SOME YOUNG AND HÖLDER TYPE OPERATOR INEQUALITIES

S. S. Dragomir

Abstract. In this paper we obtain some Young and Hölder type inequalities for the weighted geometric mean of positive operators on Hilbert spaces.

2010 Mathematics Subject Classification: 47A63, 47A30, 26D15, 26D10, 15A60.

Keywords: Young's inequality, Hölder operator inequality, Arithmetic meanGeometric mean inequality.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. We use the following notation

$$
A \not{ }_{\nu} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\nu} A^{1 / 2},
$$

the weighted geometric mean. When $\nu=\frac{1}{2}$ we write $A \sharp B$ for brevity.
In [4] the authors obtained the following Hölder's type inequality for the weighted geometric mean:

$$
\begin{equation*}
\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle \leq\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \tag{1}
\end{equation*}
$$

for any $x \in H$.
Moreover, if $0<m_{1} I \leq A \leq M_{1} I, 0<m_{2} I \leq B \leq M_{2} I, p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, I is the identity operator and

$$
\lambda(p ; m, M):=\left[\frac{1}{p^{1 / p} q^{1 / q}} \frac{M^{p}-m^{p}}{(M-m)^{1 / p}\left(m M^{p}-M m^{p}\right)^{1 / q}}\right]^{p}
$$

for $0<m<M$, then the following reverse inequality also holds:

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq \lambda^{1 / p}\left(p ; \frac{m_{1}}{M_{2}^{q-1}}, \frac{M_{1}}{m_{2}^{q-1}}\right)\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle, \tag{2}
\end{equation*}
$$

S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...
for any $x \in H$.
In particular, one can obtain from (2) the following noncommutative version of Greub-Rheinboldt inequality

$$
\begin{equation*}
\left\langle A^{2} \sharp B^{2} x, x\right\rangle \leq\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \frac{m_{1} m_{2}+M_{1} M_{2}}{2 \sqrt{m_{1} m_{2} M_{1} M_{2}}}\left\langle A^{2} \sharp B^{2} x, x\right\rangle \tag{3}
\end{equation*}
$$

for any $x \in H$.
Furthermore, if A and B are replaced by $C^{1 / 2}$ and $C^{-1 / 2}$ in (3), then we get the Kantorovich inequality [15]

$$
(1 \leq)\langle C x, x\rangle^{1 / 2}\left\langle C^{-1} x, x\right\rangle^{1 / 2} \leq \frac{m+M}{2 \sqrt{m M}}, x \in H \text { with }\|x\|=1,
$$

provided $m I \leq C \leq M I$ for some $0<m<M$.
For various related inequalities, see [1]-[2], [3]-[10], [12]-[13] and [14]-[17].
In this paper we obtain some new Young and Hölder type inequalities for the weighted geometric mean of positive operators on Hilbert spaces.

2. Some Young and Hölder Type Results

The following simple Young operator inequality follows from (1):
Proposition 1. Let A, B be positive invertible operators and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{equation*}
B^{q} \sharp_{1 / p} A^{p} \leq \frac{1}{p} A^{p}+\frac{1}{q} B^{q} . \tag{4}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
A^{2} \sharp B^{2} \leq \frac{1}{2}\left(A^{2}+B^{2}\right) . \tag{5}
\end{equation*}
$$

Proof. From (1) and the geometric mean-arithmetic mean inequality we have

$$
\begin{aligned}
\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle & \leq\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq \frac{1}{p}\left\langle A^{p} x, x\right\rangle+\frac{1}{q}\left\langle B^{q} x, x\right\rangle \\
& =\left\langle\left(\frac{1}{p} A^{p}+\frac{1}{q} B^{q}\right) x, x\right\rangle
\end{aligned}
$$

for any $x \in H$, which implies (4).
The following Hölder's type result for sums of operators holds:
S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...

Theorem 1. Let $A_{k}, B_{k}, k \in\{1, \ldots, n\}$ be positive invertible operators and $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} p_{k} B_{k}^{q} \sharp_{1 / p} A_{k}^{p}\right\| \leq\left\|\sum_{k=1}^{n} p_{k} A_{k}^{p}\right\|^{1 / p}\left\|\sum_{k=1}^{n} p_{k} B_{k}^{q}\right\|^{1 / q}, \tag{6}
\end{equation*}
$$

for any positive sequence $p_{k}, k \in\{1, \ldots, n\}$.
In particular, we have

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} p_{k} B_{k}^{2} \sharp A_{k}^{2}\right\|^{2} \leq\left\|\sum_{k=1}^{n} p_{k} A_{k}^{2}\right\|\left\|\sum_{k=1}^{n} p_{k} B_{k}^{2}\right\| . \tag{7}
\end{equation*}
$$

Proof. From (1) we have

$$
\begin{align*}
\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} \sharp_{1 / p} A_{k}^{p} x, x\right\rangle & =\sum_{k=1}^{n} p_{k}\left\langle B_{k}^{q} \sharp_{1 / p} A_{k}^{p} x, x\right\rangle \tag{8}\\
& \leq \sum_{k=1}^{n} p_{k}\left\langle A_{k}^{p} x, x\right\rangle^{1 / p}\left\langle B_{k}^{q} x, x\right\rangle^{1 / q}
\end{align*}
$$

for any $x \in H$.
Using the weighted discrete Hölder inequality we have

$$
\begin{align*}
& \sum_{k=1}^{n} p_{k}\left\langle A_{k}^{p} x, x\right\rangle^{1 / p}\left\langle B_{k}^{q} x, x\right\rangle^{1 / q} \tag{9}\\
& \leq\left(\sum_{k=1}^{n} p_{k}\left[\left\langle A_{k}^{p} x, x\right\rangle^{1 / p}\right]^{p}\right)^{1 / p}\left(\sum_{k=1}^{n} p_{k}\left[\left\langle B_{k}^{q} x, x\right\rangle^{1 / q}\right]^{q}\right)^{1 / q} \\
& =\left(\sum_{k=1}^{n} p_{k}\left\langle A_{k}^{p} x, x\right\rangle\right)^{1 / p}\left(\sum_{k=1}^{n} p_{k}\left\langle B_{k}^{q} x, x\right\rangle\right)^{1 / q} \\
& =\left\langle\sum_{k=1}^{n} p_{k} A_{k}^{p} x, x\right\rangle^{1 / p}\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} x, x\right\rangle^{1 / q}
\end{align*}
$$

for any $x \in H$.
Then by (8) and (9) we get

$$
\begin{equation*}
\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} \sharp_{1 / p} A_{k}^{p} x, x\right\rangle \leq\left\langle\sum_{k=1}^{n} p_{k} A_{k}^{p} x, x\right\rangle^{1 / p}\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} x, x\right\rangle^{1 / q} \tag{10}
\end{equation*}
$$

for any $x \in H$.
Taking the supremum over $x \in H,\|x\|=1$ in (10) we have

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} p_{k} B_{k}^{q} \sharp_{1 / p} A_{k}^{p}\right\| & =\sup _{\|x\|=1}\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q^{\sharp}}{ }_{1 / p} A_{k}^{p} x, x\right\rangle \\
& \leq \sup _{\|x\|=1}\left\{\left\langle\sum_{k=1}^{n} p_{k} A_{k}^{p} x, x\right\rangle^{1 / p}\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} x, x\right\rangle^{1 / q}\right\} \\
& \leq \sup _{\|x\|=1}\left\{\left\langle\sum_{k=1}^{n} p_{k} A_{k}^{p} x, x\right\rangle^{1 / p}\right\} \sup _{\|x\|=1}\left\{\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} x, x\right\rangle^{1 / q}\right\} \\
& =\left\{\sup _{\|x\|=1}\left\langle\sum_{k=1}^{n} p_{k} A_{k}^{p} x, x\right\rangle\right\}^{1 / p}\left\{\sup _{\|x\|=1}\left\langle\sum_{k=1}^{n} p_{k} B_{k}^{q} x, x\right\rangle\right\}^{1 / q} \\
& =\left\|\sum_{k=1}^{n} p_{k} A_{k}^{p}\right\|^{1 / p}\left\|\sum_{k=1}^{n} p_{k} B_{k}^{q}\right\|^{1 / q}
\end{aligned}
$$

and the inequality (6) is proved.

3. Some Reverses

We need the following result that is of interest in itself as well:
Lemma 2. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on the interval $\stackrel{\circ}{I}$, the interior of I. If there exists the constants d, D such that

$$
\begin{equation*}
d \leq f^{\prime \prime}(t) \leq D \text { for any } t \in I \tag{11}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu) d(b-a)^{2} & \leq(1-\nu) f(a)+\nu f(b)-f((1-\nu) a+\nu b) \tag{12}\\
& \leq \frac{1}{2} \nu(1-\nu) D(b-a)^{2}
\end{align*}
$$

for any $a, b \in \stackrel{\circ}{I}$ and $\nu \in[0,1]$.
In particular, we have

$$
\begin{equation*}
\frac{1}{8}(b-a)^{2} d \leq \frac{f(a)+f(b)}{2}-f\left(\frac{a+b}{2}\right) \leq \frac{1}{8}(b-a)^{2} D, \tag{13}
\end{equation*}
$$

for any $a, b \in \stackrel{I}{I}$.
The constant $\frac{1}{8}$ is best possible in both inequalities in (13).
S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...

Proof. We consider the auxiliary function $f_{D}: I \subset \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{D}(x)=$ $\frac{1}{2} D x^{2}-f(x)$. The function f_{D} is differentiable on I and $f_{D}^{\prime \prime}(x)=D-f^{\prime \prime}(x) \geq 0$, showing that f_{D} is a convex function on I.

By the convexity of f_{D} we have for any $a, b \in \stackrel{\circ}{I}$ and $\nu \in[0,1]$ that

$$
\begin{aligned}
0 & \leq(1-\nu) f_{D}(a)+\nu f_{D}(b)-f_{D}((1-\nu) a+\nu b) \\
& =(1-\nu)\left(\frac{1}{2} D a^{2}-f(a)\right)+\nu\left(\frac{1}{2} D b^{2}-f(b)\right) \\
& -\left(\frac{1}{2} D((1-\nu) a+\nu b)^{2}-f_{D}((1-\nu) a+\nu b)\right) \\
& =\frac{1}{2} D\left[(1-\nu) a^{2}+\nu b^{2}-((1-\nu) a+\nu b)^{2}\right] \\
& -(1-\nu) f(a)-\nu f(b)+f_{D}((1-\nu) a+\nu b) \\
& =\frac{1}{2} \nu(1-\nu) D(b-a)^{2}-(1-\nu) f(a)-\nu f(b)+f_{D}((1-\nu) a+\nu b),
\end{aligned}
$$

which implies the second inequality in (12).
The first inequality follows in a similar way by considering the auxiliary function $f_{d}: I \subset \mathbb{R} \rightarrow \mathbb{R}$ defined by $f_{d}(x)=f(x)-\frac{1}{2} d x^{2}$ that is twice differentiable and convex on $\stackrel{\circ}{I}$.

If we take $f(x)=x^{2}$, then (11) holds with equality for $d=D=2$ and (13) reduces to an equality as well.

If $D>0$, the second inequality in (12) is better than the corresponding inequality obtained by Furuichi and Minculete in [7] by applying Lagrange's theorem two times. They had instead of $\frac{1}{2}$ the constant 1. Our method also allowed to obtain, for $d>0$, a lower bound that can not be established by Lagrange's theorem method employed in [7].

We have:
Lemma 3. For any $a, b>0$ and $\nu \in[0,1]$ we have

$$
\begin{align*}
\exp \left[\frac{1}{2} \nu(1-\nu)\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] & \leq \frac{(1-\nu) a+\nu b}{a^{1-\nu} b^{\nu}} \\
& \leq \exp \left[\frac{1}{2} \nu(1-\nu)\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right] \tag{14}
\end{align*}
$$

Proof. Now, if we write the inequality (12) for the convex function $f:(0, \infty) \rightarrow \mathbb{R}$,
$f(x)=-\ln x$, then we get for any $a, b>0$ and $\nu \in[0,1]$ that

$$
\begin{align*}
\frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\max ^{2}\{a, b\}} & \leq \ln ((1-\nu) a+\nu b)-(1-\nu) \ln a-\nu \ln b \tag{15}\\
& \leq \frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\min ^{2}\{a, b\}}
\end{align*}
$$

Since

$$
\frac{(b-a)^{2}}{\min ^{2}\{a, b\}}=\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2} \text { and } \frac{(b-a)^{2}}{\max ^{2}\{a, b\}}=\left(\frac{\min \{a, b\}}{\max \{a, b\}}-1\right)^{2}
$$

then by (15) we get the desired result (14).
The second inequalities in (14) is better than the corresponding results obtained by Furuichi and Minculete in [7] where instead of constant $\frac{1}{2}$ they had the constant 1.

Remark 1. For $\nu=\frac{1}{2}$ we get the following inequalities of interest

$$
\begin{equation*}
\exp \left[\frac{1}{8}\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right)^{2}\right] \leq \frac{\frac{a+b}{2}}{\sqrt{a b}} \leq \exp \left[\frac{1}{8}\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2}\right], \tag{16}
\end{equation*}
$$

for any $a, b>0$.
We have the following result that is of interest in itself as well:
Theorem 4. Let A and B be two positive invertible operators, $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$ and $m, M>0$ such that

$$
\begin{equation*}
m^{p} B^{q} \leq A^{p} \leq M^{p} B^{q} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M}{m}\right)^{p}-1\right)^{2}\right]\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle \tag{18}
\end{equation*}
$$

for any $x \in H$.
Proof. If $a, b \in[t, T] \subset(0, \infty)$ and since

$$
0<\frac{\max \{a, b\}}{\min \{a, b\}}-1 \leq \frac{T}{t}-1,
$$

hence

$$
\left(\frac{\max \{a, b\}}{\min \{a, b\}}-1\right)^{2} \leq\left(\frac{T}{t}-1\right)^{2}
$$

Therefore, by (14) we get

$$
\begin{equation*}
(1-\nu) a+\nu b \leq a^{1-\nu} b^{\nu} \exp \left[\frac{1}{2} \nu(1-\nu)\left(\frac{T}{t}-1\right)^{2}\right] \tag{19}
\end{equation*}
$$

for any $a, b \in[t, T]$ and $\nu \in(0,1)$.
Now, if C is an operator with $t I \leq C \leq T I$ then for $p>1$ we have $t^{p} I \leq C^{p} \leq$ $T^{p} I$. Using the functional calculus we get from (19) for $\nu=\frac{1}{p}$ that

$$
\left(1-\frac{1}{p}\right) d+\frac{1}{p} C^{p} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right] d^{1-\frac{1}{p}} C
$$

namely, the vector inequality,

$$
\begin{align*}
& \left(1-\frac{1}{p}\right) d+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \\
& \quad \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right] d^{1-\frac{1}{p}}\langle C y, y\rangle \tag{20}
\end{align*}
$$

for any $y \in H,\|y\|=1$ and $d \in\left[t^{p}, T^{p}\right]$.
Since $d=\left\langle C^{p} y, y\right\rangle \in\left[t^{p}, T^{p}\right]$ for any $y \in H,\|y\|=1$, hence by (20) we have

$$
\begin{align*}
& \left(1-\frac{1}{p}\right)\left\langle C^{p} y, y\right\rangle+\frac{1}{p}\left\langle C^{p} y, y\right\rangle \\
& \quad \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]\left\langle C^{p} y, y\right\rangle^{1-\frac{1}{p}}\langle C y, y\rangle \tag{21}
\end{align*}
$$

that is equivalent to

$$
\begin{equation*}
\left\langle C^{p} y, y\right\rangle \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]\left\langle C^{p} y, y\right\rangle^{1-\frac{1}{p}}\langle C y, y\rangle, \tag{22}
\end{equation*}
$$

and by division with $\left\langle C^{p} y, y\right\rangle^{1-\frac{1}{p}}>0, y \in H,\|y\|=1$, to

$$
\begin{equation*}
\left\langle C^{p} y, y\right\rangle^{1 / p} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]\langle C y, y\rangle \tag{23}
\end{equation*}
$$

S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...

If $z \in H$ with $z \neq 0$, then by taking $y=\frac{z}{\|z\|}$ in (23) we get

$$
\begin{equation*}
\left\langle C^{p} z, z\right\rangle^{1 / p}\langle z, z\rangle^{1 / q} \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{T}{t}\right)^{p}-1\right)^{2}\right]\langle C z, z\rangle, \tag{24}
\end{equation*}
$$

for any $z \in H$.
Now, from (17) by multiplying both sides with $B^{-\frac{q}{2}}$ we have $m^{p} I \leq B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} \leq$ $M^{p} I$ and by taking the power $\frac{1}{p}$ we get $m I \leq\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \leq M I$.

By writing the inequality (24) for $C=\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}}, t=m, T=M$ and $z=B^{\frac{q}{2}} x$, with $x \in H$, we have

$$
\begin{aligned}
& \left\langle B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle^{1 / p}\left\langle B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle^{1 / q} \\
& \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M}{m}\right)^{p}-1\right)^{2}\right]\left\langle\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} B^{\frac{q}{2}} x, B^{\frac{q}{2}} x\right\rangle,
\end{aligned}
$$

namely

$$
\begin{aligned}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \\
& \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M}{m}\right)^{p}-1\right)^{2}\right]\left\langle B^{\frac{q}{2}}\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} B^{\frac{q}{2}} x, x\right\rangle,
\end{aligned}
$$

for any $x \in H$, and the inequality (18) is proved.
Remark 2. We observe, for A and B two positive invertible operators, that the condition (17) is equivalent to following condition

$$
\begin{equation*}
m I \leq\left(B^{-\frac{q}{2}} A^{p} B^{-\frac{q}{2}}\right)^{\frac{1}{p}} \leq M I . \tag{25}
\end{equation*}
$$

If we assume that

$$
\begin{equation*}
r B^{q} \leq A^{p} \leq R B^{q}, \tag{26}
\end{equation*}
$$

then by (18) we have the inequality

$$
\begin{equation*}
\left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \leq \exp \left[\frac{1}{2 p q}\left(\frac{R}{r}-1\right)^{2}\right]\left\langle B^{q} \sharp_{1 / p} A^{p} x, x\right\rangle \tag{27}
\end{equation*}
$$

for any $x \in H$.
S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...

We have:
Corollary 5. Let A and B be two positive invertible operators and $m, M>0$ such that

$$
\begin{equation*}
m I \leq\left(B^{-1} A^{2} B^{-1}\right)^{\frac{1}{2}} \leq M I \tag{28}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \exp \left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^{2}-1\right)^{2}\right]\left\langle A^{2} \sharp B^{2} x, x\right\rangle \tag{29}
\end{equation*}
$$

for any $x \in H$.
If $m I \leq C \leq M I$ for some m, M with $0<m<M$, then by (29) we get

$$
\begin{equation*}
\langle C x, x\rangle^{1 / 2}\left\langle C^{-1} x, x\right\rangle^{1 / 2} \leq \exp \left[\frac{1}{8}\left(\left(\frac{M}{m}\right)^{2}-1\right)^{2}\right]\|x\|^{2} \tag{30}
\end{equation*}
$$

for any $x \in H$.
Corollary 6. Assume that A and B satisfy the conditions

$$
\begin{equation*}
m_{1} I \leq A \leq M_{1} I, m_{2} I \leq B \leq M_{2} I \tag{31}
\end{equation*}
$$

for some $0<m_{1}<M_{1}$ and $0<m_{2}<M_{2}$, then we have

$$
\begin{align*}
& \left\langle A^{p} x, x\right\rangle^{1 / p}\left\langle B^{q} x, x\right\rangle^{1 / q} \tag{32}\\
& \leq \exp \left[\frac{1}{2 p q}\left(\left(\frac{M_{1}}{m_{1}}\right)^{p}\left(\frac{M_{2}}{m_{2}}\right)^{q}-1\right)^{2}\right]\left\langle B_{\sharp}^{q_{1 / p}} A^{p} x, x\right\rangle,
\end{align*}
$$

for any $x \in H$.
In particular, we have

$$
\begin{equation*}
\left\langle A^{2} x, x\right\rangle^{1 / 2}\left\langle B^{2} x, x\right\rangle^{1 / 2} \leq \exp \left[\frac{1}{8}\left(\left(\frac{M_{1} M_{2}}{m_{1} m_{2}}\right)^{2}-1\right)^{2}\right]\left\langle A^{2} \sharp B^{2} x, x\right\rangle, \tag{33}
\end{equation*}
$$

for any $x \in H$.
S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...

References

[1] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, J. Inequal. \& Appl., Volume 2010, Article ID 496821, 15 pages doi:10.1155/2010/496821. Preprint RGMIA Res. Rep. Coll., 11 (2008), Supliment. Art. 15. [Online http://rgmia.org/papers/v11e/RevJensenOp.pdf].
[2] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type, Springer Briefs in Mathematics, Springer, 2012.
[3] M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality. Nihonkai Math. J. 5 (1994), no. 1, 61-67.
[4] M. Fuji, S. Izumino, R. Nakamoto and Y. Seo, Operator inequalities related to Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J., 8 (1997), 117-122.
[5] S. Furuichi, Refined Young inequalities with Specht's ratio, J. Egyptian Math. Soc. 20 (2012), 46-49.
[6] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
[7] S. Furuichi and N. Minculete, Alternative reverse inequalities for Young's inequality, J. Math Inequal. 5 (2011), Number 4, 595-600.
[8] T. Furuta, Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications. Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 3, 38-41.
[9] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2 (1998), no. 2, 137-148.
[10] T. Furuta, The Hölder-McCarthy and the Young inequalities are equivalent for Hilbert space operators. Amer. Math. Monthly 108 (2001), no. 1, 68-69.
[11] W. Greub and W. Rheinboldt, On a generalization of an inequaJity of L.V. Kantorovich, Proc. Amer. Math. 10 (1959), 407-415.
[12] C.-S. Lin and Y. J. Cho, On Hölder-McCarthy-type inequalities with powers. J. Korean Math. Soc. 39 (2002), no. 3, 351-361.
[13] C.-S. Lin and Y. J. Cho, On Kantorovich inequality and Hölder-McCarthy inequalities. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 (2004), no. 4, 481-490.
[14] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.
[15] R. Nakamoto and M. Nakamura. Operator mean and the Kantorovich inequality, Math. Japonica 44 (1966), 495-498.
S. S. Dragomir - Some Young and Hölder Type Operator Inequalities ...
[16] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.
[17] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.

Silvestru Sever Dragomir
Mathematics, College of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia.
School of Computer Science \& Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa
email: sever.dragomir@vu.edu.au

