APPLICATIONS OF QUASI-SUBORDINATION OF COEFFICIENTS ESTIMATES FOR NEW SUBCLASSES OF BI-UNIVALENT FUNCTIONS

W. G. Atshan, E. İ. Badawı, H. Ö. Güney

Abstract. The purpose of the present paper is to introduce and investigate a new subclasses of analytic and bi-univalent functions defined in the open unit disk, which are associated with the quasi-subordination. We obtain estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in these subclasses. Also several known and new consequences of these results are pointed out.

2010 Mathematics Subject Classification: 30C45.
Keywords: analytic function; univalent function; bi-univalent function; subordination; quasi-subordination.

1. Introduction and Definitions

Let \mathcal{A} be the class of analytic functions defined on the open unit disk $\mathbb{U}=\{z:|z|<$ $1\}$ and normalized with

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in \mathbb{U} . \tag{1}
\end{equation*}
$$

Further, let \mathcal{S} denote the class of all functions in \mathcal{A} consisting of form (1) which are univalent in \mathbb{U}. We say that f is subordinate to F in \mathbb{U}, written as $f \prec F$, if and only if $f(z)=F(w(z))$ for some analytic function w such that $|w(z)| \leq|z|$ for all $z \in \mathbb{U}$. If $f \in \mathcal{A}$ and

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p(z) \quad \text { and } \quad 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec p(z),
$$

where $p(z)=\frac{1+z}{1-z}$, then we say that f is starlike function and convex function, respectively. These functions form known classes denoted by \mathcal{S}^{*} and \mathcal{C}, respectively.
W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

From Koebe one quarter theorem [10], it is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
\begin{equation*}
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq 1 / 4\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{-1}(w)=g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{3}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} when both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). The functions $\frac{z}{1-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)$ are in the class Σ (see details in [12]). However, the familiar Koebe function is not bi-univalent. Lewin [7] investigated the class of bi-univalent functions Σ and obtained a bound $\left|a_{2}\right| \leqq 1.51$. Motivated by the work of Lewin [7], Brannan and Clunie [3] conjectured that $\left|a_{2}\right| \leqq \sqrt{2}$. Later Netanyahu [9] proved that $\max \left|a_{2}\right|=\frac{4}{3}$ for $f \in \Sigma$. Brannan and Taha [3] also worked on certain subclasses of the bi-univalent function class Σ and obtained estimates for their initial coefficients. Various classes of bi-univalent functions were introduced and studied. In recent times, the study of bi-univalent functions gained momentum mainly due to the work of Srivastava et al.[12]. Motivated by this, many researchers (see $[3,4,8,12,13,14]$ also the references cited there in) recently investigated several interesting subclasses of the class Σ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients.

In 1970, the concept of quasi subordination was first defined by Robertson in [11]. Certain subclasses of bi-univalent functions associated with quasi-subordination were introduced and studied. $[2,5,6]$.

For the functions f and φ, if there exists analytic functions h and w, with $|h(z)| \leq 1, w(0)=0$ and $|w(z)|<1$ such that the equality

$$
f(z)=h(z) \varphi(w(z))
$$

holds, then the function f is said to be quasi-subordinate to φ demonstrated by

$$
\begin{equation*}
f(z) \prec_{q} \varphi(z), \quad z \in \mathbb{U} . \tag{4}
\end{equation*}
$$

Especially, prefering $h(z) \equiv 1$, the quasi-subordination given in (3) turns into the subordination $f(z) \prec \varphi(z)$. Thus, the quasi-subordination is a universality of the well known subordination and majorization (see [11]).

Ma and Minda have given a unified treatment of various subclass consisting of starlike and convex functions for either one of the quantities $\frac{z f^{\prime}(z)}{f(z)}$ and $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is subordinate to a more general superordinate function. The class $\mathcal{S}^{*}(\varphi)$ introduced by Ma and Minda [8] consists of starlike functions $f \in \mathcal{A}$ satisfying $\frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z), z \in \mathbb{U}$ and corresponding class $\mathcal{K}(\varphi)$ of convex functions $f \in \mathcal{A}$ satisfying $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec$ $\varphi(z), z \in \mathbb{U}$. For this purpose, they considered φ an analytic function with positive real part in the unit disc \mathbb{U}, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$ and $\varphi(\mathbb{U})$ is symmetric with the respect to the real axis. The functions in the classes $\mathcal{S}^{*}(\varphi)$ and $\mathcal{K}(\varphi)$ are called starlike function of Ma-Minda type or convex function of Ma-Minda type respectively. By $\mathcal{S}_{\Sigma}^{*}(\varphi)$ and $K_{\Sigma}(\varphi)$, we denote to bi-starlike function of Ma-Minda type and bi-convex function of Ma-Minda type respectively [1].
In this investigation, we assume that

$$
\begin{equation*}
h(z)=A_{0}+A_{1} z+A_{2} z^{2}+\cdots,(|h(z)| \leq 1, z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+\cdots,\left(B_{1}>0\right) . \tag{6}
\end{equation*}
$$

In order to derive our main results, we shall need the following lemma.
Lemma 1. ([10]) If $p \in \mathcal{P}$, then $\left|p_{i}\right| \leq 2$ for each i, where \mathcal{P} is the family of all functions p, analytic in \mathbb{U}, for which

$$
\Re\{p(z)\}>0 \quad(z \in \mathbb{U})
$$

where

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) .
$$

In this paper, we will define three subclasses of the function class Σ by method of quasi-subordination and obtain the bounds for the modulus of initial coefficients of the functions in these classes. Some interesting results are also pointed out.

2. The subclass $\mathcal{M}_{q, \Sigma}^{\alpha}(\beta, \varphi)$

Definition 1. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{M}_{q, \Sigma}^{\alpha}(\beta, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\beta}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]-1 \prec_{q}(\varphi(z)-1) \quad, z \in \mathbb{U} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{w g^{\prime}(w)}{g(w)}\right]^{\beta}\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]-1 \prec_{q}(\varphi(w)-1) \quad, w \in \mathbb{U} \tag{8}
\end{equation*}
$$

where $0 \leq \alpha \leq 1,0 \leq \beta \leq 1$ and $g=f^{-1}$ is given by (3).
For $\beta=0$, we have the following subclass which was introduced and studied by Goyal and Kummar in [5]. Especially, the case $h(z) \equiv 1$ was studied by Ali et.al in [1].

Remark 1. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{M}_{q, \Sigma}^{\alpha}(0, \varphi)=$ $\mathcal{M}_{q, \Sigma}^{\alpha}(\varphi)$ if the following quasi-subordination conditions are satisfied:

$$
\begin{equation*}
\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]-1 \prec_{q}(\varphi(z)-1) \quad, z \in \mathbb{U} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]-1 \prec_{q}(\varphi(w)-1) \quad, w \in \mathbb{U} \tag{10}
\end{equation*}
$$

where $0 \leq \alpha \leq 1$ and $g=f^{-1}$ is given by (3).
For $\alpha=0$ and $\beta=0$, we have the following subclass which was introduced and studied by Brannan and Clunie et.al in [3].

Remark 2. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{M}_{q, \Sigma}^{0}(0, \varphi)=$ $\mathcal{S}_{q, \Sigma}^{*}(\varphi)$ if the following quasi-subordination conditions are satisfied:

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]-1 \prec_{q}(\varphi(z)-1) \quad, z \in \mathbb{U} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{w g^{\prime}(w)}{g(w)}\right]-1 \prec_{q}(\varphi(w)-1) \quad, w \in \mathbb{U} \tag{12}
\end{equation*}
$$

where $g=f^{-1}$ is given by (3).
Theorem 2. If the function f belongs to the class $\mathcal{M}_{q, \Sigma}^{\alpha}(\beta, \varphi)$, then we have
$\left|a_{2}\right| \leq \min \left\{\frac{\sqrt{2} \sqrt{\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)}}\right.$,

$$
\begin{equation*}
\left.\frac{\sqrt{2}\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|[\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)] A_{0} B_{1}^{2}-2(1+\alpha+\beta)^{2}\left(B_{2}-B_{1}\right)\right|}}\right\} \tag{13}
\end{equation*}
$$

W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination
and

$$
\begin{align*}
\left|a_{3}\right| \leq \min \left\{\frac{2\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(1+2 \alpha+\beta)}\right. \\
\left.\frac{2 A_{A_{1}^{2}}^{3}}{\left|[\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)] A_{0} B_{1}^{2}-2(1+\alpha+\beta)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(1+2 \alpha+\beta)}\right\} \tag{14}
\end{align*}
$$

where $0 \leq \alpha \leq 1,0 \leq \beta \leq 1$ and $\varphi(z)$ is given by (6).
Proof. Let $f \in \mathcal{M}_{q, \Sigma}^{\alpha}(\beta, \varphi)$ and $g=f^{-1}$ given by (3). Then, there exists two analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$ with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<1$ and a function h defined by (5) satisfies

$$
\begin{equation*}
\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\beta}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]-1=h(z)(\varphi(u(z)-1)) \quad, z \in \mathbb{U} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[\frac{w g^{\prime}(w)}{g(w)}\right]^{\beta}\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]-1=h(z)(\varphi(v(w)-1)) \quad, w \in \mathbb{U} . \tag{16}
\end{equation*}
$$

Determine the functions $p(z)$ and $q(w)$ by

$$
\begin{equation*}
p(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1} z+c_{2} z^{2}+\ldots \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=\frac{1+v(w)}{1-v(w)}=1+d_{1} w+d_{2} w^{2}+\ldots \tag{18}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
u(z):=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right] \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w):=\frac{q(w)-1}{q(w)+1}=\frac{1}{2}\left[d_{1} z+\left(d_{2}-\frac{d_{1}^{2}}{2}\right) z^{2}+\cdots\right] . \tag{20}
\end{equation*}
$$

Using (19) and (20) in (15) and (16), respectively, we have

$$
\begin{equation*}
\left.\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{\beta}\left[(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]-1=h(z)\left(\varphi\left(\frac{p(z)-1}{p(z)+1}\right)-1\right)\right) \quad, z \in \mathbb{U} \tag{21}
\end{equation*}
$$

W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

and

$$
\begin{equation*}
\left.\left[\frac{w g^{\prime}(w)}{g(w)}\right]^{\beta}\left[(1-\alpha) \frac{w g^{\prime}(w)}{g(w)}+\alpha\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]-1=h(z)\left(\varphi\left(\frac{q(w)-1}{q(w)+1}\right)-1\right)\right), w \in \mathbb{U} . \tag{22}
\end{equation*}
$$

Using (5) and (6) in the right hands of the relations (21) and (22), we obtain

$$
\begin{align*}
& h(z)\left(\varphi\left(\frac{p(z)-1}{p(z)+1}\right)-1\right)=\frac{1}{2} A_{0} B_{1} c_{1} z+\left\{\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} c_{1}^{2}\right\} z^{2}+\cdots \tag{23}\\
& \left.h(z)\left(\varphi\left(\frac{q(w)-1}{q(w)+1}\right)-1\right)\right)=\frac{1}{2} A_{0} B_{1} d_{1} w+\left\{\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} d_{1}^{2}\right\} w^{2}+\cdots \tag{24}
\end{align*}
$$

By equalizing (15), (16) and (24),respectively, we get

$$
\begin{gather*}
(1+\alpha+\beta) a_{2}=\frac{1}{2} A_{0} B_{1} c_{1}, \tag{25}\\
2(2 \alpha+\beta+1) a_{3}+\left[\frac{1}{2}(\beta(\beta-1)+2 \beta(1+\alpha))-(3 \alpha+\beta+1)\right] a_{2}^{2} \\
=\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} c_{1}^{2} \tag{26}
\end{gather*}
$$

and

$$
\begin{align*}
-(1+\alpha+\beta) a_{2} & =\frac{1}{2} A_{0} B_{1} d_{1} \tag{27}\\
{\left[(5 \alpha+3 \beta+3)+\frac{1}{2}(\beta(\beta-1)\right.} & +2 \beta(1+\alpha))] a_{2}^{2}-2(2 \alpha+\beta+1) a_{3} \\
& =\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} d_{1}^{2} \tag{28}
\end{align*}
$$

From (25) and (27), we have

$$
\begin{equation*}
c_{1}=-d_{1}, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1+\alpha+\beta)^{2} a_{2}^{2}=A_{0}^{2} B_{1}^{2}\left(\left(c_{1}^{2}+d_{1}^{2}\right)\right) . \tag{30}
\end{equation*}
$$

By summing (26) and (28) and using $\left|c_{i}\right| \leq 2,\left|d_{i}\right| \leq 2$, we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\sqrt{2} \sqrt{\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)}} \tag{31}
\end{equation*}
$$

Now, by summing (26) and (28) and using $\left|c_{i}\right| \leq 2,\left|d_{i}\right| \leq 2$ and (30)we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\sqrt{2}\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|[\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)] A_{0} B_{1}^{2}-2(1+\alpha+\beta)^{2}\left(B_{2}-B_{1}\right)\right|}} . \tag{32}
\end{equation*}
$$

W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

From (31) and (32), we get the desired inequality (13). Next, for the bound on $\left|a_{3}\right|$, by subtracting (28) from (26), we obtain

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{2 A_{1} B_{1} c_{1}+A_{0} B_{1}\left(c_{2}-d_{2}\right)}{8(1+2 \alpha+\beta)} . \tag{33}
\end{equation*}
$$

Using (31) with $\left|c_{i}\right| \leq 2$ and $\left|d_{i}\right| \leq 2$, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(1+2 \alpha+\beta)} . \tag{34}
\end{equation*}
$$

Now, using (32) with $\left|c_{i}\right| \leq 2$ and $\left|d_{i}\right| \leq 2$, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 A_{0}^{2} B_{1}^{3}}{\left|[\beta(\beta-1)+2 \beta(1+\alpha)+2(1+\alpha+\beta)] A_{0} B_{1}^{2}-2(1+\alpha+\beta)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(1+2 \alpha+\beta)} . \tag{35}
\end{equation*}
$$

From (34) and (35), we get the desired inequality (14).
By putting $\beta=0$ in the above theorem, we have the following corollary.
Corollary 3. If the function f given by (1) belongs to the class $\mathcal{M}_{q, \Sigma}^{\alpha}(\varphi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{\sqrt{2} \sqrt{\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{2(1+\alpha)}}, \frac{\sqrt{2}\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|[2(1+\alpha)] A_{0} B_{1}^{2}-2(1+\alpha)^{2}\left(B_{2}-B_{1}\right)\right|}}\right\} \tag{36}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min & \left\{\frac{2\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{2(1+\alpha)}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(2 \alpha+\beta+1)}\right. \\
& \left.\frac{2 A_{0}^{2} B_{1}^{3}}{\left|[2(1+\alpha)] A_{0} B_{1}^{2}-2(1+\alpha)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(2 \alpha+\beta+1)}\right\} \tag{37}
\end{align*}
$$

where $0 \leq \alpha \leq 1$ and $\varphi(z)$ is given by (6).
By putting $\alpha=0$ and $\beta=0$ in the above theorem, we have the following corollary.
Corollary 4. If the function f given by (1) belongs to the class $\mathcal{S}_{q, \Sigma}^{*}(\varphi)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}, \frac{\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|A_{0} B_{1}^{2}-\left(B_{2}-B_{1}\right)\right|}}\right\} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2}, \frac{A_{0}^{2} B_{1}^{3}}{\left|A_{0} B_{1}^{2}-\left(B_{2}-B_{1}\right)\right|}+\frac{B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2}\right\} \tag{39}
\end{equation*}
$$

where $\varphi(z)$ is given by (6).
W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

3. The subclass $\mathcal{S}_{q, \Sigma}^{\delta}(\gamma, \lambda, \varphi)$

Definition 2. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{S}_{q, \Sigma}^{\delta}(\gamma, \lambda, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$
\begin{equation*}
\frac{1}{\gamma}\left[\frac{z f^{\prime}(z)}{(1-\lambda) z+\lambda f(z)}+\delta z f^{\prime \prime}(z)-1\right] \prec_{q}(\varphi(z)-1) \quad, z \in \mathbb{U} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left[\frac{w g^{\prime}(w)}{(1-\lambda) w+\lambda g(w)}+\delta w g^{\prime \prime}(w)-1\right] \prec_{q}(\varphi(w)-1) \quad, w \in \mathbb{U} \tag{41}
\end{equation*}
$$

where $0 \leq \lambda \leq 1,0 \leq \delta \leq 1, \gamma \in \mathbb{C}-\{0\}$ and $g=f^{-1}$ is given by (3).
For $\delta=0, \lambda=1$ and $\gamma=1$ we have the subclass $\mathcal{S}_{q, \Sigma}^{0}(1,1, \varphi)=\mathcal{S}_{q, \Sigma}^{*}(\varphi)$ given by Remark 2.

Theorem 5. If the function f belongs to the class $\mathcal{S}_{q, \Sigma}^{\delta}(\gamma, \lambda, \varphi)$, then we have

$$
\begin{align*}
& \left|a_{2}\right| \leq \min \left\{\frac{\sqrt{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{3(1+2 \delta)+\lambda(\lambda-3)}},\right. \\
& \left.\frac{|\gamma|\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|[3(1+2 \delta)+\lambda(\lambda-3)] \gamma A_{0} B_{1}^{2}-(2(1+\delta)-\lambda)^{2}\left(B_{2}-B_{1}\right)\right|}}\right\} \tag{42}
\end{align*}
$$

and

$$
\begin{align*}
& \left|a_{3}\right| \leq \min \left\{\frac{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{3(1+2 \delta)+\lambda(\lambda-3)}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{3(1+2 \delta)-\lambda},\right. \\
& \left.\frac{|\gamma| A_{0}^{2} B_{1}^{3}}{\left|[3(1+2 \delta)+\lambda(\lambda-3)] \gamma A_{0} B_{1}^{2}-(2(1+\delta)-\lambda)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{3(1+2 \delta)-\lambda}\right\} \tag{43}
\end{align*}
$$

where $0 \leq \sigma \leq 1, \gamma \in \mathbb{C}-\{0\}$ and $\varphi(z)$ is given by (6).
Proof. Proceedings as in the proof of Theorem 2, we can get the relations as follows:

$$
\begin{gather*}
\frac{(2(1+\delta)-\lambda)}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} c_{1}, \tag{44}\\
\frac{(3(1+2 \delta)-\lambda)}{\gamma} a_{3}-\frac{\lambda(2-\lambda)}{\gamma} a_{2}^{2}=\frac{1}{2} A_{1} B_{1} c_{1}+\frac{1}{2} A_{0} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} c_{1}^{2} \tag{45}
\end{gather*}
$$

$$
\begin{align*}
& \text { and } \\
& -\frac{(2(1+\delta)-\lambda)}{\gamma} a_{2}=\frac{1}{2} A_{0} B_{1} d_{1}, \tag{46}\\
& \frac{(6(1+2 \delta)+\lambda(\lambda-4))}{\gamma} a_{2}^{2}-\frac{(3(1+2 \delta)-\lambda)}{\gamma} a_{3}=\frac{1}{2} A_{1} B_{1} d_{1}+\frac{1}{2} A_{0} B_{1}\left(d_{2}-\frac{d_{1}^{2}}{2}\right)+\frac{A_{0} B_{2}}{4} d_{1}^{2} . \tag{47}
\end{align*}
$$

From (44) and (46), we have

$$
\begin{equation*}
c_{1}=-d_{1}, \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
8(2(1+\delta)-\lambda)^{2} a_{2}^{2}=A_{0}^{2} B_{1}^{2} \gamma^{2}\left(\left(c_{1}^{2}+d_{1}^{2}\right)\right) \tag{49}
\end{equation*}
$$

By summing (45) and (47) and using $\left|c_{i}\right| \leq 2,\left|d_{i}\right| \leq 2$, we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{\sqrt{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{3(1+2 \delta)+\lambda(\lambda-3)}} \tag{50}
\end{equation*}
$$

Now, by summing (45) and (47) and using $\left|c_{i}\right| \leq 2,\left|d_{i}\right| \leq 2$ and (49), we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{|\gamma|^{2}\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|[3(1+2 \delta)+\lambda(\lambda-3)] \gamma A_{0} B_{1}^{2}-(2(1+\delta)-\lambda)^{2}\left(B_{2}-B_{1}\right)\right|}} \tag{51}
\end{equation*}
$$

From (50) and (51), we get the desired inequality (42). Next, for the bound on $\left|a_{3}\right|$, by subtracting (45) from (47), we obtain

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{\gamma\left(2 A_{1} B_{1} c_{1}+A_{0} B_{1}\left(c_{2}-d_{2}\right)\right)}{4(3(1+2 \delta)-\lambda))} . \tag{52}
\end{equation*}
$$

Using (50) with $\left|c_{i}\right| \leq 2$ and $\left|d_{i}\right| \leq 2$, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{3(1+2 \delta)+\lambda(\lambda-3)}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{3(1+2 \delta)-\lambda} . \tag{53}
\end{equation*}
$$

Now, using (51) with $\left|c_{i}\right| \leq 2$ and $\left|d_{i}\right| \leq 2$, we get $\left|a_{3}\right| \leq \frac{|\gamma| A_{0}^{2} B_{1}^{3}}{\left|[3(1+2 \delta)+\lambda(\lambda-3)] \gamma A_{0} B_{1}^{2}-(2(1+\delta)-\lambda)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{3(1+2 \delta)-\lambda}$.

From (53) and (54), we get the desired inequality (43).
For $\delta=0, \lambda=1$ and $\gamma=1$ we have the subclass $\mathcal{S}_{q, \Sigma}^{0}(1,1, \varphi)=\mathcal{S}_{q, \Sigma}^{*}(\varphi)$ given by Corollary 4 .
W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

4. The subclass $\mathcal{H}_{q, \Sigma}^{\sigma}(\gamma, \varphi)$

Definition 3. A function $f \in \Sigma$ given by (1) is said to be in the class $\mathcal{H}_{q, \Sigma}^{\sigma}(\gamma, \varphi)$ if the following quasi-subordination conditions are satisfied:

$$
\begin{equation*}
\frac{1}{\gamma}\left[\frac{(1-\sigma) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{(1-\sigma) z f^{\prime}(z)+\sigma f(z)}-1\right] \prec_{q}(\varphi(z)-1), z \in \mathbb{U} \tag{55}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\gamma}\left[\frac{(1-\sigma) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{(1-\sigma) w g^{\prime}(w)+\sigma g(w)}-1\right] \prec_{q}(\varphi(w)-1) \quad, w \in \mathbb{U} \tag{56}
\end{equation*}
$$

where $0 \leq \sigma \leq 1, \gamma \in \mathbb{C}-\{0\}$ and $g=f^{-1}$ is given by (3).
For $\sigma=0$ and $\gamma=1$, we have the subclass $\mathcal{H}_{q, \Sigma}^{0}(1, \varphi)=\mathcal{S}_{q, \Sigma}^{*}(\varphi)$ given by Remark 2.

Theorem 6. If the function f belongs to the class $\mathcal{H}_{q, \Sigma}^{\sigma}(\gamma, \varphi)$, then we have

$$
\begin{align*}
\left|a_{2}\right| \leq \min \{ & \frac{\sqrt{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}}{\sqrt{\left|2(3-2 \sigma)-(2-\sigma)^{2}\right|}}, \\
& \left.\frac{|\gamma|\left|A_{0}\right| B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[2(3-2 \sigma)-(2-\sigma)^{2}\right] \gamma A_{0} B_{1}^{2}-(2-\sigma)^{2}\left(B_{2}-B_{1}\right)\right|}}\right\} \tag{57}
\end{align*}
$$

and

$$
\begin{align*}
& \left|a_{3}\right| \leq \min \left\{\frac{|\gamma|\left|A_{0}\right|\left(B_{1}+\left|B_{2}-B_{1}\right|\right)}{2(3-2 \sigma)-(2-\sigma)^{2}}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(3-2 \sigma)},\right. \\
& \left.\quad \frac{|\gamma|^{2} A_{0}^{2} B_{1}^{3}}{\left|\left[2(3-2 \sigma)-(2-\sigma)^{2}\right] \gamma A_{0} B_{1}^{2}-(2-\sigma)^{2}\left(B_{2}-B_{1}\right)\right|}+\frac{|\gamma| B_{1}\left(\left|A_{0}\right|+\left|A_{1}\right|\right)}{2(3-2 \sigma)}\right\} \tag{58}
\end{align*}
$$

where $0 \leq \sigma \leq 1, \gamma \in \mathbb{C}-\{0\}$ and $\varphi(z)$ is given by (6).
Proof. The proof of theorem is similar to above proofs.
For $\sigma=0$ and $\gamma=1$, we obtain the subclass $\mathcal{H}_{q, \Sigma}^{0}(1, \varphi)=\mathcal{S}_{q, \Sigma}^{*}(\varphi)$ given by Corollary 4.
W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

References

[1] R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam,Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett, 25(3), (2012), 344-351.
[2] O. Altıntaş, S. Owa, Majorizations and Quasi-Subordinations for Certain Analytic Functions, Proc. Japan Acad., 68, Ser. A (1992), 181-185.
[3] D. A. Brannan, J. Clunie: Aspects of contemporary complex analysis, Academic Press, New York (1980).
[4] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Matt. Lett. 24(9)(2011) 1569-1573.
[5] S. P. Goyal, and R. Kumar, Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Mathematica Slovaca, 65(3), (2015), 533-544.
[6] S. Kant, Coefficients estimate for certain subclasses of bi-univalent functions associated with quasi-Subordination, Journal of Fractional and Applications, vol. 9(1),(2018),195-203.
[7] M. Lewin: On a coefficient problem for bi-univalent functions,Proc. Am. Math. Soc. 18(1967) 63-68.
[8] W.C. Ma, and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis, Tianjin, 1992, vol. I of Lecture Notes for Analysis, International Press, Cambridge, Mass, USA, (1994), 157-169.
[9] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32, (1969), 100 - 112
[10] C. Pommerenke, Univalent Functions, Vandenhoeck - Ruprecht, Gottingen, Germany.(1975).
[11] M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull.Amer. Math. Soc., 76, (1970), 1-9.
[12] H. M.Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(2010) 1188-1192.
[13] H. M. Srivastava, G. Murugusundaramoorthy and N. Magesh, Certain subclasses of bi-univalent functions associated with Hohlov operator, Global J. Math. Anal. 1(2013), no. 2, 67-73.
[14] H. M. Srivastava, S.Bulut, M.Cagler and N. Yagmur,Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat. 27(2013), 831-842.
W. G. Atshan, E. İ. Badawi, H. Ö. Güney - Applications of Quasi-Subordination

Waggas Galib Atshan
Department of Mathematics,, College of Science, University of Al-Qadisiyah,, Diwaniyah, Iraq
email: waggas.galib@qu.edu.iq
Elaf İbrahim Badawi
Department of Mathematics,, College of Science, University of Al-Qadisiyah,, Diwaniyah, Iraq
email: eilafibraheem911994@gmail.com
Hatun Özlem Güney
Department of Mathematics,
Faculty of Science,
Dicle University,
21280 Diyarbakır, Turkey
email: ozlemg@dicle.edu.tr

