DOUBLE FUZZY BASICALLY DISCONNECTED SPACES

J. B. PRINCIVISHVAMALAR, N. RAJESH AND B. BRUNDHA

ABSTRACT. In this paper we introduce and study a new class of double fuzzy topological space called (r, s)-fuzzy *b*-extremely disconnected space. Several characterizations and some interesting properties of these spaces are also given.

2010 Mathematics Subject Classification: 54A40, 45D05, 03E72

Keywords: Double fuzzy topology, generalized double fuzzy $b\-$ open set, generalized double fuzzy $b\-$ closed set.

1. INTRODUCTION

The concept of fuzzy sets was introduce by Zadeh [15]. Later on, Chang [2] introduced the concept of fuzzy topology, then the generalizations of the concept of fuzzy topology have been done by many authors. In [1], Atanassove introduced the idea of intuitionistic fuzzy sets, then Coker [3, 4], introduced the concept of intuitionistic fuzzy topological spaces. On the other hand, as a generalization of fuzzy topological spaces Samanta and Mondal [14], introduced the concept of intuitionistic gradation of openness. In 2005, the term intuitionistic is ended by Garcia and Rodabaugh [11]. They proved that the term intuitionistic is unsuitable in mathematics and applications and they replaced it by double. Many other topologies (see [7, 8, 9, 10, 12, 16]) studied various notions in double fuzzy fuzzy topological space. The purpose of this paper is to introduce a new class of double fuzzy topological space called (r, s)-fuzzy b-extremely disconnected space. Several characterizations and some interesting properties of these spaces are also given.

2. Preliminaries

Throughout this paper, Let X be a non-empty set, I the unit interval [0, 1], $I_0 = (0, 1]$ and $I_1 = [0, 1)$. The family of all fuzzy sets on X is denoted by I^X . By $\overline{0}$ and $\overline{1}$, we denote the smallest and the greatest fuzzy sets on X. For a fuzzy set

 $\lambda \in I^X, \overline{1} - \lambda$ denotes its complement. Given a function $f: I^X \longrightarrow I^Y$ and its inverse $f^{-1}: I^Y \longrightarrow I^X$ are defined by $f(\lambda)(y) = \bigvee_{f(x)=y} \lambda(x)$ and $f^{-1}(\mu)(x) = \mu(f(x))$, for each $\lambda \in I^X, \mu \in I^Y$ and $x \in X$, respectively. All other notations are standard notations of fuzzy set theory.

Definition 1. [4, 14] A double fuzzy topology on X is a pair of maps $\tau, \tau^* : I^X \to I$, which satisfies the following properties:

- 1. $\tau(\lambda) \leq \underline{1} \tau^{\star}(\lambda)$ for each $\lambda \in I^X$.
- 2. $\tau(\lambda_1 \wedge \lambda_2) \ge \tau(\lambda_1) \wedge \tau(\lambda_2)$ and $\tau^*(\lambda_1 \wedge \lambda_2) \le \tau^*(\lambda_1) \vee \tau^*(\lambda_2)$ for each $\lambda_1, \lambda_2 \in I^X$.

3.
$$\tau(\bigvee_{i\in\Gamma}\lambda_i) \ge \bigwedge_{i\in\Gamma}\tau(\lambda_i) \text{ and } \tau^{\star}(\bigvee_{i\in\Gamma}\lambda_i) \le \bigvee_{i\in\Gamma}\tau^{\star}(\lambda_i) \text{ for each } \lambda_i\in I^X, i\in\Gamma.$$

The triplet (X, τ, τ^*) is called a double fuzzy topological space.

Definition 2. [4, 14] A fuzzy set λ is called an (r, s)-fuzzy open if $\tau(\lambda) \geq r$ and $\tau^*(\lambda) \leq s$, λ is called an (r, s)-fuzzy closed if, and only if $\underline{1} - \lambda$ is an (r, s)-fuzzy open set.

Definition 3. [4, 14] A function $f: (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ is said to be a double fuzzy continuous if, and only if $\tau_1(f^{-1}(\nu)) \ge \tau_2(\nu)$ and $\tau_1^*(f^{-1}(\nu)) \le \tau_2^*(\nu)$ for each $\nu \in I^Y$.

Theorem 1. [13, 5] Let (X, τ, τ^*) be a double fuzzy topological space. Then the double fuzzy closure operator and the double fuzzy interior operator of $\lambda \in I^X$ are defined by $C_{\tau,\tau^*}(\lambda, r, s) = \bigwedge \{\mu \in I^X \mid \lambda \leq \mu, \tau(\underline{1} - \mu) \geq r, \tau^*(\underline{1} - \mu) \leq s\},$ $I_{\tau,\tau^*}(\lambda, r, s) = \bigvee \{\mu \in I^X \mid \mu \leq \lambda, \tau(\mu) \geq r, \tau^*(\mu) \leq s\},$ where $r \in I_0$ and $s \in I_1$ such that $r + s \leq 1$.

Definition 4. [6] Let (X, τ, τ^*) be a double fuzzy topological space. For each $\lambda, \mu \in I^X, r \in I_0$ and $s \in I_1$,

- 1. λ is called (r, s)-fuzzy b-open if $\lambda \leq I_{\tau, \tau^*}(C_{\tau, \tau^*}(\lambda, r, s), r, s) \lor C_{\tau, \tau^*}(I_{\tau, \tau^*}(\lambda, r, s), r, s)$.
- 2. λ is called an (r, s)-fuzzy b-closed set if $\underline{1} \lambda$ is an (r, s)-fuzzy b-open set.
- 3. An (r,s)-fuzzy b-closure of λ is defined by $BC_{\tau,\tau^*}(\lambda,r,s) = \bigwedge \{ \mu \in I^X \mid \lambda \leq \mu \text{ and } \mu \text{ is } (r,s) \text{-fuzzy b-closed} \}.$
- 4. An (r,s)-fuzzy b-interior of λ is defined by $BI_{\tau,\tau^*}(\lambda,r,s) = \vee \{\mu \in I^X \mid \lambda \leq \mu \text{ and } \mu \text{ is } (r,s)$ -fuzzy b-closed $\}$.

3. Properties of (r, s)-fuzzy *b*-extremely disconnected spaces

Definition 5. A double fuzzy topological space (X, τ, τ^*) is said to be (r, s)-fuzzy b-extremely disconnected if $BC_{\tau,\tau^*}(\lambda, r, s)$ is (r, s)-fuzzy b-open for every (r, s)-fuzzy b-open set λ of (X, τ, τ^*) .

Example 1. Let $I = [0,1], X = \{a,b\}$. The fuzzy subset λ is defined as $\lambda(a) = 0.5, \lambda(b) = 0.5$. Let $\tau, \tau^* : I^X \to I$ be defined as follows:

$$\tau(\alpha) = \begin{cases} \overline{1} & if \ \alpha = \underline{0} \ or \ \underline{1} \\ \frac{1}{2} & if \ \alpha = \lambda \\ \overline{0} & otherwise \end{cases} \quad \tau^{\star}(\alpha) = \begin{cases} \overline{0}, & if \ \alpha = \underline{0} \ or \ \underline{1} \\ \frac{1}{2}, & if \ \alpha = \lambda \\ \overline{1}, & otherwise \end{cases}$$

Clearly, (X, τ, τ^{\star}) is an (r, s)-fuzzy b-extremely disconnected space.

Proposition 1. For a double fuzzy topological space (X, τ, τ^*) , the following statements are equivalent:

- 1. (X, τ, τ^*) is an (r, s)-fuzzy b-extremely disconnected space.
- 2. For each (r, s)-fuzzy b-closed set λ , $BI_{\tau, \tau^{\star}}(\lambda, r, s)$ is (r, s)-fuzzy b-closed.
- 3. For each (r, s)-fuzzy b-open set λ , $BC_{\tau, \tau^{\star}}(\lambda, r, s) + BC_{\tau, \tau^{\star}}(\overline{1} BC_{\tau_1, \tau_1^{\star}}(\lambda, r, s)) = \overline{1}$.
- 4. For every pair of (r, s)-fuzzy b-open sets λ and μ such that $BC_{\tau, \tau^*}(\lambda, r, s) + \mu = \overline{1}$, $BC_{\tau, \tau^*}(\lambda, r, s) + BC_{\tau, \tau^*}(\mu, r, s) = \overline{1}$.

Proof. (1)=>(2): Let λ be any (r, s)-fuzzy b-closed set. Then $\overline{1} - \lambda$ is (r, s)-fuzzy b-open. Now $BC_{\tau,\tau^*}(\overline{1} - \lambda, r, s) = \overline{1} - BI_{\tau,\tau^*}(\lambda, r, s)$, By (1), $BC_{\tau,\tau^*}(\overline{1} - \lambda, r, s)$ is (r, s)-fuzzy b-open, which implies that $BI_{\tau,\tau^*}(\lambda, r, s)$ is (r, s)-fuzzy b-closed. (2)=>(3): Let λ be any (r, s)-fuzzy b-open set. Then $\overline{1} - \lambda$ is (r, s)-fuzzy b-closed. By (2), we have $BI_{\tau,\tau^*}(\overline{1} - \lambda, r, s)$ is (r, s)-fuzzy b-closed. Now $BC_{\tau,\tau^*}(\lambda, r, s) + BC_{\tau,\tau^*}(\overline{1} - BC_{\tau,\tau^*}(\lambda, r, s), r, s) = BC_{\tau,\tau^*}(\lambda, r, s) + BC_{\tau,\tau^*}(BI_{\tau,\tau^*}(\overline{1} - \lambda, r, s), r, s)(*)$. Therefore by $(*), BC_{\tau,\tau^*}(\lambda, r, s) + BC_{\tau,\tau^*}(\overline{1} - BC_{\tau,\tau^*}(\lambda, r, s), r, s) = BC_{\tau,\tau^*}(\lambda, r, s) + \overline{1} - BC_{\tau,\tau^*}(\lambda, r, s)$. Hence $BC_{\tau,\tau^*}(\lambda, r, s) + BC_{\tau,\tau^*}(\overline{1} - BC_{\tau,\tau^*}(\lambda, r, s), r, s) = \overline{1}$.

 $\begin{array}{l} (3) \Rightarrow (4): \text{ Let } \lambda \text{ and } \mu \text{ be } (r,s) \text{-fuzzy } b \text{-open sets with } BC_{\tau,\tau^{\star}}(\lambda,r,s) + \mu = \overline{1}(**). \text{ By } \\ (3), \overline{1} = BC_{\tau,\tau^{\star}}(\lambda,r,s) + BC_{\tau,\tau^{\star}}(\overline{1} - BC_{\tau,\tau^{\star}}(\lambda,r,s),r,s). \text{ By } (**), \overline{1} - BC_{\tau,\tau^{\star}}(\lambda,r,s) = \\ \mu. \text{ Then } BC_{\tau,\tau^{\star}}(\lambda,r,s) + BC_{\tau,\tau^{\star}}(\mu,r,s) = \overline{1}. \end{array}$

(4) \Rightarrow (1): Let λ be any (r, s)-fuzzy *b*-open set. Put $\mu = \overline{1} - BC_{\tau,\tau^*}(\lambda, r, s)$. Then clearly μ is (r, s)-fuzzy *b*-open and $BC_{\tau,\tau^*}(\lambda, r, s) + \mu = \overline{1}$. Therefore by (4), $BC_{\tau,\tau^*}(\lambda, r, s) + BC_{\tau,\tau^*}(\mu, r, s) = \overline{1}$. Then $BC_{\tau,\tau^*}(\lambda, r, s)$ is (r, s)-fuzzy *b*-open and so (X, τ, τ^*) is (r, s)-fuzzy *b*-extremely disconnected. **Proposition 2.** A double fuzzy topological space (X, τ, τ^*) is (r, s)-fuzzy b-extremely disconnected if and only if for all (r, s)-fuzzy b-open set λ and an (r, s)-fuzzy b-closed set μ such that $\lambda \leq \mu$, $BC_{\tau,\tau^*}(\lambda, r, s) \leq BI_{\tau,\tau^*}(\mu, r, s)$.

Proof. Let (X, τ, τ^*) be an (r, s)-fuzzy *b*-extremely disconnected space. Let λ be a fuzzy (r, s)-fuzzy *b*-open and μ be (r, s)-fuzzy *b*-closed with $\lambda \leq \mu$. Then by (2) of Proposition 1, $BI_{\tau,\tau^*}(\mu, r, s)$ is an (r, s)-fuzzy *b*-closed set. Also since λ is (r, s)-fuzzy *b*-open and $\lambda \leq \mu, \lambda \leq BI_{\tau,\tau^*}(\mu, r, s)$. Since $BI_{\tau,\tau^*}(\mu, r, s)$ is (r, s)-fuzzy *b*-closed, we have $BC_{\tau,\tau^*}(\lambda, r, s) \leq BI_{\tau,\tau^*}(\mu, r, s)$. Conversely let μ be any (r, s)-fuzzy *b*-closed set. Then $BI_{\tau,\tau^*}(\mu, r, s)$ is (r, s)-fuzzy *b*-closed in (X, τ, τ^*) and $BI_{\tau,\tau^*}(\mu, r, s) \leq \mu$. Then $BC_{\tau,\tau^*}(BI_{\tau,\tau^*}(\mu, r, s), r, s) \leq BI_{\tau,\tau^*}(\mu, r, s)$. This implies that $BI_{\tau,\tau^*}(\mu, r, s)$ is (r, s)-fuzzy *b*-closed. Hence by (2) of Proposition 1, (X, τ, τ^*) is (r, s)-fuzzy *b*-extremely disconnected.

Remark 1. Let (X, τ, τ^*) be an (r, s)-fuzzy b-extremely disconnected space. Let $\{\lambda_i, \overline{1} - \mu_i : i \in N\}$ be a collection such that λ_i 's are (r, s)-fuzzy b-open and μ_i 's are (r, s)-fuzzy b-closed and let λ , μ be (r, s)-fuzzy b-clopen sets, respectively. If $\lambda_i \leq \lambda \leq \mu_j$ and $\lambda_i \leq \mu \leq \mu_j$ for all $i, j \in \mathbb{N}$, then there exists an (r, s)-fuzzy b-clopen set γ such that $BC_{\tau,\tau^*}(\lambda_i, r, s) \leq \gamma \leq BI_{\tau,\tau^*}(\mu_j, r, s)$ for all $i, j \in \mathbb{N}$.

Proof. By Proposition 1, we have $BC_{\tau,\tau^{\star}}(\lambda_i, r, s) \leq BC_{\tau,\tau^{\star}}(\lambda, r, s) \wedge BI_{\tau,\tau^{\star}}(\lambda, r, s) \leq BI_{\tau,\tau^{\star}}(\mu_j, r, s)$ for all $i, j \in \mathbb{N}$. So $\gamma = BC_{\tau,\tau^{\star}}(\lambda, r, s) \wedge BI_{\tau,\tau^{\star}}(\lambda, r, s)$ is an (r, s)-fuzzy *b*-clopen set satisfying the required conditions.

Proposition 3. Let (X, τ, τ^*) be an (r, s)-fuzzy b-extremally disconnected space. Let $\{\lambda_q\}_{q\in Q}$ and $\{\mu_q\}_{q\in Q}$ be monotone increasing collections of fuzzy (r, s)-fuzzy b-open sets and (r, s)-fuzzy b-closed sets of (X, τ, τ^*) , respectively and suppose that $\lambda_{q_1} \leq \mu_{q_2}$ whenever $q_1 < q_2$, where Q denoted the set of rational numbers. Then there exists a monotone increasing collection $\{\eta_q\}_{q\in Q}$ of (r, s)-fuzzy b-clopen sets of (X, τ, τ^*) such that $BC_{\tau,\tau^*}(\lambda_{q_1}, r, s) \leq \theta_{q_2}$ and $\theta_{q_1} \leq BI_{\tau,\tau^*}(\mu_{q_2}, r, s)$ whenever $q_1 < q_2$.

Proof. Let us arrange into a sequence $\{q_n\}$ of all rational numbers without repetition. For every $n \geq 2$ we shall define a collection $\{\eta_{q_i} : 1 \leq i < n\} \subset I^X$ such that (A_n) $BC_{\tau,\tau^\star}(\lambda_q, r, s) \leq \theta_{q_i}$ if $q < q_i$, $\theta_{q_i} \leq BI_{\tau,\tau^\star}(\mu_q, r, s)$ if $q_i < q$ for all i < n. It is clear that the countable collections $\{BC_{\tau,\tau^\star}(\lambda_q, r, s)\}$ and $\{BI_{\tau,\tau^\star}(\mu_q, r, s)\}$ satisfying $BC_{\tau,\tau^\star}(\lambda_{q_1}, r, s) \leq BI_{\tau,\tau^\star}(\mu_{q_2}, r, s)$ if $q_1 < q_2$. Then there exists an (r, s)-fuzzy bclopen set δ_1 such that $BC_{\tau,\tau^\star}(\lambda_{q_1}, r, s) \leq \delta_1 \leq BI_{\tau,\tau^\star}(\mu_{q_2}, r, s)$. Setting $\eta_{q_1} = \delta_1$, we get (A_2) . Assume that fuzzy subsets η_{q_i} are already defined for i < n and satisfy (A_n) . Define $\sum = \lor \{\eta_{q_i} : i < n, q_i < q_n\} \lor \lambda_{r_n}$ and $\Phi = \land \{\eta_{q_j} : j < n, q_j >$ $q_n\} \land \mu_{q_n}$. Then we have $BC_{\tau,\tau^\star}(\eta_{q_i}, r, s) \leq BC_{\tau,\tau^\star}(\sum, r, s) \leq BI_{\tau,\tau^\star}(\eta_{q_j}, r, s)$ and $BC_{\tau,\tau^\star}(\eta_{q_i}, r, s) \leq BI_{\tau,\tau^\star}(\Phi, r, s) \leq BI_{\tau,\tau^\star}(\eta_{q_j}, r, s)$ whenever $q_i < q_n < q_j$ (i, j < n)as well as $\lambda_q \leq BC_{\tau,\tau^\star}(\sum, r, s) \leq \mu_{q'}$ and $\lambda_q \leq BI_{\tau,\tau^\star}(\Phi, r, s) \leq \mu_{q'}$. This shows that the countable collections $\{\eta_{q_i} : i < n, q_i < q_n\} \cup \{\lambda_q : q < q_n\}$ and $\{\eta_{q_j} : j < n, q_j > q_n\} \cup \{\mu_q : q > q_n\}$ together with \sum and Φ satisfy all hypotheses of Remark 1. Hence there exists an (r, s) fuzzy *b*-clopen set δ_n such that $BC_{\tau,\tau^*}(\delta_n, r, s) \leq \mu_q$ if $q_n < q, \lambda_q \leq BI_{\tau,\tau^*}(\delta_n, r, s)$ if $q < q_n, BC_{\tau,\tau^*}(\eta_q, r, s) \leq BI_{\tau,\tau^*}(\delta_n, r, s)$ if $q_i < q_n, BC_{\tau,\tau^*}(\delta_n, r, s) \leq BI_{\tau,\tau^*}(\delta_n, r, s)$ if $q_i < q_n$, we obtain the fuzzy sets $\eta_{q_1}, \eta_{q_2}...\eta_{q_n}$ that satisfy (A_{n+1}) . Therefore, the collection $\{\eta_{q_i} : i = 1, 2, ...\}$ has required property.

Definition 6. A function $f: (X, \tau_1, \tau_1^{\star}) \to (Y, \tau_2, \tau_2^{\star})$ is called

- 1. (r, s)-fuzzy b-irresolute if $f^{-1}(\lambda)$ is (r, s)-fuzzy b-open set of (X, τ, τ^*) for every (r, s)-fuzzy b-open set λ of (Y, σ, σ^*) .
- 2. (r, s)-fuzzy b-open if $f(\lambda)$ is (r, s)-fuzzy b-open set of (Y, σ, σ^*) for every (r, s)-fuzzy b-open set λ of (X, τ_1, τ_1^*) .

Proposition 4. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be any two double fuzzy topological spaces. A function $f: (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ is (r, s)-fuzzy b-irresolute if, and only if $f(BC_{\tau_1,\tau_1^*}(\lambda, r, s)) \leq BC_{\tau_2,\tau_2^*}(f(\lambda), r, s)$ for every fuzzy set λ in (Y, τ_2, τ_2^*) , $r \in I_0$, $s \in I_1$.

Proof. Let λ be any fuzzy set in I^X and f be an (r, s)-fuzzy b-irresolute function such that $r \in I_0, s \in I_1$. Then $BC_{\tau_2,\tau_2^*}(f(\lambda), r, s)$ is an (r, s)-fuzzy b-closed set in I^Y . Since f is an (r, s)-fuzzy b-irresolute function, $f^{-1}(BC_{\tau_2,\tau_2^*}(f(\lambda), r, s))$ is an (r, s)-fuzzy b-closed set in I^X . We have $\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(BC_{\tau_2,\tau_2^*}(f(\lambda), r, s))$. Also, by the definition of (r, s)-fuzzy b-closure, $BC_{\tau_1,\tau_1^*}(\lambda, r, s) \leq f^{-1}(BC_{\tau_2,\tau_2^*}(f(\lambda), r, s))$, that is, $f(BC_{\tau_1,\tau_1^*}(\lambda, r, s)) \leq BC_{\tau_2,\tau_2^*}(f(\lambda), r, s)$. Conversely, let λ be an (r, s)-fuzzy b-closed set in I^Y such that $f(BC_{\tau_1,\tau_1^*}(f^{-1}(\lambda), r, s)) \leq BC_{\tau_1,\tau_1^*}(f^{-1}(\lambda), r, s)$. Then $BC_{\tau_1,\tau_1^*}(f^{-1}(\lambda), r, s) \leq f^{-1}(\lambda)$. So that $f^{-1}(\lambda) = BC_{\tau_1,\tau_1^*}(f^{-1}(\lambda), r, s)$. That is, $f^{-1}(\lambda, r, s)$ is an (r, s)-fuzzy b-closed and hence, f is (r, s)-fuzzy b-irresolute function.

Proposition 5. Let (X, τ_1, τ_1^*) and (Y, τ_2, τ_2^*) be two double fuzzy topological spaces and $f: (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ be an (r, s)-fuzzy b-open surjective function. Then $f^{-1}(BC_{\tau_2,\tau_2^*}(\lambda, r, s)) \leq BC_{\tau_1,\tau_1^*}(f^{-1}(\lambda), r, s)$ for every fuzzy set λ in (Y, τ_2, τ_2^*) , $r \in I_0$, $s \in I_1$.

Proof. Let $\lambda \in I^Y$, $r \in I_0$, $s \in I_1$ such that $\mu = f^{-1}(1-\lambda)$. Then $BI_{\tau_1,\tau_1^*}(f^{-1}(\overline{1}-\lambda), r, s) = BI_{\tau_1,\tau_1^*}(\mu, r, s)$ is (r, s)-fuzzy b-open in I^X . But $BI_{\tau_1,\tau_1^*}(\mu, r, s) \leq \mu$, hence $f(BI_{\tau_1,\tau_1^*}(\mu, r, s)) \leq f(\mu)$, that is, $BI_{\tau_2,\tau_2^*}(f(BI_{\tau_1,\tau_1^*}(\mu, r, s)), r, s) \leq BI_{\tau_2,\tau_2^*}(f(\mu), r, s)$. Since f is (r, s)-fuzzy b-open, $f(BI_{\tau_1,\tau_1^*}(\mu, r, s))$ is an (r, s)-fuzzy b-open in $I^Y, r \in I_0$, $s \in I_1$. Therefore, $f(BI_{\tau_1,\tau_1^*}(\mu, r, s)) \leq BI_{\tau_2,\tau_2^*}(f(\mu), r, s)$. Hence, $BI_{\tau_1,\tau_1^{\star}}(f^{-1}(\overline{1}-\lambda),r,s) = BI_{\tau_1,\tau_1^{\star}}(\mu,r,s) \leq f^{-1}(BI_{\tau_2,\tau_2^{\star}}(\overline{1}-\lambda),r,s)$. Therefore, $\overline{1} - BI_{\tau_1,\tau_1^{\star}}(f^{-1}(\overline{1}-\lambda),r,s) = \overline{1} - BI_{\tau_1,\tau_1^{\star}}(\mu,r,s) \geq \overline{1} - f^{-1}(BI_{\tau_2,\tau_2^{\star}}(\overline{1}-\lambda,r,s))$. Hence, $f^{-1}(\overline{1} - BI_{\tau_2,\tau_2^{\star}}(\overline{1}-\lambda,r,s) \leq BC_{\tau_1,\tau_1^{\star}}(\overline{1} - f^{-1}(\overline{1}-\lambda),r,s)$. Therefore, $f^{-1}(BC_{\tau_2,\tau_2^{\star}}(\lambda,r,s)) \leq BC_{\tau_1,\tau_1^{\star}}(f^{-1}(\lambda),r,s)$.

Proposition 6. The image (Y, τ_2, τ_2^*) of an (r, s)-fuzzy b-extremely disconnected space (X, τ_1, τ_1^*) under (r, s)-fuzzy b-irresolute (r, s)-fuzzy b-open surjective mapping is also (r, s)-fuzzy b-extremely disconnected.

Proof. Let $\lambda \in I^Y$ be an (r, s)-fuzzy *b*-open fuzzy set, $r \in I_0$, $s \in I_1$ such that f is an (r, s)-fuzzy *b*-irresolute function, so $f^{-1}(\lambda)$ is an (r, s)-fuzzy *b*-open set in I^X . But (X, τ_1, τ_1^*) is (r, s)-fuzzy *b*-extremely disconnected, $BC_{\tau_1, \tau_1^*}(f^{-1}(\lambda), r, s)$ is an (r, s)-fuzzy *b*-open set in I^X . Also, f is (r, s)-fuzzy *b*-open surjective, $BC_{\tau_1, \tau_1^*}(f^{-1}(\lambda), r, s)$) is (r, s)-fuzzy *b*-open in I^Y . Then $f^{-1}(BC_{\tau_2, \tau_2^*}(\lambda, r, s)) \leq BC_{\tau_1, \tau_1^*}(f^{-1}(\lambda), r, s)$ and $f^{-1}(BC_{\tau_2, \tau_2^*}(\lambda, r, s)) = BC_{\tau_2, \tau_2^*}(\lambda, r, s) \leq f^{-1}(BC_{\tau_1, \tau_1^*}(f^{-1}(\lambda), r, s)) \leq BC_{\tau_2, \tau_2^*}(f(f^{-1}(\lambda), r, s))) = BC_{\tau_2, \tau_2^*}(\lambda, r, s); BC_{\tau_2, \tau_2^*}(\lambda, r, s) = f(BC_{\tau_1, \tau_1^*}(f^{-1}(\lambda), r, s)).$ Then $BC_{\tau_2, \tau_2^*}(\lambda, r, s)$ is an (r, s)-fuzzy *b*-open set in I^Y which implies (Y, τ_2, τ_2^*) is an (r, s)-fuzzy *b*-open set in I^Y such that f is an (r, s)-fuzzy *b*-open set in I^Y such that f is a (r, s)-fuzzy *b*-open set in I^Y such that (r, s) is an (r, s)-fuzzy *b*-open set in I^Y such that (r, s) is an (r, s)-fuzzy *b*-open set in I^Y such that (r, s)-fuzzy *b*-open set in I^Y such that (r, s) is an (r, s)-fuzzy *b*-open set in I^Y such that (r, s) is an (r, s)-fuzzy *b*-open set in I^Y such that (r, s)-fuzzy *b*-open set in (r, s)-fuzzy *b*-open set in (r, s) is an (r, s)-fuzzy *b*-open set in (r, s)-fuzzy *b*-open set in (r, s) is an (r, s)-fuzzy *b*-open set in (r, s) such that (r, s) is an (r, s)-fuzzy *b*-open set in (r, s) such that (r, s) is an (r, s)-fuzzy *b*-open set in (r, s) such that (r, s) is an (r, s)-fuzzy *b*-open set in (r, s) such that (r, s) is an (r, s)-fuzzy *b*-open set in (r, s) such that (r, s) fuzzy *b*-open set in (r, s) such that (r, s) is an (r, s)-fuzzy *b*-extremely disconnected.

Definition 7. Let (X, τ, τ^*) be a double fuzzy topological space. A mapping $f : X \to R(L)$ is called lower (resp. upper) (r, s)-fuzzy b-continuous if $f^{-1}(R_t)$ (resp. $f^{-1}(L_t)$) is (r, s)-fuzzy b-open (resp. L-fuzzy b-closed) for each $t \in R$.

Proposition 7. Let (X, τ, τ^*) be any double fuzzy topological space; let $\lambda \in L^X$ and let $f: X \to R(L)$ be such that

$$f(x)(t) = \begin{cases} 1 & \text{if } t < 0, \\ \lambda(x) & \text{if } 0 \le t \le 1, \\ 0 & \text{if } t > 1. \end{cases}$$

for all $x \in X$. Then f is lower (resp. upper) (r, s)-fuzzy b-continuous if and only if λ is (r, s)-fuzzy b-open (resp. (r, s)-fuzzy b-closed).

Proof. It suffices to observe that

$$f^{-1}(R_t) = \begin{cases} 1 & t < 0\\ \lambda & 0 \le t < 1\\ 0 & t \ge 1. \end{cases}$$

implies that f is lower (r, s)-fuzzy b-continuous if and only if λ is (r, s)-fuzzy b-open.

$$f^{-1}(L'_t) = \begin{cases} 1 & t \le 0\\ \lambda & 0 < t \le 1\\ 0 & t > 1. \end{cases}$$

implies that f is upper (r, s)-fuzzy b-continuous if and only if λ is (r, s)-fuzzy b-closed.

Definition 8. The characteristic function of $\lambda \in I^X$ is the map $\chi_{\lambda} : X \to I(L)$ defined by $\chi_{\lambda}(x) = (\lambda(x)), x \in X$.

Proposition 8. Let (X, τ, τ^*) be a double fuzzy topological space and let $\lambda \in I^X$. Then χ_{λ} is lower (resp. upper) (r, s)-fuzzy b-continuous if and only if λ is (r, s)-fuzzy b-open (resp. (r, s)-fuzzy b-closed).

Proof. The proof follows from Propositon 7.

Definition 9. Let (X, τ, τ^*) and (Y, σ, σ^*) be any two smooth fuzzy topological spaces. A mapping $f : (X, \tau_1, \tau_1^*) \to (Y, \tau_2, \tau_2^*)$ is called strong (r, s)-fuzzy b-continuous if $f^{-1}(\lambda)$ is (r, s)-fuzzy b-clopen set of (X, τ, τ^*) for every (r, s)-fuzzy b-open set λ of (Y, σ, σ^*) .

Proposition 9. Let (X, τ, τ^*) be a double fuzzy topological space. Then the following statements are equivalent:

- 1. (X, τ, τ^*) is an (r, s)-fuzzy b-extremely disconnected space.
- 2. If $g, h: X \to R(L)$ where g is lower (r, s)-fuzzy b-continuous, h is upper (r, s)-fuzzy b-continuous, then there exits a strong (r, s)-fuzzy b-continuous function f on X with values in R(L) such that $g \le f \le h$.
- 3. If $\overline{1} \lambda$, μ are (r, s)-fuzzy b-open sets such that $\mu \leq \lambda$, then there exists a strong (r, s)-fuzzy b-continuous function $f: X \to I^X$ such that $\mu \leq (\overline{1} L_1)f \leq R_0 f \leq \lambda$.

Proof. (1)=>(2): Define two functions $\lambda, \mu: Q \to I^X$ by $\lambda(r) = \lambda_r = h^{-1}(R'_r)$ and $\mu(r) = \mu_r = g^{-1}(L_r)$ for all $r \in Q$. Clearly, λ and μ are monotonic increasing families of (r, s)-fuzzy b-closed and (r, s)-fuzzy b-open sets of (X, τ, τ^*) . Moreover, $\lambda_r < \mu_{r'}$ if r < r'. Now, by Proposition 3 there exists a function $\eta: Q \to I^X$ such that $\lambda_r \leq BI_{\tau,\tau^*}(\eta_{r'}, r, s)$, $BC_{\tau,\tau^*}(\eta_r, r, s) \leq BI_{\tau,\tau^*}(\eta_{r'}, r, s)$, $BC_{\tau,\tau^*}(\eta_r, r, s) \leq \mu_{r'}$ whenever r < r' $(r, r' \in Q)$. Letting $\omega_t = \bigwedge_{r < T} \eta_{r'}$ for each $t \in \mathbb{R}$, we define a monotone decreasing family $\bigwedge_{r < t} \{\omega_t: t \in \mathbb{R}\} \subset I^X$. Moreover, $BC_{\tau,\tau^*}(\omega_t, r, s) \leq BC_{\tau,\tau^*}(\omega_s, r, s)$ whenever s < t. Indeed, for s < r < r' < t $(s, t \in \mathbb{R}$ and $r, r' \in Q)$ we have $\omega'_s \leq BC_{\tau,\tau^*}(\eta_{r'}, r, s) \leq BI_{\tau,\tau^*}(\eta_{r'}, r, s) \leq \omega'_t$, hence $BC_{\tau,\tau^*}(\omega_t, r, s) \leq BI_{\tau,\tau^*}(\omega_s, r, s)$. We

have also

$$\bigvee_{t \in \mathbb{R}} \omega_t = \bigvee_{\substack{t \in \mathbb{R} \\ e \in \mathbb{R} \\ r < t}} \bigwedge_{r < t} \eta'_r$$
$$\geq \bigvee_{\substack{t \in \mathbb{R} \\ r < t}} \bigwedge_{r < t} \mu'_r$$
$$= \bigvee_{\substack{t \in \mathbb{R} \\ r < t}} \bigwedge_{r < t} g^{-1}(L'_r)$$
$$= g^{-1}(\bigvee_{\substack{t \in \mathbb{R} \\ r < t}} L'_r)$$
$$= 1.$$

Similarly, $\bigwedge_{t\in\mathbb{R}} \omega_t = 0$. We now define a function $f: X \to \mathbb{R}(I)$ satisfying the required properties. Let $f(x)(t) = \omega_t(x)$ for all $x \in X$ and $t \in \mathbb{R}$. Then above discussion shows that f is well defined, that is $f(x) \in \mathbb{R}(I)$ for every $x \in X$. To prove f is (r, s)-fuzzy b-continuous, observe that

$$\bigvee_{s>t} \omega_s = \bigvee_{s>t} BI_{\tau,\tau^*}(\omega_s,r,s)$$

and

$$\bigwedge_{s < t} \omega_s = \bigwedge_{s < t} BC_{\tau, \tau^*}(\omega_s, r, s).$$

Then $f^{-1}(R_t) = \bigvee_{s>t} \omega_s = \bigvee_{s>t} BI_{\tau,\tau^*}(\omega_s, r, s)$ is (r, s)-fuzzy *b*-open. Now $f^{-1}(L'_t) = \bigwedge_{s < t} \omega_s = \bigwedge_{s < t} BC_{\tau,\tau^*}(\omega_s, r, s)$, so that f is (r, s)-fuzzy *b*-continuous. To conclude the proof it remains to show that $g \le f \le h$, that is,

$$g^{-1}(L'_t) \le f^{-1}(L'_t) \le h^{-1}(L'_t)$$

and

$$g^{-1}(R_t) \le f^{-1}(R_t) \le h^{-1}(R_t)$$

for each $t \in \mathbb{R}$. We have

$$g^{-1}(L'_t) = \bigwedge_{\substack{s < t}} g^{-1}(L'_s)$$
$$= \bigwedge_{\substack{s < t \ r < s}} \bigwedge_{r < s} g^{-1}(L'_s)$$
$$= \bigwedge_{\substack{s < t \ r < s}} \bigwedge_{r < s} \mu'_r$$
$$\leq \bigwedge_{\substack{s < t \ r < s}} \bigwedge_{r < s} \eta'_r$$
$$= \bigwedge_{\substack{s < t \ s < s}} \omega_s$$
$$= f^{-1}(L'_t)$$

and

$$f^{-1}(L'_t) = \bigwedge_{\substack{s < t \\ s < t \ r < s}} \omega_s$$
$$= \bigwedge_{\substack{s < t \\ r < s}} \bigwedge_{r < s} \eta'_r$$
$$\leq \bigwedge_{\substack{s < t \\ r < s}} \bigwedge_{r < s} \eta'_r h^{-1}(R_r)$$
$$= \bigwedge_{\substack{s < t \\ s < t}} h^{-1}(L'_s)$$
$$= h^{-1}(L'_t).$$

Similarly, we obtain

$$g^{-1}(R_t) = \bigvee_{\substack{s>t \\ s>t}} g^{-1}(R_s)$$
$$= \bigvee_{\substack{s>t \\ s>t}} \bigvee_{r>s} g^{-1}(L'_r)$$
$$= \bigvee_{\substack{s>t \\ r>s}} \bigvee_{r>s} \mu'_r$$
$$\leq \bigvee_{\substack{s>t \\ s>t}} \bigvee_{r>s} \eta'_r$$
$$= \bigvee_{\substack{s>t \\ s>t}} \omega_s$$
$$= f^{-1}(R_t)$$

and

$$f^{-1}(R_t) = \bigvee_{\substack{s>t \\ s>t}} \omega_s$$

= $\bigvee_{\substack{s>t \\ s>t}} \bigvee_{\substack{r>s}} \eta'_r$
 $\leq \bigvee_{\substack{s>t \\ r>s}} \bigvee_{\substack{r>s}} \lambda'_r h^{-1}(R_r)$
= $\bigvee_{\substack{s>t \\ s>t}} h^{-1}(R_s)$
= $h^{-1}(R_t).$

(2) \Rightarrow (3): Suppose $1 - \lambda$ is an (r, s)-fuzzy *b*-open set and μ is an (r, s)-fuzzy *b*-open set, $\mu \leq \lambda$. Then $\chi_{\mu} \leq \chi_{\lambda}$ and χ_{μ} , χ_{λ} are lower and upper (r, s)-fuzzy *b*-continuous functions, respectively. Hence by (2), there exists an (r, s)-fuzzy *b*-continuous function $f : (X, \tau, \tau^*) \rightarrow \mathbf{R}(I)$ such that $\chi_{\mu} \leq f \leq \chi_{\lambda}$. Clearly, $f(x) \in [0, 1](I)$ for all $x \in X$ and $\mu = (1 - L_1)\chi_{\mu} \leq (1 - L_1)f \leq R_0 f \leq R_0 \chi_{\lambda} = \lambda$. (3) \Rightarrow (1): This follows from Proposition 2 and the fact that $(1 - L_1)f$ and $R_0 f$ are (r, s)-fuzzy *b*-closed and (r, s)-*b*-open sets, respectively.

Proposition 10. Let (X, τ, τ^*) be an (r, s)-fuzzy b-extremely disconnected space and let $A \subset X$ be such that χ_A is (r, s)-fuzzy b-open. Let $f : (A, \tau | A) \to I^X$ be strong (r, s)-fuzzy b-continuous. Then f has a strong (r, s)-fuzzy b-continuous extension over (X, τ, τ^*) . *Proof.* Let $g, h : X \to I^X$ be such that g = f = h on A and g(x) = 0, h(x) = 1 if $x \notin A$. We now have

$$R_t g = \begin{cases} \mu_t \wedge \chi_A & \text{if } t \ge 0, \\ 1 & \text{if } t < 0. \end{cases}$$

where μ_t is (r, s)-fuzzy b-open and is such that $\mu_t | A = R_t f$ and

$$L_t h = \begin{cases} \lambda_t \wedge \chi_A & \text{if } t \le 1, \\ 1 & \text{if } t > 1. \end{cases}$$

where λ_t is (r, s)-fuzzy *b*-clopen and is such that $\lambda_t | A = L_t f$. Thus *g* is lower (r, s)-fuzzy *b*-continuous *h* is upper (r, s)-fuzzy *b*-continuous and $g \leq h$. By Proposition 9, there is an (r, s)-fuzzy strong *b*-continuous function $F : X \to I^X$ such that $g \leq F \leq h$. Hence $F \equiv f$ on *A*.

References

[1] K. Atanassov, New operators defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems, 61, No. 2 (1993), 137-142.

[2] C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24, No. 1 (1968), 182-190.

[3] D. Coker, An introduction to fuzzy subspaces in intuitionistic topological spaces, J. Fuzzy Math., 4 (1996), 749-764.

[4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88, No. 1 (1997), 81-89.

[5] M. Demirci and D. Coker, An introduction to intuitionistic fuzzytopological spaces in Sostak's sense, Busefal 67 (1996), 67-76.

[6] Fatimah. M. Mohammed, M. S. M. Noorani and A. Ghareeb, Generalized *b*-closed sets and generalized *b*-open sets in double fuzzy topological spaces, AIP Conference Proceedings, 1602, (2015), 909-917.

[7] Fatimah M. Mohammed, M. S. M. Noorani, and A. Ghareeb, Somewhat Slightly Generalized Double Fuzzy Semicontinuous Functions, International Journal of Mathematics and Mathematical Sciences, Vol. 2014, Article ID 756376, 7 pages, 2014

[8] Fatimah M. Mohammed, M. S. M. Noorani, and A. Ghareeb, New notions from (r, s)-generalised fuzzy preopen sets, Gazi University Journal of Science, 30(1) (2017), 311-331.

[9] A. Ghareeb, Normality of double fuzzy topological spaces, Applied Mathematics Letters, 24(4) (2011), 533-540.

[10] A. Ghareeb, Weak forms of continuity in *I*-double gradation fuzzy topological spaces, Springer Plus. (2012), 1-19.

[11] J. Gutierrez Garcia and S. E. Rodabaugh, Order-theoretic, topological, categorical re-dundancies of interval-valued sets, grey sets, vague sets, interval-valued; intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156, No. 3 (2005),445-484.

[12] E. Kamal El-Saady and A. Ghareeb, Several types of (r, s)-fuzzy compactness defined by an (r, s)-fuzzy regular semi open sets, Annals of fuzzy mathematics and informatics, 3(1) (2012), 159-169.

[13] E. P. Lee and Y. B. Im, Mated fuzzy topological spaces, Journal of fuzzy logic and intelligent systems, 11 (2001), 161-165.

[14] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131, No. 3 (2002), 323-336.

[15] L. A. Zadeh, Fuzzy sets, Information and Control, 8, No. 3 (1965), 338-353.

[16] A. M. Zahran, M. Azab Abd-Allah and A. Ghareeb, Several types of double fuzzy irresolute functions, International journal of computational cognition, 8(2) (2010), 19-23.

John Britto Princivishvamalar Department of Mathematics Rajah Serfoji Government College (affliated to Bharathidasan University) Thanjavur-613005 Tamilnadu, India. email: mathsprincy@gmail.com

Neelamegarajan Rajesh Department of Mathematics Rajah Serfoji Government College (affliated to Bharathidasan University) Thanjavur-613005 Tamilnadu, India. email: nrajesh_topology@yahoo.co.in

Balasubramaniyan Brundha Department of Mathematics Government Arts College for Women Orathanadu-614625, Tamilnadu, India. email: brindamithunraj@gmail.com