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ON GENERALIZED SYMMETRIC SQUARE METRICS
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Abstract. In this paper, we study generalized symmetric Finsler spaces with
Z. Shen’s square metric and Randers change of square metric. We prove that gen-
eralized symmetric Finsler spaces with square metric and Randers change of square
metric are Riemannian.
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1. Introduction

Generalized symmetric spaces are a larger class of homogeneous spaces which con-
tains the symmetric spaces of É. Cartan. The theory of the generalized symmetric
spaces was begun by P. J. Graham and A. J. Ledger in 1967. A systematic study
appeared for the first time in the book by O. Kowalski in 1980 [5]. These spaces
are Riemannian manifolds (M, g) which admit at each point x ∈M an isometry sx
with x as an isolated fixed point.

Symmetric Finsler spaces were first introduced and studied by Z. I. Szabó and S.
Deng. The definition of these spaces is a natural generalization of É. Cartan’s defi-
nition of Riemannian symmetric spaces. A Finsler space (M,F ) is called symmetric
if for any point p ∈M there exist an involutive isometry sp of (M,F ) such that p is
an isolated fixed point of sp. If we drop the involution property in the definition of
symmetric Finsler spaces but keep the property that sx ◦ sy = sz ◦ sx, z = sx(y),
we get presumably a bigger class of Finsler manifolds as symmetric Finsler spaces
[4, 9].

The notion of (α, β)−metric was introduced by M. Matsumoto [7] as a gener-
alization of Randers metric introduced by G. Randers [8]. An (α, β)−metric is a
Finsler metric of the form F = αφ(s), s = β

α where α =
√
ãij(x)yiyj is induced by a

Riemannian metric ã = ãijdx
i⊗dxj on a connected smooth n−dimensional manifold

M and β = bi(x)yi is a 1−form on M . Some important class of (α, β)−metrics are
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Randers metric F = α + β, Kropina metric F = α2

β , Matsumoto metric F = α2

(α−β)

and Z. Shen’s square metric F = (α+β)2

α .
In this paper, we study generalized symmetric Finsler spaces with Z. Shen’s

square metric and Randers change of square metric.

2. Basic Settings

Let M be a smooth n−dimensional C∞ manifold and TM be its tangent bundle. A
Finsler metric on a manifold M is a non-negative function F : TM −→ R with the
following properties [2]:

1. F is smooth on the slit tangent bundle TM0 := TM \ {0}.

2. F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ > 0.

3. The n× n Hessian matrix (gij) = (12
∂2F 2

∂yi∂yj
) is positive definite at every point

(x, y) ∈ TM0.

The following bilinear symmetric form gy : TxM × TxM −→ R is positive definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

Definition 1. Let α =
√
ãij(x)yiyj be a Riemannian metric and β(x, y) = bi(x)yi

be a 1−form on an n−dimensional manifold M . Let

‖β(x)‖α :=
√
ãij(x)bi(x)bj(x). (1)

Now, let the function F is defined as follows

F := αφ(s) , s =
β

α
, (2)

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0 , |s| ≤ b < b0. (3)

Then by lemma 1.1.2 of [3], F is a Finsler metric if ‖β(x)‖α < b0 for any x ∈ M .
A Finsler metric in the form (2) is called an (α, β)−metric [1].
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Let M be a smooth manifold. Suppose that ã and β are a Riemannian metric
and a 1-form on M respectively. In this case we can write the square metric on M
as follows:

F =
(α+ β)2

α
= αφ(s),

where φ(s) = 1 + s2 + 2s. The Riemannian metric ã induce a linear isomorphism
between T ∗xM and TxM . Then the 1-form β corresponds to a vector field X on M
such that

ã(Xx, y) = β(x, y).

Therefore we can write the square metric F = (α+β)2

α as follows:

F (x, y) =
(
√
ã(y, y) + ã(Xx, y))2√

ã(y, y)
.

Symmetric spaces were first defined and studied by É. Cartan, and they have
been generalized to generalized Riemannian symmetric spaces by A. J. Ledger [6].
Generalized symmetric Finsler spaces were first defined in [4]. The notion of gener-
alized symmetric Finsler space is a natural generalization of generalized Riemannian
symmetric spaces.

Let (M,F ) be a connected Finsler space, and I(M,F ) the group of all isometries
on (M,F ). An isometry sx on M with an isolated fixed point x will be called a
symmetry at x. A symmetry sx will be called a symmetry of order k at x if there
exists a positive integer k such that skx = Id.

Definition 2. [4, 9] A family {sx|x ∈ M} of symmetries on a connected Finsler
manifold (M,F ) is called an s−structure on (M,F ).

An s−structure {sx|x ∈M} is called of order k (k ≥ 2) if skx = Id for all x ∈M
and k is the least integer of this property. An s−structure {sx} on (M,F ) is called
regular if for every points x, y ∈M

sx ◦ sy = sz ◦ sx, z = sx(y).

Definition 3. [4, 9] A generalized symmetric Finsler space is a connected Finsler
manifold (M,F ) admitting a regular s−structure and a Finsler space (M,F ) is said
to be k−symmetric (k ≥ 2) if it admits a regular s−structure of order k.

3. The Main Result

Theorem 1. Let (M,F ) be a generalized symmetric Finsler space with square metric

F = (α+β)2

α defined by the Riemannian metric ã and the vector field X. Then the
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regular s−strucure {sx} of (M,F ) is also a regular s−structure of the Riemannian
manifold (M, ã).

Proof: Let sx be a symmetry of (M,F ) at x and let p ∈ M . Then for any
Y ∈ TpM we have

F (p, Y ) = F (sx(p), dsx(Y )).

Then we have

(
√
ã(Y, Y ) + ã(Xp, Y ))2√

ã(Y, Y )
=

(
√
ã(dsxY, dsxY ) + ã(Xsx(p), dsxY ))2√

ã(dsxY, dsxY )
. (4)

Applying the above equation to −Y , we get

(
√
ã(Y, Y )− ã(Xp, Y ))2√

ã(Y, Y )
=

(
√
ã(dsxY, dsxY )− ã(Xsx(p), dsxY ))2√

ã(dsxY, dsxY )
. (5)

Subtracting equation (5) from (4) we get

ã(Xp, Y ) = ã(Xsx(p), dsxY ). (6)

On the other hand, adding equation (5) and (4), we get

ã(Y, Y ) + ã(Xp, Y )2√
ã(Y, Y )

=
ã(dsxY, dsxY ) + ã(Xsx(p), dsxY )2√

ã(dsxY, dsxY )
. (7)

By putting (6) in (7), we get(√
ã(dsxY, dsxY )−

√
ã(Y, Y )

)(
ã(Xp, Y )2 −

√
ã(dsxY, dsxY )

√
ã(Y, Y )

)
= 0.

(8)
If there exists Y 6= 0 such that

√
ã(dsxY, dsxY ) >

√
ã(Y, Y ), then by the Cauchy-

Schwartz inequality we have

ã(X,Y )2 ≤ ã(X,X)ã(Y, Y ) <
√
ã(Y, Y )

√
ã(dsxY, dsxY ).

Thus
ã(X,Y )2 −

√
ã(dsxY, dsxY )

√
ã(Y, Y ) < 0.

On the other hand from (8) we have

ã(X,Y )2 −
√
ã(dsxY, dsxY )

√
ã(Y, Y ) = 0,

which is a contradiction. Therefore for any Y and sx we have√
ã(dsxY, dsxY ) ≤

√
ã(Y, Y ). (9)
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Now we have√
ã(Y, Y ) =

√
ã(ds−1x ◦ dsxY, ds−1x ◦ dsxY ) ≤

√
ã(dsxY, dsxY ). (10)

Therefore from (9) and (10) we have

ã(dsxY, dsxY ) = ã(Y, Y ).

Therefore sx is a symmetry with respect to the Riemannian metric ã.�

Theorem 2. Let (M, ã) be a generalized symmetric Riemannian space. Also suppose
that F is a square Finsler metric defined by ã and a vector field X. Then the regular
s−strucure {sx} of (M, ã) is also a regular s−structure of (M,F ) if and only if X
is sx−invariant for all x ∈M .

Proof: Let X be sx−invariant. Therefore for any p ∈ M , we have Xsx(p) =
dsxXp. Then for any Y ∈ TpM we have

F (sx(p), dsxYp) =
(
√
ã(dsxY, dsxY ) + ã(Xsx(p), dsxY ))2√

ã(dsxY, dsxY )

=
(
√
ã(dsxY, dsxY ) + ã(dsxXp, dsxY ))2√

ã(dsxY, dsxY )

=
(
√
ã(Y, Y ) + ã(Xp, Y ))2√

ã(Y, Y )

= F (p, Y ).

Conversely, let sx be a symmetry of (M,F ) at x. Then for any p ∈M and Y ∈ TpM
we have

F (p, Y ) = F (sx(p), dsxY )

which implies (
ã(Y, Y ) + ã(Xp, Y )2 + 2

√
ã(Y, Y )ã(Xp, Y )

)√
ã(dsxY, dsxY ) =(

ã(dsxY, dsxY ) + ã(Xsx(p), dsxY )2 + 2
√
ã(dsxY, dsxY )ã(Xsx(p), dsxY )

)√
ã(Y, Y ).

(11)

Substituting Y with −Y in (11), we obtain(
ã(Y, Y ) + ã(Xp, Y )2 − 2

√
ã(Y, Y )ã(Xp, Y )

)√
ã(dsxY, dsxY ) =(

ã(dsxY, dsxY ) + ã(Xsx(p), dsxY )2 − 2
√
ã(dsxY, dsxY )ã(Xsx(p), dsxY )

)√
ã(Y, Y ).

(12)
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Subtracting (12) from (11) we get

ã(Xp, Y ) = ã(Xsx(p), dsxY ).

Therefore (dsx)pXp = Xsx(p).�

Theorem 3. A generalized symmetric Finsler square metric must be Riemannian

Proof: Let (M,F ) be a generalized symmetric Finsler space with square metric

F = (α+β)2

α defined by the Riemannian meric ã and the vector field X and let {sx}
be the regular s−structure of (M,F ). Let sx be a symmetry of (M,F ). Then by
the theorem 1, sx is also a symmetry of (M, ã). Thus we have

F (x, dsxY ) =
(
√
ã(dsxY, dsxY ) + ã(Xx, dsxY ))2√

ã(dsxY, dsxY )

=
(
√
ã(Y, Y ) + ã(Xx, dsxY ))2√

ã(Y, Y )

= F (x, Y ).

Therefore ã(Xx, dsxY ) = ã(Xx, Y ), ∀Y ∈ TxM . Since x is an isolated fixed point of
the symmetry sx, the tangent map Sx = (dsx)x is an orthogonal transformation of
TxM having no nonzero fixed vectors. So we have

ã(Xx, (S − id)x(Y )) = 0, ∀Y ∈ TxM.

Since (S − id)x is an invertible linear transformation, we have Xx = 0, ∀x ∈ M .
Hence F is Riemannian. �

If F (α, β) is a Finsler metric, then F (α, β) −→ F̃ (α, β) is called a Randers
change if

F̃ (α, β) = F (α, β) + β.

Randers change of a Finsler metric has been introduced by M. Matsumoto [7]. In
the following, we deal with the Randers changed square metric

F =
(α+ β)2

α
+ β = αφ(s), (13)

where φ(s) = 1 + s2 + 3s.

Theorem 4. Let (M,F ) be a generalized symmetric Finsler space with Randers

changed square Finsler metric F = (α+β)2

α + β defined by the Riemannian metric ã
and the vector field X. Then the regular s−structure sx of (M,F ) is also a regular
s−structure of the Riemannian metric (M, ã).
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Proof: Let sx be a symmetry of (M,F ) and let p ∈ M . Therefore for every
Y ∈ TpM we have F (p, Y ) = F (sx(p), dsxY ). Applying the equation (13) we get

(
√
ã(Y, Y ) + ã(Xp, Y ))2√

ã(Y, Y )
+ ã(Xp, Y ) =

(
√
ã(dsxY, dsxY ) + ã(Xsx(p), dsxY ))2√

ã(dsxY, dsxY )

+ã(Xsx(p), dsxY ). (14)

Substituting Y with −Y in (13), we obtain

(
√
ã(Y, Y )− ã(Xp, Y ))2√

ã(Y, Y )
− ã(Xp, Y ) =

(
√
ã(dsxY, dsxY )− ã(Xsx(p), dsxY ))2√

ã(dsxY, dsxY )

−ã(Xsx(p), dsxY ). (15)

Subtracting equation (15) from equation (14), we get

ã(Xp, Y ) = ã(Xsx(p), dsxY ). (16)

Adding equation (15) and (14) and using (16) we get

(
√
ã(dsxY, dsxY )−

√
ã(Y, Y ))

(
ã(X,Y )2√

ã(dsxY, dsxY )
√
ã(Y, Y )

− 1

)
= 0, (17)

which leads to ã(Y, Y ) = ã(dsxY, dsxY ). Therefore sx is a symmetry with respect
to the Riemannian metric ã. �

Theorem 5. A generalized symmetric Randers changed square metric must be Rie-
mannian.

Proof: The proof is similar to the proof of Theorem 3.�

References

[1] H. An, S. Deng, Ivariant (α,β)-metric on homogeneous manifolds, Monatsh.
Math., 154 (2008), 89-102.

[2] D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry,
Springer-Verlag, NEW-YORK (2000).

[3] S. S. Chern, Z. Shen Riemann-Finsler geometry, World Scientific, Nankai Tracts
in Mathematics, vol. 6, 2005.

[4] P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata,
149 (2010), 121-127.

69



Dariush Latifi – On generalized symmetric . . .

[5] O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics,
Springer Verlag (1980).

[6] A. J. Ledger, Espaces de Riemann symmetriques généralisés, C. R. Acad. Sci.
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