbow Rado
number (similar the the rainbow Schur number considered in [6]). For these numbers,
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we consider how many colors are necessary to force {1, 2, . . . , n} to have a rainbow
solution to M∗

m (i.e., a solution that uses m distinct colors). We provide explicit
evaluations for a couple of rainbow Ramsey numbers and conclude in Section 4 with
topics for future research in this area.

2. Weakened Rado Numbers

For t ≥ 3 and 1 ≤ s < min{m, t}, define the s-weakened t-colored Rado number
Rt

s(Em) to be the least natural number such that every t-coloring of {1, 2, . . . , Rt
s(Em)}

contains a solution to Em that uses at most s colors. Hence, Rt
1(Em) is the usual

t-colored Rado number for Em.
In [7], the numbers Rt

s(L∗m) were considered, where they were denoted by WSm
s (t).

It was shown that for all t ≥ 3,

Rt
2(L∗3) =



6t+5
5 if t ≡ 0 (mod 5)

6t+9
5 if t ≡ 1 (mod 5)

6t+3
5 if t ≡ 2 (mod 5)

6t+7
5 if t ≡ 3 (mod 5)

6t+6
5 if t ≡ 4 (mod 5)

and

Rt
t−1(L∗t ) =

t(t− 1)

2
+ 2.

The special cases R3
2(L∗4) = 11 and R4

3(L∗5) = 14 were also proved.
For the remainder of this section, we focus on the evaluation of Rt

s(M∗
m), begin-

ning with the case where m = 3 and s = 2. If a 2-colored x1 + x2 < x3 is avoided,
then every such inequality must be rainbow colored. So, the problem of determin-
ing Rt

2(M∗
3) is equivalent to determining the maximum natural number p such that

there exists a t-coloring of {1, 2, . . . , p} in which every solution to E3 is rainbow.
It is easily checked that for

{1, 2, 3, 4, 5},

every solution to M∗
3 is rainbow (i.e., uses three distinct colors). It follows that

R3
2(M∗

3) > 5. Now consider a 3-coloring of {1, 2, . . . , 6}, using say, red, blue, and
green. If we wish to avoid a solution to M∗

3 that uses at most 2 colors, then

1 + 2 < 6, 1 + 3 < 6, and 2 + 3 < 6
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force 1, 2, 3, and 6 to receive different colors. Hence, R3
2(M∗

3) ≤ 6, from which we
obtain the initial case R3

2(M∗
3) = 6.

The values R4
2(M∗

3) = 7 and R5
2(M∗

3) = 8 can be proved in a similar manner,
using

{1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5, 6, 7}

to obtain the lower bounds. In all of these cases so far, observe that all elements
in {1, 2, . . . dn2 e} must receive distinct colors if {1, 2, . . . , n} avoids a solution to
x1 + x2 < n, where x1 < x2, that uses at most 2 colors. Also, the inequality
1 + x2 < x3 prevents any two elements in {1, 2, . . . , n} that differ by more than 1
from receiving the same color. These observations lead us to the following theorem.

Theorem 1. For t ≥ 3,

Rt
2(M∗

3) =



1
3(4t + 6) if t ≡ 0 (mod 3)

1
3(4t + 5) if t ≡ 1 (mod 3)

1
3(4t + 4) if t ≡ 2 (mod 3).

Proof. Let t ≥ 3 and consider three cases.
Case 1 Suppose that t ≡ 0 (mod 3). Then the set {1, 2, . . . , 13(4t + 6) − 1} can be
colored according to the partition

{1} ∪ {2} ∪ · · · ∪
{
2t− 3

3

}
∪
{
2t

3
,
2t+ 3

3

}
∪
{
2t+ 6

3
,
2t+ 9

3

}
∪ · · · ∪

{
4t

3
,
4t+ 3

3

}

without producing a 2-colored solution to M∗
3. Since this partition consists of 2t−3

3
sets of cardinality 1 and t+3

3 sets of cardinality 2, we have a total of t subsets in
this partition. It follows that Rt

2(M∗
3) ≥ 1

3(4t + 6). Now consider an arbitrary t-
coloring of {1, 2, . . . , 13(4t+6)}. As we observed before the statement of this theorem,
avoiding a solution to M∗

3 that uses at most 2 colors forces 1, 2, . . . , 2t+3
3 to receive

distinct colors. Also, at most two of 2t+6
3 , 2t+9

3 , . . . , 4t+6
3 can receive the same color.

It follows that at least t + 1 colors are required to avoid a solution to M∗
3 that uses

at most 2 colors, and hence, Rt
2(M∗

3) ≤ 1
3(4t + 6) in this case.

Case 2 Suppose that t ≡ 1 (mod 3). Then the set {1, 2, . . . , 13(4t + 5) − 1} can be
colored according to the partition

{1} ∪ {2} ∪ · · · ∪
{
2t− 2

3

}
∪
{
2t+ 1

3
,
2t+ 4

3

}
∪
{
2t+ 7

3
,
2t+ 10

3

}
∪ · · · ∪

{
4t− 1

3
,
4t+ 2

3

}
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without producing a 2-colored solution to M∗
3. Since this partition consists of 2t−2

3
sets of cardinality 1 and t+2

3 sets of cardinality 2, we have a total of t subsets in this
partition. It follows that Rt

2(M∗
3) ≥ 1

3(4t+ 5). Now consider an arbitrary t-coloring
of {1, 2, . . . , 13(4t+ 5)}. Avoiding a solution toM∗

3 that uses at most 2 colors forces
1, 2, . . . , 2t+4

3 to receive distinct colors. Also, at most two of 2t+7
3 , 2t+10

3 , . . . , 4t+5
3 can

receive the same color. It follows that at least t + 1 colors are required to avoid a
solution to M∗

3 that uses at most 2 colors, and hence, Rt
2(M∗

3) ≤ 1
3(4t + 5) in this

case.
Case 3 Suppose that t ≡ 2 (mod 3).Then the set {1, 2, . . . , 13(4t + 4) − 1} can be
colored according to the partition

{1} ∪ {2} ∪ · · · ∪
{
2t− 1

3

}
∪
{
2t+ 2

3
,
2t+ 5

3

}
∪
{
2t+ 8

3
,
2t+ 11

3

}
∪ · · · ∪

{
4t− 2

3
,
4t+ 1

3

}

without producing a 2-colored solution to M∗
3. Since this partition consists of 2t−1

3
sets of cardinality 1 and t+1

3 sets of cardinality 2, we have a total of t subsets in this
partition. It follows that Rt

2(M∗
3) ≥ 1

3(4t+ 4). Now consider an arbitrary t-coloring
of {1, 2, . . . , 13(4t+ 4)}. Avoiding a solution toM∗

3 that uses at most 2 colors forces
1, 2, . . . , 2t+5

3 to receive distinct colors. Also, at most two of 2t+8
3 , 2t+11

3 , . . . , 4t+4
3 can

receive the same color. It follows that at least t + 1 colors are required to avoid a
solution to M∗

3 that uses at most 2 colors, and hence, Rt
2(M∗

3) ≤ 1
3(4t + 4) in this

case.

Next, we turn our attention to the case where m = 4 and s = 3.

Theorem 2. For t ≥ 4,

Rt
3(M∗

4) =



8b t5c+ 3 if t ≡ 0 (mod 5)

8b t5c+ 5 if t ≡ 1 (mod 5)

8b t5c+ 6 if t ≡ 2 (mod 5)

8b t5c+ 7 if t ≡ 3 (mod 5)

8b t5c+ 9 if t ≡ 4 (mod 5).

Proof. Let t ≥ 4 and apply the Division Algorithm to obtain t = 5q + r, with
0 ≤ r ≤ 4. Note that q = b t5c. In M∗

4, we consider the smallest difference between
x3 and x4 that can be obtained. If we consider the inequality 1 + 2 + x3 < x4, then
we find that avoiding a 3-colored M∗

4 implies that at most 4 consecutive numbers
may receive the same color. We divide the remainder of the proof into cases.
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Case 1 Assume that t ≡ 0 (mod 5) and write t = 5q. To prove the lower bounds,
consider the partition

{1} ∪ {2} ∪ · · · {4q − 1} ∪ {4q, 4q + 1, 4q + 2}∪
{4q + 3, 4q + 4, 4q + 5, 4q + 6} ∪ {4q + 7, 4q + 8, 4q + 9, 4q + 10} ∪ · · · ∪ {8q − 1, 8q, 8q + 1, 8q + 2}.

This partition consists of exactly t colors and every solution to M∗
4 is rainbow.

This follows from the previous observation that at most 4 consecutive numbers can
receive the same color and the inequality 1+x2+x3 < 8q+2 forces 1, 2, . . . , 4q−1 to
receive their own colors. Taking that inequality, it can be shown that x2 + x3 must
be less than 8q+ 1. From this, we can see that, at the point where x2 +x3 ≥ 8q+ 1,
they no longer have to be their own color, as it is impossible for them to show up
in inequalities together. It follows that Rt

3(M∗
4) ≥ 8q + 3 in this case. To prove the

upper bound, consider an arbitrary t-coloring of {1, 2, . . . , 8q + 3}. The t-coloring
of this set would give a similar result as 8q + 2, but the additional number in the
set would have to be added to the last set of numbers, but this would exceed the
maximum of four numbers grouped together and force a non-rainbow solution.
Case 2 Assume that t ≡ 1 (mod 5) and write t = 5q+1. To prove the lower bounds,
consider the partition

{1} ∪ {2} ∪ · · · {4q} ∪ {4q + 1, 4q + 2, 4q + 3, 4q + 4}∪
{4q + 5, 4q + 6, 4q + 7, 4q + 8} ∪ · · · ∪ {8q + 1, 8q + 2, 8q + 3, 8q + 4}.

This partition consists of exactly t colors and every solution to M∗
4 is rainbow.

This follows from the previous observation that at most 4 consecutive numbers can
receive the same color and the inequality 1 + x2 + x3 < 8q + 4 forces 1, 2, . . . , 4q to
receive their own colors. Taking that inequality, it can be shown that x2 + x3 must
be less than 8q+ 3. From this, we can see that, at the point where x2 +x3 ≥ 8q+ 3,
they no longer have to be their own color, as it is impossible for them to show up
in inequalities together. It follows that Rt

3(M∗
4) ≥ 8q + 5 in this case. To prove the

upper bound, consider an arbitrary t-coloring of {1, 2, . . . , 8q + 5}. The t-coloring
of this set would give a similar result as 8q + 4, but the additional number in the
set would have to be added to the last set of numbers, but this would exceed the
maximum of four numbers grouped together and force a non-rainbow solution.
Case 3 Assume that t ≡ 2 (mod 5) and write t = 5q+2. To prove the lower bounds,
consider the partition

{1} ∪ {2} ∪ · · · {4q + 1} ∪ {4q + 2, 4q + 3, 4q + 4, 4q + 5}∪
{4q + 6, 4q + 7, 4q + 8, 4q + 9} ∪ · · · ∪ {8q + 2, 8q + 3, 8q + 4, 8q + 5}.
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This partition consists of exactly t colors and every solution to M∗
4 is rainbow.

This follows from the previous observation that at most 4 consecutive numbers can
receive the same color and the inequality 1+x2+x3 < 8q+5 forces 1, 2, . . . , 4q+1 to
receive their own colors. Taking that inequality, it can be shown that x2 + x3 must
be less than 8q+ 4. From this, we can see that, at the point where x2 +x3 ≥ 8q+ 4,
they no longer have to be their own color, as it is impossible for them to show up
in inequalities together. It follows that Rt

3(M∗
4) ≥ 8q + 6 in this case. To prove the

upper bound, consider an arbitrary t-coloring of {1, 2, . . . , 8q + 6}. The t-coloring
of this set would give a similar result as 8q + 5, but the additional number in the
set would have to be added to the last set of numbers, but this would exceed the
maximum of four numbers grouped together and force a non-rainbow solution.
Case 4 Assume that t ≡ 3 (mod 5) and write t = 5q+3. To prove the lower bounds,
consider the partition

{1} ∪ {2} ∪ · · · {4q + 1} ∪ {4q + 2, 4q + 3, 4q + 4, 4q + 5}∪
{4q + 6, 4q + 7, 4q + 8, 4q + 9} ∪ · · · ∪ {8q + 3, 8q + 4, 8q + 5, 8q + 6}.

This partition consists of exactly t colors and every solution to M∗
4 is rainbow.

This follows from the previous observation that at most 4 consecutive numbers can
receive the same color and the inequality 1+x2+x3 < 8q+6 forces 1, 2, . . . , 4q+1 to
receive their own colors. Taking that inequality, it can be shown that x2 + x3 must
be less than 8q+ 5. From this, we can see that, at the point where x2 +x3 ≥ 8q+ 5,
they no longer have to be their own color, as it is impossible for them to show up
in inequalities together. It follows that Rt

3(M∗
4) ≥ 8q + 7 in this case. To prove the

upper bound, consider an arbitrary t-coloring of {1, 2, . . . , 8q + 7}. The t-coloring
of this set would give a similar result as 8q + 6, but the additional number in the
set would have to be added to the last set of numbers, but this would exceed the
maximum of four numbers grouped together and force a non-rainbow solution.
Case 5 Assume that t ≡ 4 (mod 5) and write t = 5q+4. To prove the lower bounds,
consider the partition

{1} ∪ {2} ∪ · · · {4q + 2} ∪ {4q + 3, 4q + 4}∪
{4q+5, 4q+6, 4q+7, 4q+8}∪{4q+9, 4q+10, 4q+11, 4q+12}∪ · · ·∪{8q+5, 8q+6, 8q+7, 8q+8}.

This partition consists of exactly t colors and every solution to M∗
4 is rainbow.

This follows from the previous observation that at most 4 consecutive numbers can
receive the same color and the inequality 1+x2+x3 < 8q+8 forces 1, 2, . . . , 4q+2 to
receive their own colors. Taking that inequality, it can be shown that x2 + x3 must
be less than 8q+ 7. From this, we can see that, at the point where x2 +x3 ≥ 8q+ 7,
they no longer have to be their own color, as it is impossible for them to show up
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in inequalities together. It follows that Rt
3(M∗

4) ≥ 8q + 9 in this case. To prove the
upper bound, consider an arbitrary t-coloring of {1, 2, . . . , 8q + 9}. The t-coloring
of this set would give a similar result as 8q + 8, but the additional number in the
set would have to be added to the last set of numbers, but this would exceed the
maximum of four numbers grouped together and force a non-rainbow solution.

Finally, consider the case where s = t − 1 and m = t. We obtain the following
theorem.

Theorem 3. For all t ≥ 3, Rt
t−1(M∗

t ) = 1
2 t(t− 1) + 3.

Proof. The lower bound for Rt
t−1(M∗

t ) is proved by giving a t-coloring of{
1, 2, . . . ,

1

2
t(t− 1) + 2

}
that lacks a (t− 1)-colored solution to M∗

t . Observe that the only inequalities that
arise from M∗

t for this set are

1 + 2 + · · ·+ (t− 1) <
1

2
t(t− 1) + 1

1 + 2 + · · ·+ (t− 1) <
1

2
t(t− 1) + 2

1 + 2 + · · ·+ (t− 2) + t <
1

2
t(t− 1) + 2

If a (t− 1)-colored solution to M∗
t is avoided, then 1, 2, 3, . . . , t− 1, 12 t(t− 1) + 2 all

have distinct colors, t can receive the same color as that of t− 1, and the remaining
numbers can be given any color. One such partition is

{1} ∪ {2} ∪ · · · ∪ {t− 2} ∪ {t− 1, t} ∪
{
t + 1, · · · 1

2
t(t− 1) + 2

}
.

It follows that Rt
t−1(M∗

t ) ≥ 1
2 t(t− 1) + 3. Now, we consider an arbitrary t-coloring

of {1, 2, . . . , 12 t(t− 1) + 3}. Consider the inequalities

1 + 2 + · · ·+ (t− 1) <
1

2
t(t− 1) + 2, (1)

1 + 2 + · · ·+ (t− 2) + t <
1

2
t(t− 1) + 2, (2)

1 + 2 + · · ·+ (t− 3) + (t− 1) + t <
1

2
t(t− 1) + 3. (3)

As there are exactly t numbers in Inequality (1), they must each receive different
colors. From Inequality (2), t must be the same color as t− 1. Finally, in Inequality
(3), we see that t− 1 and t are the same color, implying Rt

t−1(M∗
t ) ≤ 1

2 t(t− 1) + 3.
Combining these two bounds results in the statement of the theorem.
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3. Rainbow Rado Numbers

Define the rainbow Rado number RR(Em, n) to be the minimum number of colors
necessary such that every coloring of {1, 2, . . . , n} contains a rainbow solution to Em.
Such numbers generalize the rainbow Schur numbers introduced in [6], which were
themselves, variations of rainbow numbers for edge colorings of complete graphs (see
Section 11.4 of [8]). Equivalently, one could define the anti-Rado number AR(Em, n)
to be the maximum number of colors that can be used to color {1, 2, . . . , n} such
that no rainbow solution to Em exists (generalizing concepts first introduced in [10]).
It is clear from these definitions that

RR(Em, n) = AR(Em, n) + 1,

for all m ≥ 3 and n ≥ 3.
Observe that a coloring of {1, 2, . . . , n} produces a rainbow solution to Lm if

and only if it produces a rainbow solution to L∗m. This is because a solution to
x1+x2+· · ·+xm−1 = xm will never be rainbow when xi = xj for some 1 < i < j < m.
The same is true regarding rainbow solutions to Mm and M∗

m. Thus, we only
consider the systems L∗m and M∗

m. When m = 3, it was proved in Section 2 of [6]
that RR(L∗3, n) = blog2(n)c + 2, for all n ≥ 3. Our attention in this section will
focus on the evaluation of RR(M∗

3, n) and RR(M∗
4, n).

Since 1 + 2 < 4 is the first nontrivial solution to M∗
3, the number RR(M∗

3, n) is
only defined when n ≥ 4.

Theorem 4. For all n ≥ 4, RR(M∗
3, n) = 4.

Proof. First note that the 3-coloring

{1, 2, . . . , n− 1, n, n + 1}

avoids a rainbow solution to M∗
3 since no inequality in M∗

3 contains both n and
n + 1. It follows that RR(M∗

3, n) ≥ 4. To prove that 4 is also an upper bound, we
proceed by induction on n ≥ 4. For the set {1, 2, 3, 4}, there is only one inequality
in M∗

3: 1 + 2 < 4. It is easily checked that RR(M∗
3, 4) ≤ 4 since whenever all

four numbers receive unique colors, a rainbow solution to 1 + 2 < 4 is forced. Now
that we have proved the base case, we state the inductive hypothesis: suppose that
RR(M∗

3, n) ≤ 4 for some n ≥ 3. We must prove that RR(M∗
3, n + 1) ≤ 4. Consider

a 4-coloring of {1, 2, . . . , n + 1}. If the color assigned to n + 1 was already used for
some i such that 1 ≤ i ≤ n, then this coloring induces a 4-coloring of {1, 2, . . . , n},
which produces a rainbow solution to M∗

3 by the inductive hypothesis. If the color
used for n + 1 is unique, then the equation 1 + x2 < n + 1 only avoids a rainbow
solution when 1 receives the same color as every 2 ≤ x2 ≤ n − 1. Even if n also
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receives a unique color, at most 3 colors are used. Hence, we have shown that in all
cases, 4-coloring {1, 2, . . . , n + 1} produces a rainbow solution to M∗

3, completing
the proof that RR(M∗

3, n + 1) ≤ 4. It follows that RR(M∗
3, 4) = 4.

Since 1+2+3 < 7 is the first nontrivial solution toM∗
4, the number RR(M∗

4, n)
is only defined when n ≥ 7.

Theorem 5. For all n ≥ 7,

RR(M∗
4, n) =


n+7
2 if n is odd

n+8
2 if n is even.

Proof. For the lower bounds, we consider the cases where n is odd or even separately.
First, suppose that n ≥ 7 is odd and consider the partition{

1, 2, 3, · · · , n− 3

2

}
∪
{
n− 1

2

}
∪
{
n + 1

2

}
∪ · · · ∪ {n} .

The first set in this partition includes at least 2 numbers from every inequality in
M∗

4 since

1 +
n− 1

2
+

n + 1

2
< n =⇒ n + 1 < n.

This partition has n+5
2 colors, from which it follows that RR(M∗

4, n) ≥ n+7
2 . When

n ≥ 8 is even, consider the partition{
1, 2, 3, · · · , n− 4

2

}
∪
{
n− 2

2

}
∪
{n

2

}
∪ · · · ∪ {n} .

The first set of this partition includes at least 2 numbers from every inequality in
M∗

4 since

1 +
n− 2

2
+

n

2
< n =⇒ n < n.

This partition has n+6
2 colors, from which it follows that RR(M∗

4, n) ≥ n+8
2 . Now

we turn our attention to proving the upper bounds for RR(M∗
4, n), which we do

by induction on n ≥ 7. First consider the base cases. When n = 7 or n = 8, an
n-coloring of {1, 2, . . . , n} necessarily assigns to each number its own color. Then
1+2+3 < n is a rainbow solution toM∗

4, from which it follows that RR(M∗
4, 7) ≤ 7

and RR(M∗
4, 8) ≤ 8. Now, suppose that

RR(M∗
4, n) ≤


n+7
2 if n is odd

n+8
2 if n is even,
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for some n ≥ 7. If n+ 1 is even, and we consider an (n+1)+8
2 -coloring of 1, 2, . . . , n+

1}, then regardless of whether or not n + 1 receives its own color or not, the set
{1, 2, . . . , n} uses at least n+7

2 colors, from which the inductive hypothesis implies the
existence of a rainbow solution toM∗

4. If n+ 1 is odd, then consider whether or not
n + 1 receives a unique color. If not, then {1, 2, . . . , n} is colored using n+8

2 colors
and we have a rainbow solution to M∗

4 by the inductive hypothesis. Otherwise,
n+1 receives a unique color, which is clearly different from the color that 1 receives.
Consider the inequality

1 + x2 + x3 < n + 1,

where 1 < x2 < x3 < n + 1. If no such rainbow solution exists, then the num-
bers 2, 3, . . . , n−2

2 must all receive the same color as 1. Even if all of the numbers
n
2 ,

n+2
2 , . . . , n+1 receive distinct colors, this results in at most n+6

2 colors being used,
giving a contradiction. It follows that using n+8

2 colors produces a rainbow solution
to M∗

4 in this case.

4. Conclusion

Besides the evaluation of Rt
s(M∗

m) and RR(M∗
m, n) for values of m, n, s, and t not

considered here, we conclude by listing a few other avenues for continued research.

1. Consider other systems of equations/inequalities than the ones considered here.
For example, equations of the form x + ay = z, where a ≥ 2, were considered
in [17]. As far as we are aware, the analogous inequality (and its strict coun-
terpart) have not yet been considered.

2. Consider Gallai-Rado numbers for various systems of equations/inequalities.
Such numbers will avoid rainbow solutions to a given system while determining
when a monochromatic solution exists. The Schur number analogue of this
concept was considered for L3 in Section 3 of [6].

3. In [15], Robertson and Zeilberger considered the number of monochromatic
solutions to L3 and in [13], the authors focused on the analogous problem for
M3. For systems with more than 3 variables, this problem remains open.
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