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1. Introduction

Throughout this paper A, B are positive invertible operators on a complex Hilbert
space (H, 〈·, ·〉) . We use the following notation

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted geometric mean. When ν = 1
2 we write A]B for brevity.

In [4] the authors obtained the following Hölder’s type inequality for the weighted
geometric mean: 〈

Bq]1/pA
px, x

〉
≤ 〈Apx, x〉1/p 〈Bqx, x〉1/q (1)

for any x ∈ H.
Moreover, if 0 < m1I ≤ A ≤M1I, 0 < m2I ≤ B ≤M2I, p, q > 1 with 1

p + 1
q = 1,

I is the identity operator and

λ (p;m,M) :=

[
1

p1/pq1/q
Mp −mp

(M −m)1/p (mMp −Mmp)1/q

]p
for 0 < m < M, then the following reverse inequality also holds:

〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ λ1/p
(
p;

m1

M q−1
2

,
M1

mq−1
2

)〈
Bq]1/pA

px, x
〉
, (2)
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for any x ∈ H.
In particular, one can obtain from (2) the following noncommutative version of

Greub-Rheinboldt inequality〈
A2]B2x, x

〉
≤
〈
A2x, x

〉1/2 〈
B2x, x

〉1/2 ≤ m1m2 +M1M2

2
√
m1m2M1M2

〈
A2]B2x, x

〉
(3)

for any x ∈ H.
Furthermore, if A and B are replaced by C1/2 and C−1/2 in (3), then we get the

Kantorovich inequality [15]

(1 ≤) 〈Cx, x〉1/2
〈
C−1x, x

〉1/2 ≤ m+M

2
√
mM

, x ∈ H with ‖x‖ = 1,

provided mI ≤ C ≤MI for some 0 < m < M.
For various related inequalities, see [1]-[2], [3]-[10], [12]-[13] and [14]-[17].
In this paper we obtain some new Young and Hölder type inequalities for the

weighted geometric mean of positive operators on Hilbert spaces.

2. Some Young and Hölder Type Results

The following simple Young operator inequality follows from (1):

Proposition 1. Let A, B be positive invertible operators and p, q > 1 with 1
p+ 1

q = 1,
then

Bq]1/pA
p ≤ 1

p
Ap +

1

q
Bq. (4)

In particular, we have

A2]B2 ≤ 1

2

(
A2 +B2

)
. (5)

Proof. From (1) and the geometric mean-arithmetic mean inequality we have〈
Bq]1/pA

px, x
〉
≤ 〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ 1

p
〈Apx, x〉+

1

q
〈Bqx, x〉

=

〈(
1

p
Ap +

1

q
Bq

)
x, x

〉
for any x ∈ H, which implies (4).

The following Hölder’s type result for sums of operators holds:

40
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Theorem 1. Let Ak, Bk, k ∈ {1, ..., n} be positive invertible operators and p, q > 1
with 1

p + 1
q = 1, then∥∥∥∥∥

n∑
k=1

pkB
q
k]1/pA

p
k

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
k=1

pkA
p
k

∥∥∥∥∥
1/p ∥∥∥∥∥

n∑
k=1

pkB
q
k

∥∥∥∥∥
1/q

, (6)

for any positive sequence pk, k ∈ {1, ..., n} .
In particular, we have∥∥∥∥∥

n∑
k=1

pkB
2
k]A

2
k

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑
k=1

pkA
2
k

∥∥∥∥∥
∥∥∥∥∥

n∑
k=1

pkB
2
k

∥∥∥∥∥ . (7)

Proof. From (1) we have〈
n∑
k=1

pkB
q
k]1/pA

p
kx, x

〉
=

n∑
k=1

pk
〈
Bq
k]1/pA

p
kx, x

〉
(8)

≤
n∑
k=1

pk
〈
Apkx, x

〉1/p 〈
Bq
kx, x

〉1/q
for any x ∈ H.

Using the weighted discrete Hölder inequality we have

n∑
k=1

pk
〈
Apkx, x

〉1/p 〈
Bq
kx, x

〉1/q
(9)

≤

(
n∑
k=1

pk

[〈
Apkx, x

〉1/p]p)1/p( n∑
k=1

pk

[〈
Bq
kx, x

〉1/q]q)1/q

=

(
n∑
k=1

pk
〈
Apkx, x

〉)1/p( n∑
k=1

pk
〈
Bq
kx, x

〉)1/q

=

〈
n∑
k=1

pkA
p
kx, x

〉1/p〈 n∑
k=1

pkB
q
kx, x

〉1/q

for any x ∈ H.
Then by (8) and (9) we get〈

n∑
k=1

pkB
q
k]1/pA

p
kx, x

〉
≤

〈
n∑
k=1

pkA
p
kx, x

〉1/p〈 n∑
k=1

pkB
q
kx, x

〉1/q

(10)
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for any x ∈ H.
Taking the supremum over x ∈ H, ‖x‖ = 1 in (10) we have∥∥∥∥∥
n∑
k=1

pkB
q
k]1/pA

p
k

∥∥∥∥∥ = sup
‖x‖=1

〈
n∑
k=1

pkB
q
k]1/pA

p
kx, x

〉

≤ sup
‖x‖=1


〈

n∑
k=1

pkA
p
kx, x

〉1/p〈 n∑
k=1

pkB
q
kx, x

〉1/q


≤ sup
‖x‖=1


〈

n∑
k=1

pkA
p
kx, x

〉1/p
 sup
‖x‖=1


〈

n∑
k=1

pkB
q
kx, x

〉1/q


=

{
sup
‖x‖=1

〈
n∑
k=1

pkA
p
kx, x

〉}1/p{
sup
‖x‖=1

〈
n∑
k=1

pkB
q
kx, x

〉}1/q

=

∥∥∥∥∥
n∑
k=1

pkA
p
k

∥∥∥∥∥
1/p ∥∥∥∥∥

n∑
k=1

pkB
q
k

∥∥∥∥∥
1/q

and the inequality (6) is proved.

3. Some Reverses

We need the following result that is of interest in itself as well:

Lemma 2. Let f : I ⊂ R → R be a twice differentiable function on the interval I̊,
the interior of I. If there exists the constants d, D such that

d ≤ f ′′ (t) ≤ D for any t ∈ I̊ , (11)

then

1

2
ν (1− ν) d (b− a)2 ≤ (1− ν) f (a) + νf (b)− f ((1− ν) a+ νb) (12)

≤ 1

2
ν (1− ν)D (b− a)2

for any a, b ∈ I̊ and ν ∈ [0, 1] .
In particular, we have

1

8
(b− a)2 d ≤ f (a) + f (b)

2
− f

(
a+ b

2

)
≤ 1

8
(b− a)2D, (13)

for any a, b ∈ I̊.
The constant 1

8 is best possible in both inequalities in (13).

42
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Proof. We consider the auxiliary function fD : I ⊂ R → R defined by fD (x) =
1
2Dx

2 − f (x) . The function fD is differentiable on I̊ and f ′′D (x) = D − f ′′ (x) ≥ 0,

showing that fD is a convex function on I̊ .
By the convexity of fD we have for any a, b ∈ I̊ and ν ∈ [0, 1] that

0 ≤ (1− ν) fD (a) + νfD (b)− fD ((1− ν) a+ νb)

= (1− ν)

(
1

2
Da2 − f (a)

)
+ ν

(
1

2
Db2 − f (b)

)
−
(

1

2
D ((1− ν) a+ νb)2 − fD ((1− ν) a+ νb)

)
=

1

2
D
[
(1− ν) a2 + νb2 − ((1− ν) a+ νb)2

]
− (1− ν) f (a)− νf (b) + fD ((1− ν) a+ νb)

=
1

2
ν (1− ν)D (b− a)2 − (1− ν) f (a)− νf (b) + fD ((1− ν) a+ νb) ,

which implies the second inequality in (12).
The first inequality follows in a similar way by considering the auxiliary function

fd : I ⊂ R → R defined by fd (x) = f (x) − 1
2dx

2 that is twice differentiable and

convex on I̊.
If we take f (x) = x2, then (11) holds with equality for d = D = 2 and (13)

reduces to an equality as well.

If D > 0, the second inequality in (12) is better than the corresponding inequality
obtained by Furuichi and Minculete in [7] by applying Lagrange’s theorem two times.
They had instead of 1

2 the constant 1. Our method also allowed to obtain, for d > 0,
a lower bound that can not be established by Lagrange’s theorem method employed
in [7].

We have:

Lemma 3. For any a, b > 0 and ν ∈ [0, 1] we have

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]
≤ (1− ν) a+ νb

a1−νbν

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]
. (14)

Proof. Now, if we write the inequality (12) for the convex function f : (0,∞)→ R,

43
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f (x) = − lnx, then we get for any a, b > 0 and ν ∈ [0, 1] that

1

2
ν (1− ν)

(b− a)2

max2 {a, b}
≤ ln ((1− ν) a+ νb)− (1− ν) ln a− ν ln b (15)

≤ 1

2
ν (1− ν)

(b− a)2

min2 {a, b}
.

Since

(b− a)2

min2 {a, b}
=

(
max {a, b}
min {a, b}

− 1

)2

and
(b− a)2

max2 {a, b}
=

(
min {a, b}
max {a, b}

− 1

)2

,

then by (15) we get the desired result (14).

The second inequalities in (14) is better than the corresponding results obtained
by Furuichi and Minculete in [7] where instead of constant 1

2 they had the constant
1.

Remark 1. For ν = 1
2 we get the following inequalities of interest

exp

[
1

8

(
1− min {a, b}

max {a, b}

)2
]
≤

a+b
2√
ab
≤ exp

[
1

8

(
max {a, b}
min {a, b}

− 1

)2
]
, (16)

for any a, b > 0.

We have the following result that is of interest in itself as well:

Theorem 4. Let A and B be two positive invertible operators, p, q > 1 with 1
p+ 1

q = 1
and m, M > 0 such that

mpBq ≤ Ap ≤MpBq. (17)

Then

〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
] 〈
Bq]1/pA

px, x
〉

(18)

for any x ∈ H.

Proof. If a, b ∈ [t, T ] ⊂ (0,∞) and since

0 <
max {a, b}
min {a, b}

− 1 ≤ T

t
− 1,
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hence (
max {a, b}
min {a, b}

− 1

)2

≤
(
T

t
− 1

)2

.

Therefore, by (14) we get

(1− ν) a+ νb ≤ a1−νbν exp

[
1

2
ν (1− ν)

(
T

t
− 1

)2
]
, (19)

for any a, b ∈ [t, T ] and ν ∈ (0, 1) .
Now, if C is an operator with tI ≤ C ≤ TI then for p > 1 we have tpI ≤ Cp ≤

T pI. Using the functional calculus we get from (19) for ν = 1
p that(

1− 1

p

)
d+

1

p
Cp ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
d
1− 1

pC,

namely, the vector inequality,(
1− 1

p

)
d+

1

p
〈Cpy, y〉

≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
d
1− 1

p 〈Cy, y〉 , (20)

for any y ∈ H, ‖y‖ = 1 and d ∈ [tp, T p] .
Since d = 〈Cpy, y〉 ∈ [tp, T p] for any y ∈ H, ‖y‖ = 1, hence by (20) we have(
1− 1

p

)
〈Cpy, y〉+

1

p
〈Cpy, y〉

≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cpy, y〉1−

1
p 〈Cy, y〉 , (21)

that is equivalent to

〈Cpy, y〉 ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cpy, y〉1−

1
p 〈Cy, y〉 , (22)

and by division with 〈Cpy, y〉1−
1
p > 0, y ∈ H, ‖y‖ = 1, to

〈Cpy, y〉1/p ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cy, y〉 . (23)
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If z ∈ H with z 6= 0, then by taking y = z
‖z‖ in (23) we get

〈Cpz, z〉1/p 〈z, z〉1/q ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cz, z〉 , (24)

for any z ∈ H.
Now, from (17) by multiplying both sides withB−

q
2 we havempI ≤ B−

q
2ApB−

q
2 ≤

MpI and by taking the power 1
p we get mI ≤

(
B−

q
2ApB−

q
2

) 1
p ≤MI.

By writing the inequality (24) for C =
(
B−

q
2ApB−

q
2

) 1
p
, t = m, T = M and

z = B
q
2x, with x ∈ H, we have〈

B−
q
2ApB−

q
2B

q
2x,B

q
2x
〉1/p 〈

B
q
2x,B

q
2x
〉1/q

≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
]〈(

B−
q
2ApB−

q
2

) 1
p
B

q
2x,B

q
2x

〉
,

namely

〈Apx, x〉1/p 〈Bqx, x〉1/q

≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
]〈

B
q
2

(
B−

q
2ApB−

q
2

) 1
p
B

q
2x, x

〉
,

for any x ∈ H, and the inequality (18) is proved.

Remark 2. We observe, for A and B two positive invertible operators, that the
condition (17) is equivalent to following condition

mI ≤
(
B−

q
2ApB−

q
2

) 1
p ≤MI. (25)

If we assume that
rBq ≤ Ap ≤ RBq, (26)

then by (18) we have the inequality

〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ exp

[
1

2pq

(
R

r
− 1

)2
] 〈
Bq]1/pA

px, x
〉

(27)

for any x ∈ H.
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We have:

Corollary 5. Let A and B be two positive invertible operators and m, M > 0 such
that

mI ≤
(
B−1A2B−1

) 1
2 ≤MI, (28)

then we have

〈
A2x, x

〉1/2 〈
B2x, x

〉1/2 ≤ exp

1

8

((
M

m

)2

− 1

)2
〈A2]B2x, x

〉
(29)

for any x ∈ H.

If mI ≤ C ≤MI for some m,M with 0 < m < M, then by (29) we get

〈Cx, x〉1/2
〈
C−1x, x

〉1/2 ≤ exp

1

8

((
M

m

)2

− 1

)2
 ‖x‖2 , (30)

for any x ∈ H.

Corollary 6. Assume that A and B satisfy the conditions

m1I ≤ A ≤M1I, m2I ≤ B ≤M2I (31)

for some 0 < m1 < M1 and 0 < m2 < M2, then we have

〈Apx, x〉1/p 〈Bqx, x〉1/q (32)

≤ exp

[
1

2pq

((
M1

m1

)p(M2

m2

)q
− 1

)2
] 〈
Bq]1/pA

px, x
〉
,

for any x ∈ H.
In particular, we have

〈
A2x, x

〉1/2 〈
B2x, x

〉1/2 ≤ exp

1

8

((
M1M2

m1m2

)2

− 1

)2
〈A2]B2x, x

〉
, (33)

for any x ∈ H.
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Springer Briefs in Mathematics, Springer, 2012.

[3] M. Fujii, S. Izumino and R. Nakamoto, Classes of operators determined by the
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[8] T. Furuta, Extensions of Hölder-McCarthy and Kantorovich inequalities and
their applications. Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 3, 38–41.

[9] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kan-
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