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CANAL SURFACE WHOSE CENTER CURVE IS A SPHERICAL
CURVE WITH SPHERICAL FRAME
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ABSTRACT. In this paper, we obtain the parametrization of the canal sur-
faces whose center curves are the spherical curves on the sphere S? in E3. The
parametrization of the canal surface is expressed according to the spherical orthonor-
mal frame given in [8]. Then the parallel surface of this surface is studied. Also we
define the notion of the associated canal surface. Lastly we give the geometric prop-
erties of these surfaces such that Weingarten surface, (X, Y')-Weingarten surface and
linear Weingarten surface.
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1. INTRODUCTION

Canal surfaces was firstly investigated by Monge in 1850. A canal surface is defined
as a surface formed as the envelope of a family of spheres whose centers lie on a space
curve C(t) with radius 7(¢). If the radius r(t) is constant, then the canal surface
is called as pipe surface or tubular surface. Canal surfaces play an essential role
in descriptive geometry, because in case of an orthographic projection its contour
curve can be drawn as the envelope of circles. In technical area canal surfaces can
be used for blending surfaces smoothly. Canal surface is useful to represent various
objects e.g. pipe, hose, rope or intestine of a body. Moreover, canal surface is an
important instrument in surface modelling for CAD/CAM such as tubular surfaces,
torus and Dupin cyclides [5].

Canal surfaces and tubular surfaces have been studied by many researchers. In
[3], [4], [5], [6], the authors study canal surfaces and tubular surfaces in Euclidean
3-space, Minkowski 3-space, Galilean and Pseudo Galilean spaces. Lately, in [10],
the authors consider the new approach to canal surfaces. Also in [2] and [7], the
authors study canal surfaces with quaternions.
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In [8], the author defines the spherical orthonormal frame of the curves on the
sphere S2.

In this paper, we obtain the parametrization of the canal surfaces whose center
curves are the spherical curves on the sphere S? in E3. The parametrization of the
canal surface is expressed according to the spherical orthonormal frame given in [8].
Then the parallel surface of this surface is studied. Also we define the notion of the
associated canal surface. Lastly we give the geometric properties of these surfaces
such that Weingarten surface, (X,Y)-Weingarten surface and linear Weingarten
surface.

2. PRELIMINARIES

Let m € E3 be a fixed point and r > 0 be a constant. Then the sphere is defined by
S% (m,r) ={ucE>: (u—m,u—m)=r’}

We use 52 (0,1) = S? and S%(0,r) = S? (r) throughout this article.

For a unit speed regular curve z (s) C S? C E?, we choose {z (s),a(s),y(s)}
forming a standart orthonormal basis of E3. Then the spherical Frenet formulas of
the spherical curve x (s) on S? can be written as

2 (s)=af(s), o (s)=-z(s)+r(s)y(s), y'(s)=-r(s)a(s). (1)

Here, the function « (s) is called the spherical curvature function (or curvature) of
x (s) and the frame {z (s),a(s),y(s)} is called the spherical Frenet frame of the
spherical curve z (s) ([8]).

We recall some well-known formulas for the surfaces in E3. Let M be a surface
of E3, the standart connection D on E? induces the Levi-Civita connection 57 on
M. We have the following Gauss formula

DxY =VxY +h(X,)Y),
and the Weingarten formula
Dx€&=—AcX + *Vx €,

where X,Y € I'(TM) and £ € ' (TM™). Then V is the Levi-Civita connection
of M, h is the second fundamental form, A, is the shape operator, and LV is the
normal connection. We note that

(h(X,Y),6) = (A X,Y).
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The mean curvature vector field ﬁ, the mean curvature H and the Gauss curvature
of M are given respectively by

H= %(h(el,el) + h(ez,e2)), H= Hﬁ” and K =detA

where {ej, ea} is an orthonormal basis on M ([1]).
Let U be the unit normal vector field on a surface M (s,t) defined by

U — MS X Mt

[ M5 < Myl

The second fundamental form I7 of a surface M (s,t) is given as
I = eds® + 2fdsdt + gdt?

where
e:g(Mss>U>7 f:g(MstaU))g:g(Mth)'

([11]) Thus the second Gaussian curvature K of a surface is given as

1 _%ett + fstl_ %gss %es Js — %et
K = m ft ; 29s € f
g 30t f g

1 1
10 26t 30s
—| se e f

595 f g

3. CANAL SURFACE WHOSE CENTER CURVE IS THE SPHERICAL CURVE ON 52

In this section, we consider the canal surfaces whose center curve is the spherical
curves on S2.

Theorem 1. Let x (s) be a spherical curve with arc-length parameter s on S* and
be the center curve of a canal surface obtained from the sphere S? (r). Then
(1) the parametrization of the canal surface can be as following

M (s,t) = (1 +mar (s) /1 —1r2(s) Sint> x(s)—r(s)rs(s)a(s)
+ (mgr (s) /1 —172(s)cos t) y(s)
(17) the parametrization of the tubular surface can be as following

M (s,t) = (1 +myrsint) x (s) + (maorcost) y (s)

where mi,mo € {—1,1}.
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Proof. Let z (s) be a spherical curve with arc-length parameter s on S?. Assume
that M be a parametrization of the envelope of the sphere S?(r) defining the canal
surface and the center curve z (s). Then M can be parametrized as

M (s,t) —z(s) =a(s,t)x(s) +b(s,t)a(s)+c(s,t)y(s) (2)

where a, b and c are differentiable functions of s and ¢ on the interval I on which x
is defined. Moreover, since M (s,t) lies on the sphere S?(r), we can write

(M (s,t) — z(s), M (s,t) — z(s)) = 2. (3)

which leads to that

A+ 4+ = o? (4)
aag +bbs +cce = 11y (5)

where ag, bs, cs, 75 refer to the derivative of the functions with respect to s.
Differentiating (2) with respect to s and using (1), we get

Ms=(as—bx+(1+a+bs—cr)a+ (bk+cs)y (6)

where Mj refers to the derivative of M with respect to s. Furthermore, M (s,t)—
x(s) is a normal vector to the canal surfaces, which implies that

(M (s,t) —2(s), Ms) = 0, (7)
Then, from (7), (2), (5) and (4), we obtain
- )
a4+ = r? (1—7“3). (9)
which let us take

a = =ry/1—rsint,
¢ = =+ry/1—r2cost.

Then the proof of (i) is complete. If we take r as a constant, we get the proof of
(13).

In the following theorem, we classify all spherical curve on S? with constant
curvature.
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Theorem 2. Let x be a real number. Then x (s) is a spherical curve on S* with
arc-length parameter s and curvature k if and only if x (s) can be parameterized by

w:cos<\/1+/<;23>V1+sin<\/1+/<523>V2+V3

where Vi, Va, V3 are mutually orthogonal vectors satisfying the following equations

1 K2

Proof. Let z (s) be a spherical curve on S? with arc-length parameter s and con-
stant curvature k. By using the spherical Frenet equations, we obtain the following
homogeneous differential equation with constant coefficients

"+ (1+ &%) 2’ =0.
The characteristic equation of the previous equation is follows
T (r2 + (1 + nz)) =0.
Then we get
T = CoS (\/ms) V1 + sin (\/ms) Vo + V. (10)
Differentiating (10) with respect to s, we get

a:—\/1+li2sin<\/1+/<;28>V1+\/1+m2cos<\/1+m23>VQ.

By using (o, ) = 1, we get Vi, Vo, V3 are mutually orthogonal vectors satisfying

the following equations

L d (Vs V3) i
an = .
14+ k2 313 1+ k2

<V17V1> = <V27V2> =

Then the proof is complete.

Example 1. Let us take k = 1 in Theorem 2. Then we obtain

(Vi, Vi) = (Va, Vi) = (Va, V) = %

1
707 V:070777
). o= (00 35)

Then we can choose

1
Vi=|—,0,0), Vo=10,
' <\/§ ) ? (
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which implies that

V2 V2 T2
a = (—sin(x/is),cos( 23),0),

y = (_cos (ﬂs) _sin (\@s) 1>‘

(cos (v2s) sin(v2s) 1 )

v2 o V2 V2
Now let us take m1 = mso = 1 in Theorem 1 and give the canal surfaces with r = 2
and r = % (Figure 1).

Figure 1: The canal surface for 7 = 2 (left) and r = s? (right)

4. TUBULAR SURFACE WHOSE CENTER CURVE IS THE SPHERICAL CURVE

In this section we consider the tubular surface whose center curve is the spherical
curve in S, which is parameterized by

M (s,t) = (1 +myrsint) x (s) + (marcost) y (s)

where mi,mg € {—1,1} and r € R. By taking m; = my = 1, we have

P (s,t) = (1 +rsint)z(s) + (rcost) y(s). (11)
From (11), we find
Vs = (1+4+rsint —rrcost)a,
vy = (rcost)z — (rsint)y.
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We can find the components of first fundemental form as follows

g1 = <ws,¢5) = (1 +rsint — T/ﬁ?COSt)Q, gi12 = (%Jﬁt) =0, gxo= <¢t7¢t> =72

Then g11g99 — (912)2 = r2(1+rsint — T/iCOSt)2. We assume that 1 + rsint —
rrcost > 0 for the regularity of the surface .
Now we will give an orthonormal basis on 1 (s,t).

1

er = mws =,
es = HT;tHwt = (cost) xz — (sint)y,

where {e1,ez2} is an orthonormal frame field on v (s,t). Set
es = — (sint) x — (cost) y,

where e3 is a normal vector field to 1 (s,t). {e1, ez, e3} is an orthonormal basis on
¥ (s,t). Then we obtain

1
D = _
e €l l—i—rsint—rncost( T+ Ry,

cost+ ksint

D61€2 = : «,
1+ rsint —rkcost

D.,ea = % (= (sint)x — (cost)y).

The components of the second fundamental form h are calculated as follows

sint — kcost

h — D €1,€e3) = . ’
11 (De, €1, €3) 1+ rsint —rkcost

1
hia = (De,ez,e3) =0 and hoe = (Deye2,e3) = .

Theorem 3. The mean curvature H of 1 (s,t) is obtained as

1 1 —2rxcost+ 2rsint
(hll + hgg) = . (12)

H = = -
2r (1 +rsint — rrcost)

T2

Theorem 4. The Gauss curvature K of 1 (s,t) is obtained as

sint — kcost

K — hithoo — (hig)? — .
11hog — (h12) r (14 rsint — rkcost)
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A surface is called Weingarten surface if there exist a non-trivial function ¥ (K, H)
such that ¥ (K,H) = KsH; — KyHs = 0 for the Gauss curvature K and mean
curvature H of the surface. Here subscripts denote partial derivatives. Also we
a surface is called as a linear Weingarten surface if there exist real numbers a,
b, ¢ € R\{0} such that the linear combination aK + bH = c is satisfied. For
(X,Y) e {(K,Kyr),(H,Krr)}, the surface is called as (X, Y)-Weingarten surface if
U (X, Y) =0 ([9)).

From (12) and (13), we have

—kK' cost cost + ksint
s = N PR Kt: . 2
r(1+rsint — recost) r(1+rsint — rrcost)
and .
—K' cost cost + ksint
s = Ht:

2(1+rsint — ricost)?’ 2(1+rsint — recost)?’
Thus it can be easily seen that ¥ (K, H) = KsH; — K;H; = 0. So we can give the
following theorem.

Theorem 5. The surface v (s,t) is a Weingarten surface.

Now assume that there exist real numbers a, b, ¢ € R\{0} such that the linear
combination aK + bH = c is satisfied.
b—2cr+2(a—cr®+br)sint — 2 (a—cr? + br) Kcost B

K+bH —c= =0
ol + ¢ 2r (1 +rsint — rrcost)

which implies that b = 2cr and a + c¢r? = 0. So we can give the following theorem.

Theorem 6. Let K and H be the Gauss curvature and mean curvature of the surface
¥ (s,t). Then there exists the following relation between K and H :

—r?’K +2rH =1
where r is a positive real number.
From above theorem, we get the following corollary.
Corollary 7. The surface ¢ (s,t) is a linear Weingarten surface.
Definition 1. The parallel surface of the surface X (s,t) defined by
X" (s,t) = X (s,t) + pU (s,1)

where x x
s X t
U(s,t) = ————

50 = 1%, < X

is the unit normal vector of the surface X (s,t) and p € R.
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Now we will define the parallel surface * (s, t) of the surface 9 (s,t) as follows
¢* (S,t) = w(sat) +,U,63
= (1+(r—p)sint)z(s) + ((r — p)cost)y (s) (14)
From (14), we find
vr = (14 (r—p)sint — (r — p) kcost) a,
;= ((r—p)cost)x — ((r — p)sint) y.
We can find the components of first fundemental form as follows
g = (Wl =1+ (r—p)sint — (r — p) kcost)?,
G = (W5 =0, gaa = (i, b) = (r — p)*.

Then g5, 95, — (975)? = (r — p)? (1 + (r — ) sint — (r — p) K cost)?. We assume that
r—p>0and 14 (r—p)sint — (r — p) kcost > 0 for the regularity of the surface

v* (s,1).
Now we will give an orthonormal basis on ¥* (s, ).
1
e = 7*1/)* =qQ,
[zl ™
1
ey = i = (cost)z — (sint)y,
[

where {e}, €3} is an orthonormal frame field on ¢* (s,t). Set
es = — (sint) x — (cost) y,
where €} is a normal vector field to ¢* (s,t). {e}, €3, €5} is an orthonormal basis on
¥* (s,t). Then we obtain
1
Dgef = —z + Ky),
at 1+(r—u)sint—(r—u)/§cost( 2
cost + K sint

Dejez = 1+(r—u)sint—(r—u)/§costa’
Dese; = (r—lu) (— (sint)x — (cost)y).
The components of the second fundamental form h* are calculated as follows
no= <D6I€T7 ¢) = 1+ (r— :)lzlitf(zib—t p) K cost’
o = <De§e§,e§> =0 and ho = <Deze§,e§> = G i e

Similarly we can find the following results.
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Theorem 8. The mean curvature H* of ¢* (s,t) is obtained as
1-2(r—p)rcost+2(r— p)sint
2(r—pu)(1+ (r—p)sint — (r — p) kKcost)’

Theorem 9. The Gauss curvature K* of 1* (s,t) is obtained as

H" =

sint — kcost
(r—p)(1+ (r—p)sint — (r — p) Kcost)

Theorem 10. The surface ¥* (s,t) is a Weingarten surface.

K* =

Now assume that there exist real numbers a, b, ¢ € R\{0} such that the linear
combination aK* + bH* = c is satisfied.

aK*+bH" — ¢
b—20(r—u)+2(a—c(r—u)z—kb(r—,u)) (sint — kcost)

2r (1 +rsint — rrcost)

= 0

which implies that b = 2¢ (r — ) and a+c (r — p)* = 0. So we can give the following
theorem.

Theorem 11. Let K* and H* be the Gauss curvature and mean curvature of the
surface * (s,t). Then there exists the following relation between K* and H* :

—(r—p)?’K*+2(r—p)H* =1
where 1 is a positive real number and p is a real number.
From above theorem, we get the following corollary.

Corollary 12. The surface 1* (s,t) is a linear Weingarten surface.

5. ASSOCIATED CANAL SURFACES

In this section, we will give the definition of the associated canal surfaces.

In [8], the author defines the associated curve of the spherical curve x (s) in S?
with the spherical frame {x (s),a(s),y(s)}. Let x; (5) be the associated curve of
x (s) such that x1 (3) = y (s) where there exists a diffeomorfism 5 = f; (s). In this
paper, we will call z; (5) = y(s) as the first associated curve of the spherical
curve z (s).

Let x9 (s*) = a(s) where there exists a diffeomorfism s* = fo (s) Then we will
call x5 (s*) = a(s) as the second associated curve of the spherical curve x (s).

So we can give the following corollaries.
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Corollary 13. Let 1 (3) be the first associated curve of the spherical curve x (s) in
S2% with the spherical frame {x (s),a(s),y (s)} such that x1 (3) = y (s) where there
exists a diffeomorfism s = f1(s). Then we have

Loan

=Y, a1 = —qQ, =, R1 = —, -
K ds

)

where {x1 (5), a1 (5),y1 (5)} is the spherical frame of 1 (5) and k1 (3) is the spherical
curvature of x1 (3).

Corollary 14. Let x5 (s*) be the second associated curve of the spherical curve
x (s) in S? with the spherical frame {x (s),a(s),y(s)} such that x5 (s*) = y(s)
where there exists a diffeomorfism s* = fa(s). Then we have

1 1
T2 = Q, Ay = ——== (—T + RY), 2 = — (ke + 1Y),
ek v 2= s )
/
d,
hy = A s

(1_1_,{2)3/2’ ds

where {xa (s*),aa(s*),y2(s*)} is the spherical frame of xo(s*) and ko (s*) is the
spherical curvature of xa (s*).

Definition 2. Let z1 (5) be the first associated curve of the spherical curve x (s) in
S2, 1) (s,t) and vy (3,t) be canal surfaces (or tubular surfaces) whose center curves
are z (s) and x1 (5), respectively. Then 1y (5,t) is called as ”the first associated
canal surface (or the first associated tubular surface)” of ¥ (s,t).
Similarly, let x5 (s*) be the second associated curve of the spherical curve x (s) in S2,
Y (s,t) and 9 (s*,t) be canal surfaces (or tubular surfaces) whose center curves are
x (s) and xo (s*), respectively. Then 1y (s*,t) is called as ”"the second associated
canal surface (or the second associated tubular surface)” of 1 (s,t).

Firstly, we consider the first associated tubular surface of ¥ (s,t). Let 9 (5,t)
be the first associated tubular surface of ¢ (s,t). Then we can write

1 (5,t) = (14 rsint)xy (3) + (rcost)yi (3)
= (rcost)x(s)+ (1 +rsint)y(s). (15)

From (15), we have

() = % (rcost — (14 rsint)) «,
(Y1), = —(rsint)x + (rcost)y,
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which implies that

. 2
(1), (1)) = (rcost — (14 rsint) k) 7

K2

<(¢1)§a (¢1)t> = 0, <(7/11)t s (¢1)t> = 7“2.

Then

9 o(rcost— (1+rsint) k)

(P1)g: (P1)g) (1), (1)) = ((W1)g, (Y1) )™ =7 2

Theorem 15. Let 11 (S,t) be the first associated tubular surfaces of 1 (s,t). Then
Y1 (3,t) has a singular point at 1 (sg, to) if and only if

rcosty — (1 + rsintg) k (so) = 0.

Now we assume that rcost — (1 4+ rsint) k # 0 for all (¢,s). Then we will give
an orthonormal basis on v (5,1).

e = ; = (8%

R e R

ey = ; = —(sint) x Cos

€2 = H(wl)tH (d}l)t ( t) +( t) Y,

where £; = sgn (rcost — (14 rsint) k) and {€1,e2} is an orthonormal frame field
on ¥ (5,t). Set

€3 = — (cost)x — (sint)y,
where €3 is a normal vector field to ; (5,t). {€1,€2,e3} is an orthonormal basis on
11 (S,t) . Then we obtain

1
Do = -
el rcost—(l—krsint)/{( T+ Ry),

—¢e1 (kcost + sint)

_ «
rcost — (1 +rsint)

Dg,ey = % (— (cost)x — (sint) y) .

The components of the second fundamental form h are calculated as follows

cost — ksint

E = Dz e ,€3) = )
1 (Des1, ) rcost — (1 +rsint) k

h 7 1
hia = (Dges,e3) =0 and ho = (Dg,e2,€3) = =.
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Theorem 16. The mean curvature Hy of 11 (3,t) is obtained as

1 - - 2rcost — k(1 4 2rsint)
H = - (h o) — . 16
! 2( 11+ h) 2r (rcost — (1 +rsint) k) (16)
Theorem 17. The Gauss curvature Ky of 11 (5,t) is obtained as
_ — 9 cost — ksint
K1 = hithos — (h12)” = (17)

r(rcost — (1 +rsint) k)’

From (16) and (17), we have

k' cost Kk (sint + kcost)
(K1)§: ; 29 (Kl)t - B D)
rk (rcost — (1 +rsint) k) r(rcost — (1 +rsint) k)
and
k' cost Kk (sint + K cost)
(Hy)s = - 5, (H1); = . 2
2k (rcost — (14 rsint) k) 2(rcost — (14 rsint) k)

Thus it can be easily seen that ¥ (K, Hy) = (K1); (H1), — (K1), (H1)s = 0. So we
can give the following theorem.

Theorem 18. The surface 11 (3,t) is a Weingarten surface.

Now assume that there exist real numbers a, b, ¢ € R\{0} such that the linear
combination aKq + bH; = ¢ is satisfied.
2 (a —cr? + br) cost — (b— 2cr + 2 (a —cr? 4 br)) Ksint _0
2r (rcost — (1 4+ rsint) k) B

aK1+bH1—c:

which implies that b = 2cr and a + c¢r? = 0. So we can give the following theorem.

Theorem 19. Let K1 and Hy be the Gauss curvature and mean curvature of the
surface Y (8,t). Then there exists the following relation between Ky and Hj :

—r? Ky +2rH, =1
where T 1s a positive real number.
From above theorem, we get the following corollary.

Corollary 20. The surface ¢y (5,t) is a linear Weingarten surface.

27



Ali Ugum - Canal surface whose center curve is a spherical curve ...

Now, we consider the second associated tubular surface of v (s,t). Assume that

k(s) = k (constant). Let 19 (s*,t) be the second associated tubular surface of
¥ (s,t). Then we can write
o (s*,t) = (1+rsint)xs (s*) + (rcost)ya (s¥)
KT cost 7 CoSt

= (s)+ (L +rsint)a(s) + y(s). (18)

ATCoSt _reost
V1+ k2 V1+ kK2

From (18), we have

1+ rsint
. = —— (7T +KY),
(w2)s m ( y)
—Krsint rsint
(o), = —F—=a+ (rcost)a — —=v,

which implies that

() > (th2) o) = (L4 7sint)?, ((2) g, (2),) =0, ((tha),, (), = 7.
Then

((W2) g s (2) ) ((2), 5 ($2),) = ((W2)ye  (2),)* = 12 (1 + 7sint)?.

Theorem 21. Let 1) (s*,t) be the second associated tubular surfaces of 1 (s,t).
Then g (s*,t) has a singular point at 1 (s,t9) if and only if 1 + rsinty = 0.

Now we assume that 1+rsint # 0 for all (¢, s) . Then we will give an orthonormal
basis on g (s*,1) .

oo L __ &

T T e T e T

o 1 (1hs), = _Hsmtac+(cost)a— sint

2T Wl T VIR itz

where g2 = sgn (1 + rsint) and {ej, €3} is an orthonormal frame field on ¥ (5,t).

Set
" €9K COSt . g9 cost
€5 = ————=u — (e2sint) a —

V14 K2 \/1—1—;@2y7

where e} is a normal vector field to ¥ (s*,t). {e], €5, €5} is an orthonormal basis on
o (s*,t) . Then we obtain

1

Dere] = —a

! 1+ rsint

g9 cost

Dgrey = -+ KY),

e (1+rsint)\/1—|—/£2( v)
Dot Kcost sint cost

€y = — T — — .

22 rv1+ k2 r T\/l—l—/izy
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The components of the second fundamental form h* are calculated as follows

—egsint
* * *
1 = <De{€1’63> = T a0
1+ rsint
€2
* * * * * *
12 == <De’{€2,63> == O and h22 == <De§€2,63> == 7

Theorem 22. The mean curvature Ho of 19 (s*,t) is obtained as

€2
Hy=—"“"" 19
2 2r (1 + rsint) (19)
Theorem 23. The Gauss curvature Ko of 1o (s*,t) is obtained as
Kp=— (20)

~ r(L+rsint)’
From (19) and (20), we have

—cost

Ko). =0, (Ky), = — %0
(), (K2), r(1+rsint)2

and

—egcost
Hy)s+ =0, Hy), = ——FF.
(H2)s (H2), 2(1 —i—rsinlt)2

Thus it can be easily seen that W (Ky, Hy) = 0. So we can give the following theorem.
Theorem 24. The surface 1o (s*,t) is a Weingarten surface.

Now assume that there exist real numbers a, b, ¢ € R\{0} such that the linear
combination a Ko + bHy = ¢ is satisfied.

Ko+ bH _b€2—20r—2(cr2+a)sint_0
a2 277 2r (14 rsint) B

which implies that b = 2e2¢r and a +cr? = 0. So we can give the following theorem.

Theorem 25. Let Ko and Hy be the Gauss curvature and mean curvature of the
surface 1o (s*,t). Then there exists the following relation between Ko and Ho :

—T2K2 + 2e9rHo =1
where T is a positive real number.

From above theorem, we get the following corollary.
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Corollary 26. The surface 1o (s*,t) is a linear Weingarten surface.
The second Gaussian curvature Kj; of the surface 1, (s*,t) is obtained that

cot?t + 2 (1 + rsint) (14 2rsint)

K =
degr (1 + rsint)?

Then it can be easily seen that W (K7, Ho) = 0 and ¥ (K7, K3) = 0. So we can
give the following theorem.

Theorem 27. The surface 1o (s*,t) is a (X,Y)-Weingarten surface where (X,Y) €
{(K2, K1), (H2, K11)} -
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