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COEFFICIENT BOUNDS FOR A CERTAIN FAMILIES OF M-FOLD
SYMMETRIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH

Q-ANALOGUE OF WANAS OPERATOR
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Abstract. The motivation of the present paper is to define q-analogue of
Wanas operator in geometric function theory. We also introduce certain fami-
lies T σ,αΣm

(t, n, β, q, δ) and T σ,αΣm
(t, n, β, q, γ) of holormorphic and m-fold symmetric

bi-univalent functions associated with q-analogue of Wanas operator. The upper
bounds for the second and third Taylor-Maclaurin coefficients for functions in each
of these subfamilies are obtained. Furthermore, Several consequences of our results
are pointed out based on the various special choices of the involved parameters.
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1. Introduction and Definitions

Let U = {z ∈ C : |z| < 1} be the open unit disk in the complex plane and let
A = {f : U → C : f is holormorphic in U, f(0) = 0 = f

′
(0) − 1} be the family of

functions of the form

f(z) = z +

∞∑
k=2

akz
k (1)

Assume that S be the subfamily of A consisting of all functions f univalent in U.
The Koebe on-quarter theorem (see [5]) state that the image of U under every

function f(z) ∈ S contains a disk of radius 1/4. Therefore, all function f(z) ∈ S
has an inverse f−1(z) which satisfies f−1(f(z)) = z and f(f−1(w)) = w (|w| <
r0(f), r0(f) ≥ 1

4), where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)
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A function f ∈ A denoted by Σ is said to be bi-univalent in U if both f−1(z)
and f(z) are univalent in U (see for details [3, 4, 7, 8, 12,14,16,20,21,24,27,29,32]).

For each function f ∈ S, the function h(z) = (f(zm))1/m, (z ∈ U, m ∈ N) is
univalent and maps the unit disk U into a region with m-fold symmetry. A function
is said to be m-fold symmetric (see [11] and [15]) if it has the following normalized
form:

f(z) = z +
∞∑
k=1

amk+1z
mk+1 (z ∈ U,m ∈ N+). (3)

We denote by Sm the class of m-fold symmetric univalent function in U, which
are normalized by the series expansion (3). Also, the functions in the class S are
one-fold symmetric.

Analogous to the concept of m-fold symmetric univalent function, here we intro-
duced the concept of m-fold symmetric bi-univalent functions. From (3), Srivastava
et al. [25] obtained the series expansion for f−1 as follows:

g(w) = f−1(w) = w − am+1w
m+1 +

[
(m+ 1)a2

m−1 − a2m+1

]
w2m+1

−

[
1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · . (4)

where f−1 = g.
We denote by Σm the class of m-fold symmetric bi-univalent function in U. We

can note that for m = 1, the formular (4) coincides with the formular (2) of the class
Σ. Some of the examples on m-fold symmetric bi-univalent functions are given as
follows:

1

2
log

(
1 + zm

1− zm

) 1
m

, [− log(1− zm)]
1
m ,

{
zm

1− zm

} 1
m

,

with the corresponding inverse functions(
e2wm − 1

e2wm + 1

)1/m

,

(
wm

1 + wm

)1/m

and

(
ew

m − 1

ewm

)1/m

,

respectively. Recently, different researches related to this field investigated bounds
for various subclasses of m-fold bi-univalent function (see [2, 6, 23,26,30]).

Jackson [9,10] introduced the q-derivative operator Dq of a function as follows:

Dqf(z) =
f(qz)− f(z)

(q − 1)z
(5)
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and Dqf(z) = f ′(0). In case f(z) = zφ for φ is a positive integer, the q-derivative of
f(z) is given by

Dqzφ =
zφ − (zq)φ

(q − 1)z
= [φ]qz

φ−1.

As q −→ 1− and φ ∈ N, we get

[φ]q =
1− qφ

1− q
= 1 + q + · · ·+ qφ −→ φ (6)

where (z 6= 0, q 6= 0), for more details on the concepts of q-derivative (see [1,13,17,
22]).

Wanas [28] in 2019 introduced the following operator, which can also be called
(Wanas operator) Wα,σ

β,n : A −→ A defined by

Wα,σ
β,n = z +

∞∑
j=2

[Ψj(σ, α, β)]najz
j , (7)

where

Ψj(σ, α, β) =

σ∑
c=1

(
σ
c

)
(−1)c+1

(
αc + jβc

αc + βc

)
, (8)

c, n ∈ N0, β = 0, α ∈ R and α+ β > 0.
Special cases of this operator can be found in [31].
Now q −→ 1−, [φ]q −→ φ. For f(z) ∈ A, we can define q-difference Wanas

operator as given below

W 0,1
1,0,qf(z) = f(z)

W 0,1
1,1,qf(z) = zWqf(z)

W 0,1
1,n,qf(z) = zWq(W

n−1
q f(z))

Wα,σ
β,n,qf(z) = z +

∞∑
j=2

[Ψj(σ, α, β)]nq ajz
j

where

Ψj(σ, α, β) =
σ∑
c=1

(
σ
c

)
(−1)c+1

(
αc + jβc

αc + βc

)
, (9)

c, n ∈ N0, β = 0, α ∈ R, α+ β > 0, 0 < q < 1, z ∈ U.

Lemma 1. Suppose l(z) ∈ P, the class of functions which are holomorphic in U
with <(l(z)) > 0, (z ∈ U) and have the form l(z) = 1 + l1z + l2z

2 + l3z
3 + · · · ,

(z ∈ U); then |ln| ≤ 2 for each n ∈ N.
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2. Coefficient estimates for the function class T σ,αΣm
(t, n, β, q, δ)

Definition 1. A function f ∈ Σm given by (3) is said to be in the class T σ,αΣm
(t, n, β, q, δ)

if it satisfies the following conditions:∣∣∣∣∣arg

(
Wα,σ

β,t,qf(z)

Wα,σ
β,n,qf(z)

)∣∣∣∣∣ < δπ

2
, (10)

∣∣∣∣∣arg

(
Wα,σ

β,t,qg(w)

Wα,σ
β,n,qg(w)

)∣∣∣∣∣ < απ

2
, (11)

where 0 < δ ≤ 1, n, t ∈ N0, t ≥ n and the function g = f−1 is given by (4). Also
Wα,σ

β,t,qf(z) and Wα,σ
β,n,qf(z) are q-Wanas operators and have the following forms

Wα,σ
β,t,qf(z) = z +

∞∑
j=1

[Ψjm+1(σ, α, β)]tqajm+1z
jm+1 (12)

and

Wα,σ
β,n,qg(w) = w +

∞∑
j=1

[Ψjm+1(σ, α, β)]nq bjm+1w
jm+1. (13)

We state and prove the following results.

Theorem 2. Let f(z) given by (3) be in the class T σ,αΣm
(t, n, β, q, δ) (0 < δ ≤ 1,

n, t ∈ N0). Then

|am+1| ≤
2δ√√√√√√√√√

δ(m+ 1)

(
[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq

)
− 2δ

(
[Ψm+1(σ, α, β)]n+t

q

− [Ψm+1(σ, α, β)]2nq

)
− (δ − 1)

(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)2

(14)

and

|a2m+1| ≤
2δ

[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq

+
2(m+ 1)δ2

([Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq )2
. (15)
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Proof. We can wirte the inequality in (10) and (11) as

Wα,σ
β,t,qf(z)

Wα,σ
β,n,qf(z)

= [s(z)]δ (16)

and
Wα,σ

β,t,qg(w)

Wα,σ
β,n,qg(w)

= [t(w)]δ (17)

respectively.
Where g(w) = f−1 and s(z),t(w) in P have the following series representation:

s(z) = 1 + smz
m + s2mz

2m + s3mz
3m + · · · (18)

and
t(w) = 1 + tmw

m + t2mw
2m + t3mw

3m + · · · (19)

Clearly,

[s(z)]δ = 1 + δsmz
m +

(
δs2m +

δ(δ − 1)

2
s2
m

)
z2m + · · · (20)

and

[t(w)]δ = 1 + δtmw
m +

(
δt2m +

δ(δ − 1)

2
t2m

)
w2m + · · · (21)

Now equating the coefficient in (10) and (11) we get(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)
am+1 = δsm, (22)

([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )a2m+1

− ([Ψm+1(σ, α, β)]n+t
q − [Ψm+1(σ, α, β)]2nq )a2

m+1 = δs2m +
δ(δ − 1)

2
s2
m, (23)

−
(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)
am+1 = δtm, (24)

([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )((m+ 1)a2
m+1 − a2m+1)

− ([Ψm+1(σ, α, β)]n+t
q − [Ψm+1(σ, α, β)]2nq )a2

m+1 = δt2m +
δ(δ − 1)

2
t2m. (25)

From equation (22) and (24), we find that

sm = −tm (26)
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and
2
(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)2
a2
m+1 = δ2(s2

m + t2m). (27)

Also, from (23), (25) and (27), we have

(m+ 1)δ([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )a2
2m+1 − 2δ([Ψm+1(σ, α, β)]n+t

q

− [Ψm+1(σ, α, β)]2nq )a2
m+1 = δ(s2m + t2m) +

δ(δ − 1)

2
(t2m + s2

m) = δ2(s2m + t2m)

+ (δ − 1)
(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)2
a2
m+1.

Therefore, after simplifying and using Lemma 1 for the coefficient s2m and t2m, we
have (14).

For us to get te bound on |a2m+1|, we subtract (25) from (23) to have

[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq(
2a2m+1 − (m+ 1)a2

m+1

)
= α(s2m − t2m) +

α(α− 1)

2
(t2m − s2

m). (28)

It follows from (26), (27) and (28)

a2m+1 =
δ(s2m − t2m)

[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq

+
(m+ 1)δ2(t2m − s2

m)

4([Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq )2
. (29)

Taking the absolute value of (29) and using Lemma 1 for the coefficient sm, s2m, tm
and t2m, we have (15) which completes the proof of Theorem 2.

When m = 1 and σ = β = 1 which is the one-fold symmetric bi-univalent
functions, Theorem 2 gives the following corollary:

Corollary 3. Let f(z) given by (3) be in the class T αΣ (t, n, 1, q, δ) (0 < δ ≤ 1,
n, t ∈ N0, α > −1). Then

|a2| ≤
2δ√

2δ

([
2α+3
α+1

]t
q
−
[

2α+3
α+1

]n
q

)
− 2δ([2]n+t

q − [2]2nq )− (1− δ)([2]tq − [2]nq )2

and

|a2m+1| ≤
2δ[

2α+3
α+1

]t
q
−
[

2α+3
α+1

]n
q

+
4δ2

([2]tq − [2]nq )2
.
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When m = σ = 1 and α = 1 − β which is the one-fold symmetric bi-univalent
functions, Theorem 2 gives the following corollary:

Corollary 4. Let f(z) given by (3) be in the class T 1−β
Σ (t, n, q, δ) (0 < δ ≤ 1,

n, t ∈ N0). Then

|a2| ≤
2δ√

2δ
(

[2 + β]tq − [2 + β]nq

)
− 2δ([2]n+t

q − [2]2nq )− (1− δ)([2]tq − [2]nq )2

and

|a2m+1| ≤
2δ

[2 + β]tq − [2 + β]nq
+

4δ2

([2]tq − [2]nq )2
.

Remark 1. In Theorem 2, if we choose

1. q = 1, σ = β = 1 and α = 0 then we have results determined by Seker and
Taymur [ [18], Theorem 2].

2. m = q = 1, σ = β = t = 1 and α = n = 0 then we have results determined by
Brannan and Taha [ [3], Theorem 2].

3. m = q = 1, σ = β = 1 and α = 0 then we have results determined by Seker
[ [19], Theorem 2].

3. Coefficient estimates for the function class T σ,αΣm
(t, n, β, q, γ)

Definition 2. A function f ∈ Σm given by (3) is said to be in the class T σ,αΣm
(t, n, β, q, γ)

if it satisfies the following conditions:

<

{
Wα,σ

β,t,qf(z)

Wα,σ
β,n,qf(z)

}
> γ, (30)

<

{
Wα,σ

β,t,qg(w)

Wα,σ
β,n,qg(w)

}
> γ, (31)

where 0 ≤ γ < 1, n, t ∈ N0, t ≥ n and the function g = f−1 is given by (4).

We state and prove the following results.
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Theorem 5. Let f(z) given by (3) be in the class T σ,αΣm
(t, n, β, q, γ) (0 ≤ γ < 1,

n, t ∈ N0). Then

|am+1| ≤

2

√√√√√√√√√√√

1− γ

(m+ 1)

(
[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq

)
− 2

(
[Ψm+1(σ, α, β)]n+t

q

− [Ψm+1(σ, α, β)]2nq

)
(32)

and

|a2m+1| ≤
2(1− γ)

[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq

+
(m+ 1)(1− γ)2

([Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq )2
. (33)

Proof. First of all, the argument inequality in (30) and (31) can be written in their
equivalent forms as:

Wα,σ
β,t,qf(z)

Wα,σ
β,n,qf(z)

= γ + (1− γ)s(z) (34)

and
Wα,σ

β,t,qg(w)

Wα,σ
β,n,qg(w)

= γ + (1− γ)t(w). (35)

respectively. Where s(z), t(w) ∈ P and have the forms

s(z) = 1 + smz
m + s2mz

2m + s3mz
3m + · · · (36)

and
t(w) = 1 + tmw

m + t2mw
2m + t3mw

3m + · · · (37)

Clearly,

γ + (1− βγ)s(z) = 1 + (1− γ)smz
m + (1− γ)s2mz

2m + · · · (38)

and
γ + (1− γ)t(w) = 1 + (1− γ)tmw

m + (1− γ)t2mw
2m + · · · . (39)
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Now equating the coefficient in (34) and (35), we get(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)
am+1 = (1− γ)sm, (40)

([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )a2m+1

− ([Ψm+1(σ, α, β)]n+t
q − [Ψm+1(σ, α, β)]2nq )a2

m+1 = (1− γ)s2m, (41)

−
(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)
am+1 = (1− γ)tm, (42)

([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )((m+ 1)a2
m+1 − a2m+1)

− ([Ψm+1(σ, α, β)]n+t
q − [Ψm+1(σ, α, β)]2nq )a2

m+1 = (1− γ)t2m. (43)

From (40) and (42), we get
sm = −tm (44)

and
2
(
[Ψm+1(σ, α, β)]tq − [Ψm+1(σ, α, β)]nq

)2
a2
m+1 = (1− γ)2(s2

m + t2m). (45)

Also, adding (41) and (43), we have

(m+ 1)([Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq )a2
2m+1 − 2([Ψm+1(σ, α, β)]n+t

q

− [Ψm+1(σ, α, β)]2nq )a2
m+1 = (1− γ)(s2m + t2m)

Therefore, after simplifying and applying Lemma 1 for the coefficient s2m and t2m,
we obtain (32).

Next, in order to find the bound on |a2m+1|, by subtracting (43) from (41), we
have

[Ψ2m+1(σ, α, β)]tq − [Ψ2m+1(σ, α, β)]nq(
2a2m+1 − (m+ 1)a2

m+1

)
= (1− γ)(t2m − s2m). (46)

Applying (45) and Lemma 1 once again for coefficients sm, s2m, tm and t2m, we have
(33) which completes the proof of Theorem 5.

When m = 1 and σ = β = 1 which is the one-fold symmetric bi-univalent
functions, Theorem 5 gives the following corollary:
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Corollary 6. Let f(z) given by (3) be in the class T αΣ (t, n, q, γ) (0 ≤ γ < 1, n, t ∈
N0, α > −1). Then

|am+1| ≤ 2

√√√√√√
1− γ

2

([
2α+3
α+1

]t
q
−
[

2α+3
α+1

]n
q

)
− 2

(
[2]n+t

q − [2]2nq

) (47)

and

|a2m+1| ≤
2(1− γ)[

2α+3
α+1

]t
q
−
[

2α+3
α+1

]n
q

+
2(1− γ)2

([2]tq − [2]nq )2
. (48)

When m = σ = 1 and α = 1 − β which is the one-fold symmetric bi-univalent
functions, Theorem 5 gives the following corollary:

Corollary 7. Let f(z) given by (3) be in the class T 1−β
Σ (t, n, q, γ) (0 ≤ γ < 1,

n, t ∈ N0). Then

|am+1| ≤ 2

√√√√√√
1− γ

2

(
[2 + β]tq − [2 + β]nq

)
− 2

(
[2]n+t

q − [2]2nq

) (49)

and

|a2m+1| ≤
2(1− γ)

[2 + β]tq − [2 + β]nq
+

2(1− γ)2

([2]tq − [2]nq )2
. (50)

Remark 2. In Theorem 5, if we choose

1. q = 1, σ = β = 1 and α = 0 then we have results determined by Seker and
Taymur [ [18], Theorem 2].

2. m = q = 1, σ = β = t = 1 and α = n = 0 then we have results determined by
Brannan and Taha [ [3], Theorem 2].

3. m = q = 1, σ = β = 1 and α = 0 then we have results determined by Seker
[ [19], Theorem 2].
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of bi-Bazilevič functions of Ma-Minda type involving the Salagean integro-differential
operator, Quaestiones Mathematicae, 44(4) (2021), 495-502.

[15] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan
Math. J., 9 (1962), 259-269.

35



T. G. Shaba, A. K. Wanas – Coefficient Bounds for a Certain families . . .

[16] A. B. Patil, T. G. Shaba, On sharp Chebyshev polynomial bounds for general
subclassof bi-univalent functions. Applied Sciences, 23 (2021), 109-117 .

[17] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike
and q-convex functions of complex order , Journal of Mathematical Inequalities, 10
(2016), 135-145.

[18] B. Seker and I. Taymur, On subclasses of m-fold symmetric bi-univalent func-
tions , TWMS J. App. and Eng. Math., 11(2) (2021), 598-604.

[19] B. Seker, On a new subclass of bi-univalent functions defined by using Salagean
operator, Turk J. Math., 42 (2018), 2891-2896.

[20] T. G. Shaba, On some new subclass of bi-univalent functions associated with
the Opoola differential operator, Open J. Math. Anal., 4(2) (2020), 74-79.

[21] T. G. Shaba and A. K. Wanas, Coefficients bounds for a new family of bi-
univalent functions associated with (U, V )-Lucas polynomial, Int. J. Nonlinear Anal.
Appl. 13(1) (2022), 615-626.

[22] T. G. Shaba, Certain new subclasses of t-fold symmetric bi-univalent function
using q- derivative operator, Konuralp Journal of Mathematics, 9(1) (2021), 137-142.

[23] T. G. Shaba and A. B. Patil, Coefficient estimates for certain subclasses of
m-fold symmetric bi-univalent functions associated with pseudo-starlike functions,
Earthline Journal of Mathematical Sciences, 6(2) (2021), 2581-8147.

[24] T. G. Shaba, M. G. Khan and B. Ahmad, Coefficient bounds for certain new
subclasses of meromorphic bi-univalent functions associated with Al-Oboudi differen-
tial operator, Palestine Journal of Mathematics, 11(1) (2021), 572-582.

[25] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient
bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J.,
7(2) (2014), 1-10.

[26] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some
subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis,
41 (2015), 153-164.

[27] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new
subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear
combination, Kyungpook Math. J., 59 (2019), 493-503.

[28] A. K. Wanas, New differential operator for holomorphic functions, Earthline J.
Math. Sci., 2 (2019), 527-537.

[29] A. k. Wanas, Applications of (M,N)-Lucas polynomials for holomorphic and
bi-univalent functions, Filomat, 34 (2020), 3361-3368.

[30] A. K. Wanas and A. H. Majeed, On subclasses of analytic and m-fold symmetric
bi-univalent functions, Iranian Journal of Mathematical Sciences and Informatics,
15(2) (2020), 51-60.

36



T. G. Shaba, A. K. Wanas – Coefficient Bounds for a Certain families . . .

[31] A. K. Wanas and G. Murugusundaramoorthy, Differential sandwich results for
Wanas operator of analytic functions, Mathematica Moravica, 24(1) (2020), 17-28.
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