ON SUBCLASS OF BAZILEVIC FUNCTIONS ASSOCIATED WITH CERTAIN CARATHEODORY-TYPE FUNCTIONS NORMALIZED BY OTHER THAN UNITY

A.A. Yusuf

Abstract. In this research work, we study a new subclass of Bazilevic functions via Caratheodory maps with normalization by other than unity defined by new operator denoted by $B_{\sigma, \gamma}^{n}(\lambda)$. We obtain some basic properties of the new class, namely inclusion, closure under certain integral transformation, Coefficient bounds, bound on the Fekete Szego functional.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic and univalent functions, Bazilevic maps, Caratheodory maps with normalization by other than unity,.

1. Introduction

Let P_{λ} is the class of all functions of the form

$$
\begin{equation*}
h(z)=1+i \frac{\mu}{\eta}+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots . \tag{1}
\end{equation*}
$$

such that for $z \in U$, a complex number $\lambda=\eta+i \mu$ with $\mu \geq 0$ and $\eta>0$, then $h(z)$ is said to belong to P_{λ} if and only if $h(0)=\frac{\lambda}{\eta}=1+i \frac{\mu}{\eta}$ and $\operatorname{Reh}(z)>0$.
The class of functions of the form (1) is Caratheodory-type with normalization $1+i \frac{\mu}{\eta}$ as against normalization $p(0)=1$ for Caratheodory maps and the function $L_{0}(z)=\frac{1+z}{1-z}+\frac{i \mu}{\eta}$ plays a central role in the class P_{λ} especially with respect to extremal problems.
In [2], the Basilevic map given as follows

$$
\begin{equation*}
f(z)=\left[\frac{\alpha}{1+\beta^{2}} \int_{0}^{z}[p(t)-i \beta] t^{-\left(1+\frac{i \alpha \beta}{1+\beta^{2}}\right)} g(t)^{\left(\frac{\alpha}{1+\beta^{2}}\right)}\right] . \tag{2}
\end{equation*}
$$

where $p \in P$ and $g(z)=z+b_{2} z^{2}+\cdots$ is starlike with the parameters $\alpha>0$ and β are real and all powers mean principal determinations only. The Basilevic map

A.A. Yusuf - On Subclass of Bazilevic Functions...

was redefined to suit the caratheodory type normalised by other than unity in the following definition
Definition $1[2]$ Let $\lambda=\alpha /(1+i \beta)$, the function $f(z)$ belong to the class $B(\lambda, g)$ if and only if

$$
\begin{equation*}
\frac{z\left(f(z)^{\lambda}\right)}{\eta z^{i u} g(z)^{\eta}} \in P_{\lambda} \tag{3}
\end{equation*}
$$

By taking $g(z)=z$ and using the salagean differential operator, we have the following definition
Definition 2[4] The function $f(z)$ belong to the class $B_{n}(\lambda)$ if and only if

$$
\begin{equation*}
\frac{D^{n}\left(f(z)^{\lambda}\right)}{\eta \lambda^{n-1} z^{\lambda}} \in P_{\lambda} . \tag{4}
\end{equation*}
$$

Using the salagean differential operator $D^{n} f(z)$ and and inverse of integral operator $\mathcal{L}_{\sigma, \gamma} f(z)=\frac{(\lambda+\gamma)^{-\sigma} t^{\gamma}-1}{z^{\gamma} \Gamma-\sigma} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{-\sigma-1} f(t)^{\lambda} d t$ (see [12], [5]), on $f(z)^{\lambda}$, we have

$$
\begin{equation*}
D^{n}\left(\mathcal{L}_{\sigma, \gamma} f(z)^{\lambda}\right)=z^{\lambda} \lambda^{n}+\sum_{k=2}^{\infty}\left(\frac{\lambda+\gamma+k-1}{\lambda+\gamma}\right)^{\sigma}(\lambda+k-1)^{n} A_{k}(\lambda) z^{\lambda+k-1} \tag{5}
\end{equation*}
$$

where A_{k} for $k=2,3, \cdots$ depends on the coefficients a_{k} of $f(z)$ and the index λ.
We denote

$$
\begin{equation*}
\mathcal{L}_{\sigma, \gamma}\left(D^{n} f(z)^{\lambda}\right)=D^{n}\left(\mathcal{L}_{\sigma, \gamma} f(z)^{\lambda}\right)=L_{\sigma, \gamma}^{n} f(z)^{\lambda} . \tag{6}
\end{equation*}
$$

$n \in N \cup\{0\}, \sigma>0, \gamma>-1$.
Note that $L_{1,0}^{n}=D^{n+1} f(z)^{\lambda}, L_{1,0}^{0}=D f(z)^{\lambda}=z f^{\prime}(z)^{\lambda}$. If $\eta=1, \mu=0$, then $L_{1,0}^{0}=z f^{\prime}(z)$.
From the series expansions of the operator $\mathcal{L}_{\sigma, \gamma}$ on $f(z)^{\lambda}$, we have the recursive relation

$$
\begin{equation*}
z\left(\mathcal{L}_{\sigma, \gamma} f(z)^{\lambda}\right)^{\prime}=(\lambda+\gamma) \mathcal{L}_{\sigma+1, \gamma} f(z)^{\lambda}-(\lambda+\gamma) \mathcal{L}_{\sigma, \gamma} f(z)^{\lambda} . \tag{7}
\end{equation*}
$$

Applying D^{n} on (7), we have

$$
\begin{equation*}
L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}=(\lambda+\gamma) L_{\sigma+1, \gamma}^{n} f(z)^{\lambda}-(\lambda+\gamma) L_{\sigma, \gamma}^{n} f(z)^{\lambda} . \tag{8}
\end{equation*}
$$

Using the salagean anti-derivative define as $I_{n}=I\left(I_{n-1} f(z)\right)=\int_{0}^{z} \frac{I_{n-1} f(t)}{t} d t$ and $\mathcal{J}_{\sigma, \gamma} f(z)=\frac{(\lambda+\gamma)^{\sigma} t^{\gamma-1}}{z^{\gamma} \Gamma \sigma} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t) d t$. (see [12], [5]) on $f(z)^{\lambda}$.
Therefore

$$
\begin{equation*}
I_{n}\left(\mathcal{J}_{\sigma, \gamma} f(z)^{\lambda}\right)=\frac{z^{\lambda}}{\lambda^{n}}+\sum_{k=2}^{\infty}\left(\frac{\lambda+\gamma}{\lambda+\gamma+k-1}\right)^{\sigma} \frac{A_{k}(\lambda)}{(\lambda+k-1)^{n}} z^{\lambda+k-1} \tag{9}
\end{equation*}
$$

We denote

$$
\begin{equation*}
I_{n}\left(\mathcal{J}_{\sigma, \gamma} f(z)^{\lambda}\right)=\mathcal{J}_{\sigma, \gamma}\left(I_{n} f(z)^{\lambda}\right)=J_{\sigma, \gamma}^{n} f(z)^{\lambda} . \tag{10}
\end{equation*}
$$

It can be seen that

$$
\begin{equation*}
L_{\sigma, \gamma}^{n}\left(J_{\sigma, \gamma}^{n} f(z)^{\lambda}\right)=J_{\sigma, \lambda}^{n}\left(L_{\sigma, \gamma}^{n} f(z)^{\lambda}\right)=f(z)^{\lambda} . \tag{11}
\end{equation*}
$$

Using the operator $L_{\sigma, \gamma}^{n}$, we introduce a new class defined as.
Definition 3
An analytic function $f \in A$ is said to belong to the class $B_{\sigma, \gamma}^{n}(\lambda)$ if and only if

$$
\begin{equation*}
\frac{L_{\sigma, \gamma}^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}} \in P_{\lambda} . \tag{12}
\end{equation*}
$$

and the integral representation is as follows

$$
f(z)=\left\{\eta \lambda^{n-1}\left[J_{\sigma, \gamma}^{n} z^{\lambda} h(z)\right]\right\}^{1 / \lambda}
$$

2. Preliminary Lemmas

Lemma 1. [4] Let $u=u_{1}+u_{2} i$ and $v=v_{1}+v_{2}$. Let a be a complex number with Rea >0 and $\psi(u, v)$ a complex-valued function satisfying:
(a) $\psi(u, v)$ is continuous in a domain of Ω of \mathbb{C}^{2},
(b) $(a, 0) \in \Omega$ and $\operatorname{Re}(a ; 0)>0$,
(c) $\operatorname{Re}\left(u_{2} i, v_{1}\right) \leq 0$ when $\left(u_{2} i, v_{1}\right)$ and $2 v_{1}$ Rea $\leq-|a-i u|^{2}$. If $h=a+c_{1} z+c_{2} z^{2}+\cdots$ such that $\left(h(z), z h^{\prime}(z)\right) \in \Omega$ and its real part is greater than zero, then $\operatorname{Reh}(z)>0$.

Lemma 2. [4] Let $h \in P_{\lambda}$. Then,

$$
\left|p_{k}\right| \leq 2, k=1,2,3 \ldots
$$

The result is sharp. Equality holds for the function $h(z)=\frac{1+z}{1-z}+\frac{i \mu}{\eta}$.
Lemma 3. [3] Let $h \in P_{\lambda}$. Then, we have the sharp inequalities

$$
\left|p_{2}-\sigma \frac{p_{1}^{2}}{2}\right| \leq 2 \max \{1,|1-\sigma|\}
$$

Lemma 4. [6] Let $f \in A$, for any complex number ζ.
(i) If for $z \in E, D^{n+1} f(z)^{\zeta} / D^{n} f(z)^{\zeta}$ is independent of n, then

$$
\frac{D^{n+1} f(z)^{\zeta}}{D^{n} f(z)^{\zeta}}=\zeta \frac{D^{n+1} f(z)}{D^{n} f(z)}
$$

(ii) The equality also holds if $D^{n+1} f(z) / D^{n} f(z)$ is independent of $n, z \in E$.

Lemma 5. [2] Let $h \in P_{\lambda}$

$$
R e \quad \frac{z h^{\prime}(z)}{h(z)} \geq \frac{-2 r}{1-r^{2}}
$$

3. Main Results

Theorem 6. $B_{\sigma, \gamma}^{n+1}(\lambda) \subset B_{\sigma, \gamma}^{n}(\lambda)$
Proof. Let

$$
\begin{gather*}
\frac{L_{\sigma, \gamma}^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z) \tag{13}\\
L_{\sigma, \gamma}^{n} f(z)^{\lambda}=\eta \lambda^{n-1}\left(z^{\lambda} h(z)\right) \tag{14}\\
\left(L_{\sigma, \gamma}^{n} f(z)^{\lambda}\right)^{\prime}=\eta \lambda^{n-1}\left(z^{\lambda} h^{\prime}(z)+\lambda z^{\lambda-1} h(z)\right) \tag{15}\\
z\left(L_{\sigma, \gamma}^{n} f(z)^{\lambda}\right)^{\prime}=\eta \lambda^{n} z^{\lambda}\left(\frac{z h^{\prime}(z)}{\lambda}+h(z)\right) \tag{16}
\end{gather*}
$$

which becomes

$$
\begin{equation*}
L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}=\eta \lambda^{n} z^{\lambda}\left(\frac{z h^{\prime}(z)}{\lambda}+h(z)\right) \tag{17}
\end{equation*}
$$

so that if $f \in B_{\sigma, \gamma}^{n+1}(\lambda)$ then

$$
\begin{equation*}
\operatorname{Re} \frac{L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}}{\eta \lambda^{n} z^{\lambda}}=\operatorname{Re}\left(\frac{z h^{\prime}(z)}{\lambda}+h(z)\right)>0 \tag{18}
\end{equation*}
$$

Now define $\psi(u, v)=u+\frac{v}{\lambda}, \operatorname{Re} \lambda>0$. Noting that $a=1+i \frac{\mu}{\eta}$, then ψ satisfies all the conditions of Lemma 1, it follows that

$$
\begin{equation*}
\operatorname{Re} \frac{L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=\operatorname{Reh}(z)>0 \tag{19}
\end{equation*}
$$

meaning that $f \in B_{\sigma, \gamma}^{n}(\lambda)$

Theorem 7. $B_{\sigma, \gamma}^{n}(\lambda) \subset B_{\sigma+1, \gamma}^{n}(\lambda)$
Proof. Let $\frac{L_{\sigma+1, \gamma}^{n} f(z)}{\eta z^{\lambda} \lambda^{n-1}}=h(z)$ then

$$
\begin{gathered}
L_{\sigma+1, \gamma}^{n} f(z)=\eta \lambda^{n-1}\left(z^{\lambda} h(z)\right) \\
L_{\sigma+1, \gamma}^{n+1} f(z)^{\lambda}=\eta \lambda^{n} z^{\lambda}\left(\frac{z h^{\prime}(z)}{\lambda}+h(z)\right)
\end{gathered}
$$

since $B_{\sigma, \gamma}^{n+1}(\lambda) \subset B_{\sigma, \gamma}^{n}(\lambda)$ from theorem 1 then

$$
\operatorname{Re} \frac{L_{\sigma+1, \gamma}^{n+1} f(z)^{\lambda}}{\eta \lambda^{n} z^{\lambda}}=\operatorname{Re}\left(\frac{z h^{\prime}(z)}{\lambda}+h(z)\right)>0
$$

by lemma 1 , it follows that

$$
\begin{equation*}
\operatorname{Re} \frac{L_{\sigma+1, \gamma}^{n+1} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=\operatorname{Reh}(z)>0 \tag{20}
\end{equation*}
$$

meaning that $f \in B_{\sigma+1, \gamma}^{n}(\lambda)$
Theorem 8. Let $f \in B_{\sigma, \gamma}^{n}(\lambda)$, then f is a $\alpha-n$ spiral univalent in the disk $|z|<r_{0}(\eta)$ where given by

$$
r_{0}(\eta)=\frac{1}{\eta}\left(\sqrt{1+\eta^{2}}-1\right)
$$

Proof. By definition, let

$$
\frac{L_{\sigma, \gamma}^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z)
$$

by some simple calculation, we have

$$
L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}=\eta \lambda^{n-1} z^{\lambda}\left(z h^{\prime}(z)+\lambda h(z)\right)
$$

and

$$
\frac{L_{\sigma, \gamma}^{n+1} f(z)^{\lambda}}{L_{\sigma, \gamma}^{n} f(z)^{\lambda}}=\frac{z h^{\prime}(z)}{h(z)}+\lambda
$$

Since $\mathcal{L}_{0, \gamma} f(z)^{\lambda}=f(z)^{\lambda}$, we have

$$
\frac{D^{n+1} f(z)^{\zeta}}{D^{n} f(z)^{\zeta}} \Rightarrow \frac{L_{1, \gamma}^{n+1} f(z)^{\lambda}}{L_{1, \gamma}^{n} f(z)^{\lambda}} \Rightarrow \frac{L_{2, \gamma}^{n+1} f(z)^{\lambda}}{L_{2, \gamma}^{n} f(z)^{\lambda}} \Rightarrow \cdots
$$

and so on for all $\sigma \in N$. By lemma 4, we have

$$
\zeta \frac{D^{n+1} f(z)}{D^{n} f(z)} \Rightarrow \lambda \frac{L_{1, \gamma}^{n+1} f(z)}{L_{1, \gamma}^{n} f(z)} \Rightarrow \lambda \frac{L_{2, \gamma}^{n+1} f(z)}{L_{2, \gamma}^{n} f(z)} \Rightarrow \cdots
$$

and so on for all $\sigma \in N$, therefore

$$
\lambda \frac{L_{\sigma, \gamma}^{n+1} f(z)}{L_{\sigma, \gamma}^{n} f(z)}=\frac{z h^{\prime}(z)}{h(z)}+\lambda
$$

Taking $\alpha=\tan ^{-1} \frac{\mu}{\eta}$ and by Lemma 5, we have

$$
\begin{gathered}
\operatorname{Re} \quad e^{i \alpha} \frac{L_{\sigma, \gamma}^{n+1} f(z)}{L_{\sigma, \gamma}^{n} f(z)}>\frac{\eta}{|\lambda|}-\frac{2 r^{2}}{1-r^{2}} \\
\frac{\eta-\eta r^{2}-2 r}{\left(1-r^{2}\right)|\lambda|}>0
\end{gathered}
$$

where $|z|<r_{0}(\eta)$
Theorem 9. The class $B_{\sigma, \gamma}^{n}(\lambda)$ is closed under the integral

$$
\begin{equation*}
F(z)^{\lambda}=\frac{\lambda+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t)^{\lambda} d t, \lambda=\eta+i \mu \tag{21}
\end{equation*}
$$

Proof. From

$$
\begin{equation*}
F(z)^{\lambda}=\frac{\lambda+c}{z^{c}} \int_{0}^{z} t^{c-1} f(t)^{\lambda} d t \tag{22}
\end{equation*}
$$

we have that

$$
\begin{equation*}
z^{c} F(z)^{\lambda}=(\lambda+c) \int_{0}^{z} t^{c-1} f(t)^{\lambda} d t \tag{23}
\end{equation*}
$$

by differentiation, we have

$$
\begin{equation*}
c z^{c-1} F(z)^{\lambda}+z^{c}\left(F(z)^{\lambda}\right)^{\prime}=(\lambda+c) z^{c-1} f(z)^{\lambda} \tag{24}
\end{equation*}
$$

multiplying through z and by simple computation

$$
\begin{equation*}
z\left(F(z)^{\lambda}\right)^{\prime}+c\left(F(z)^{\lambda}=(\lambda+c) f(z)^{\lambda}\right. \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{L_{\sigma, \gamma}^{n+1} F(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}+c \frac{L_{\sigma, \gamma}^{n} F(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=(\lambda+c) \frac{L_{\sigma, \gamma}^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}} \tag{26}
\end{equation*}
$$

define $h(z) \in P_{\lambda}$ by

$$
\begin{equation*}
\frac{L_{\sigma, \gamma}^{n} F(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z) \tag{27}
\end{equation*}
$$

we have that

$$
\begin{equation*}
\frac{L_{\sigma, \gamma}^{n+1} F(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=\lambda h(z)+z h^{\prime}(z) \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{L_{n}^{\sigma} F(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z)+\frac{z h^{\prime}(z)}{\lambda+c} \tag{29}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\operatorname{Re}\left(\psi(h(z), z h(z))=\operatorname{Re}\left(h(z)+\frac{z h^{\prime}(z)}{\lambda+c}\right)\right. \tag{30}
\end{equation*}
$$

by lemma 1, we have $\operatorname{Reh}(z)>0$ and the proof completes
Theorem 10. Let $f \in B_{\sigma, \gamma}^{n}(\lambda)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{2 \eta|\lambda|^{n-2}}{|\lambda+1|^{n}}\left|\frac{\lambda+\gamma}{\lambda+\gamma+1}\right|^{\sigma} \\
\left|a_{3}\right| \leq \frac{2 \eta|\lambda|^{n-2}|\lambda+\gamma|^{\sigma}}{|\lambda+2|^{n}|\lambda+\gamma+2|^{\sigma}} \max \left\{1,\left|\mathbf{M}_{\mathbf{1}}\right|\right\} \tag{31}
\end{gather*}
$$

where $\mathbf{M}_{\mathbf{1}}=\frac{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}+(1-\lambda) \eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}}$ The bounds are best possible. Equalities are obtained also by

$$
\begin{gathered}
f(z)^{\lambda}=\left\{\eta \lambda^{n-1}\left[J_{\sigma, \gamma}^{n} z^{\lambda}\left(\frac{1+z}{1-z}+i \frac{u}{\eta}\right)\right]\right\}^{\frac{1}{\lambda}} \\
=z+\frac{\eta \lambda^{n-2}}{(\lambda+1)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+1}\right)^{\sigma} z^{2}+ \\
\frac{\eta(\lambda)^{n-2}(\lambda+\gamma)^{\sigma}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}\left\{\frac{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}+(1-\lambda) \eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}}\right\} z^{3}+
\end{gathered}
$$

Proof. Let $\left.f \in B_{\sigma, \lambda}^{n}(\lambda)\right)$, then there exists $h \in P_{\lambda}$ such that

$$
\begin{equation*}
\frac{L_{\sigma, \lambda}^{n} f(z)^{\lambda}}{\eta \lambda^{n-1} z^{\lambda}}=h(z)=1+\frac{i \mu}{\eta}+c_{1} z+c_{2} z^{2}+c_{3} c^{3}+\cdots \tag{32}
\end{equation*}
$$

$L_{\sigma, \gamma}^{n} f(z)^{\lambda}=\lambda^{n} z^{\lambda}+\eta \lambda^{n-1} c_{1} z^{\lambda+1}+\eta \lambda^{n-1} c_{2} z^{\lambda+2}+\eta \lambda^{n-1} c_{3} z^{\lambda+3}+\eta \lambda^{n-1} c_{4} z^{\lambda+4}+\cdots$
Using the anti-derivative of the operator $L_{\sigma, \gamma}^{n}$ denoted as $J_{\sigma, \gamma}^{n}$, we have that

$$
\begin{aligned}
f(z)^{\lambda}= & z^{\lambda}+\frac{\eta \lambda^{n-1}}{(\lambda+1)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+1}\right)^{\sigma} c_{1} z^{\lambda+1}+\frac{\eta \lambda^{n-1}}{(\lambda+2)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+2}\right)^{\sigma} c_{2} z^{\lambda+2} \\
& +\frac{\eta \lambda^{n-1}}{(\lambda+3)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+3}\right)^{\sigma} c_{3} z^{\lambda+3}+\frac{\eta \lambda^{n-1}}{(\lambda+4)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+4}\right)^{\sigma} c_{4} z^{\lambda+4} \ldots
\end{aligned}
$$

Given that

$$
\begin{gathered}
f(z)^{\lambda}=z^{\lambda}+\lambda a_{2} z^{\lambda+1}+\left(\lambda a_{3}+\frac{\lambda(\lambda-1)}{2} a_{2}^{2}\right) z^{\lambda+2}+\left(\lambda a_{4}+\lambda(\lambda-1) a_{2} a_{3}+\frac{\lambda(\lambda-1)(\lambda-2)}{6} a_{2}^{3}\right) z^{\lambda+3} \\
+\left(\lambda a_{5}+\lambda(\lambda-1) a_{2} a_{4}+\frac{\lambda(\lambda-1)}{2} a_{3}^{2}+\frac{\lambda(\lambda-1)(\lambda-2)}{2} a_{2}^{2} a_{3}+\frac{\lambda(\lambda-1)(\lambda-2)(\lambda-3)}{12} a_{2}^{4}\right) z^{\lambda+4}+\cdots \\
a_{3}=\frac{\eta \lambda^{n-2}(\lambda+\gamma)^{\sigma} c_{2}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}-\frac{(\lambda-1) \eta^{2} \lambda^{2(n-2)}(\lambda+\gamma)^{2 \sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}} \frac{1}{2}
\end{gathered}
$$

By comparing the coefficient, we have

$$
a_{2}=\frac{\eta \lambda^{n-2}}{(\lambda+1)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+1}\right)^{\sigma} c_{1}
$$

By Lemma 2, we obtained the bound of a_{2}

$$
a_{3}=\frac{\eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}\left[c_{2}-\frac{\eta \lambda^{n-2}(\lambda-1)(\lambda+\gamma)^{\sigma}(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}} \frac{c_{1}^{2}}{2}\right]
$$

By Lemma 3 and with $\rho=\frac{\eta \lambda^{n-2}(\lambda-1)(\lambda+\gamma)^{\sigma}(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}}$, we obtained the bound on the third coefficient of these function. By letting

$$
h(z)=\frac{1+z}{1-z}+i \frac{u}{\eta}
$$

from the integral representation we have the equality attained by the extremal function given.

Theorem 11. Let $f \in B_{\sigma, \gamma}^{n}(\lambda)$. Then

$$
\begin{equation*}
\left|a_{3}-\rho a_{2}^{2}\right| \leq \frac{2 \eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}} \max \left\{1,\left|\mathbf{M}_{2}\right|\right\} \tag{33}
\end{equation*}
$$

where $\mathbf{M}_{\mathbf{2}}=\frac{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}+\eta(1+2 \rho-\lambda) \lambda^{n-2}(\lambda+\gamma)^{\sigma}(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}}$

Proof. From the computation that

$$
\begin{aligned}
f(z)^{\lambda}=z^{\lambda}+\frac{\eta \lambda^{n-1}}{(\lambda+1)^{n}} & \left(\frac{\lambda+\gamma}{\lambda+\gamma+1}\right)^{\sigma} c_{1} z^{\lambda+1}+\frac{\eta \lambda^{n-1}}{(\lambda+2)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+2}\right)^{\sigma} c_{2} z^{\lambda+2} \\
& +\frac{\eta \lambda^{n-1}}{(\lambda+3)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+3}\right)^{\sigma} c_{3} z^{\lambda+3}+\cdots
\end{aligned}
$$

and by comparing coefficient, then

$$
\begin{equation*}
a_{2}=\frac{\eta \lambda^{n-2}}{(\lambda+1)^{n}}\left(\frac{\lambda+\gamma}{\lambda+\gamma+1}\right)^{\sigma} c_{1} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{\eta \lambda^{n-2}(\lambda+\gamma)^{\sigma} c_{2}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}}+\frac{(1-\lambda) \eta^{2} \lambda^{2(n-2)}(\lambda+\gamma)^{2 \sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{2 \sigma}} \frac{c_{1}^{2}}{2} \tag{35}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|a_{3}-\rho a_{2}^{2}\right|=\frac{\eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}}{(\lambda+2)^{n}(\lambda+\gamma+2)^{\sigma}} c_{2}-\frac{(\lambda-1+2 \rho)(\lambda+2)^{n} \eta \lambda^{n-2}(\lambda+\gamma)^{\sigma}(\lambda+\gamma+2)^{\sigma}}{(\lambda+1)^{2 n}(\lambda+\gamma+1)^{\sigma \sigma}} \frac{c_{1}^{2}}{2} \tag{36}
\end{equation*}
$$

by lemma 3 we have the required inequality

References

[1] Abdulhalim, S. (1992). On a class of analytic functions involving the Salagean differential operator. Tankang Journal of mathematics. 23(1), 51-58.
[2] Babalola, K. O. (2016), New Insights into Bazilevic Maps, An. Univ. Oradea Fasc. Mat. 23. 5-10.
[3] Babalola, K. O. (2005). Some new results on a certain family of analytic functions Defined by the salagean Derivative. Unpublished Doctoral Thesis University of Ilorin.
[4] Babalola, K. O. (2016),New generalizations of Bazilevic maps, J. Class. Anal. 8 . 163-170.
[5] Babalola, K.O.(2012),Subclasses of Analytic Functions defined by the Inverse of Certain Integral Operator, Analele Universitatis Oradea Fasc. Matematica, Tom XIX, Issue No. 1, 255-264.
[6] Babalola, K. O. (2010), On n-starlike integral operators, Kragujevac Journal of Mathemat- ics, 34, 61-71.
[7] Bazilevič, I. E. (1955). On a class of integrability by quadratures of the equation of Loewner-Kufarev. Mat. Sb. 37, 471-476 (Russian)
[8] Caratheodŏry, C. (1960), Theory of functions of a complex variable. II. Chelsea Publishing Co. New York
[9] Goodman, A. W. (1983); Univalent functions. I. Mariner Publishing Co. Inc. Tampa, Florida.
[10] Lin, L. J. and S. Owa (1998). Properties of the salagean operator. Georgian Mathematics Journal 5(4), 361-366
[11] Opoola, T. O. (1994). On a new subclass of Univalent functions. mathematica (cluj) 36, 59(2),195-200.
[12] Salagean, G. S. (1983). Subclasses of Univalent functions, lecture notes in maths, 1013, 362-372. Springer-verlag, Berlin, New York.
[13] Schober, G. (1975), Univalent functions - Selected Topics. Lecture Notes in Mathematics. 478 Springer-Verlag, Berlin, Heidelberg and New York.

Abdulahi Adebayo Yusuf
Department of Mathematics, Federal University of Agriculture, Abeokuta Ogun State, Nigeria.
email: yusuf.abdulaiłsuccess@gmail.com.
email: yusufaa@funaab.edu.ng

