AN INTEGRODIFFERENTIAL EQUATION WITH FRACTIONAL DERIVATIVES IN THE NONLINEARITIES

ZHENYU GUO AND MIN LIU

ABSTRACT. An integrodifferential equation with fractional derivatives in the nonlinearities is studied in this article, and some sufficient conditions for existence and uniqueness of a solution for the equation are established by contraction mapping principle.

1. INTRODUCTION

This article is concerned with the existence and uniqueness of a solution of the following integrodifferential equation with fractional derivatives in the nonlinearities:

(1)

$$u''(t) = Au(t) + f\left(t, u(t), {}^{c} D^{\alpha_{1}} u(t), \cdots, {}^{c} D^{\alpha_{m}} u(t)\right) + \int_{0}^{t} g\left(t, s, u(s), {}^{c} D^{\beta_{1}} u(s), \cdots, {}^{c} D^{\beta_{n}} u(s)\right) ds, \quad t > 0,$$

$$u(0) = u_{0} \in X, \qquad u'(0) = u_{1} \in X,$$

where A is the infinitesimal generator of a strongly continuous cosine family C(t), $t \ge 0$ of bounded linear operators on a Banach space X with norm $\|\cdot\|$, f and g are nonlinear mappings from $\mathbb{R}^+ \times X^m$ to X and $\mathbb{R}^+ \times \mathbb{R}^+ \times X^n$ to X, respectively, $0 < \alpha_i, \beta_j < 1$ for $i = 1, \dots, m$ and $j = 1, \dots, n$, u_0 and u_1 are given initial data in X.

Recently, fractional order differential equations and systems have been payed much attention, of examples, the monograph of Kilbas et al. [10], and the papers by Anguraj et al. [1], Benchohra et al. [2]–[4], Guo and Liu [5]–[7], Hernandez [8], Hernandez et al. [9] Kirane et al. [11], Tatar [12]–[15] and the references therein.

Applying the Banach contraction principle, we obtain a result of uniqueness of a solution for problem (1). To simplify our task, we will treat the following simpler

Received April 25, 2012.

²⁰¹⁰ Mathematics Subject Classification. Primary 34A12, 34G20, 34K05.

Key words and phrases. Integrodifferential equations; fractional order derivative; fixed point.

problem

(2)
$$u''(t) = Au(t) + f(t, u(t), {}^{c} D^{\alpha} u(t)) + \int_{0}^{t} g(t, s, u(s), {}^{c} D^{\beta} u(s)) ds, \quad t > 0$$
$$u(0) = u_{0} \in X, \qquad u'(0) = u_{1} \in X.$$

The general case can be derived easily.

2. Preliminaries

Let us recall a basic definition in fractional calculus, which can be found in the literature.

Definition 2.1. The Caputo fractional derivative of order $0 < \alpha < 1$ is defined by

(3)
$${}^{c}D^{\alpha}f(x) = \frac{1}{\Gamma(1-\alpha)}\int_{0}^{x} (x-t)^{-\alpha}f'(t)dt,$$

provided the right-hand side is pointwise defined on $(0, +\infty)$.

Now list the following hypotheses for convenience

(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t), $t \in \mathbb{R}$, of bounded linear operators in the Banach space X.

The associated sine family $S(t), t \in \mathbb{R}$ is defined by

(4)
$$S(t)x := \int_0^t C(s)x \mathrm{d}s, \qquad t \in \mathbb{R}, x \in X.$$

For C(t) and S(t), it is known (see [16]) that there exist constants $M \ge 1$ and $\omega \ge 0$ such that

(5)
$$|C(t)| \le M e^{\omega|t|}, \qquad |S(t) - S(t_0)| \le M \Big| \int_{t_0}^t e^{\omega|s|} ds \Big|, \qquad t, t_0 \in \mathbb{R}.$$

Let $X_A = D(A)$ endowed with the graph norm $||x||_A = ||x|| + ||Ax||$.

(H2) $f: \mathbb{R}^+ \times X_A \times X \to X$ is continuously differentiable,

- (H3) $g: \mathbb{R}^+ \times \mathbb{R}^+ \times X_A \times X \to X$ is continuous and continuously differentiable with respect to its first variable,
- (H4) f, f' (the total derivative of f),g and g_1 (the partial derivative of g with respect to its first variable) are Lipschitz continuous with respect to the last two variables, that is

(6)
$$\begin{aligned} \|f(t,x_1,y_1) - f(t,x_2,y_2)\| &\leq L_f(\|x_1 - x_2\|_A + \|y_1 - y_2\|),\\ \|f'(t,x_1,y_1) - f'(t,x_2,y_2)\| &\leq L_{f'}(\|x_1 - x_2\|_A + \|y_1 - y_2\|),\\ \|g(t,s,x_1,y_1) - g(t,s,x_2,y_2)\| &\leq L_g(\|x_1 - x_2\|_A + \|y_1 - y_2\|),\\ \|g_1(t,s,x_1,y_1) - g_1(t,s,x_2,y_2)\| &\leq L_{g_1}(\|x_1 - x_2\|_A + \|y_1 - y_2\|).\end{aligned}$$

for some positive constants L_f , $L_{f'}$, L_g and L_{g_1} .

106

Lemma 2.2 ([16]). Assume that (H1) is satisfied. Then

- (i) $S(t)X \subset E, t \in \mathbb{R},$ (ii) $S(t)E \subset X_A, t \in \mathbb{R},$
- (iii) $(d/dt)C(t)x = AS(t)x, x \in E, t \in \mathbb{R},$
- (iv) $(d^2/dt^2)C(t)x = AC(t)x = C(t)Ax$, $x \in X_A$, $t \in \mathbb{R}$, where

(7) $E := \{x \in X : C(t)x \text{ is once continuously differentiable on } \mathbb{R}\}.$

Lemma 2.3 ([16]). Assume that (H1) holds, $v \colon \mathbb{R} \to X$ is a continuously differentiable function and $q(t) = \int_0^t S(t-s)v(s)ds$. Then, $q(t) \in X_A$, $q'(t) = \int_0^t C(t-s)v(s)ds$ and $q''(t) = \int_0^t C(t-s)v'(s)ds + C(t)v(0) = Aq(t) + v(t)$.

Definition 2.4. A function $u(\cdot) \in C^2(I, X)$ is called a classical solution of problem (2) if $u(t) \in X_A$ satisfies the equation in (2) and the initial conditions are verified.

Definition 2.5. A continuously differentiable solution of the integrodifferential equation

(8)
$$u(t) = C(t)u_0 + S(t)u_1 + \int_0^t S(t-s)f(s,u(s),{}^c D^{\alpha}u(s)) ds + \int_0^t S(t-s) \int_0^s g(s,\tau,u(\tau),{}^c D^{\beta}u(\tau)) d\tau ds$$

is called a mild solution of problem (2).

3. Main results

In this section, the theorem of existence and uniqueness of a solution for equation (2) will be given.

Theorem 3.1. Assume that (H1)–(H4) hold. If $u_0 \in X_A$, $u_1 \in E$ and $L_f < 1$, then there exist T > 0 and a unique function $u: (0,T) \to X$, $u \in C((0,T), X_A) \cap C^2((0,T), X)$ which satisfies (2).

Proof. For $t \in (0, T)$, define a mapping

(9)

$$(Ku)(t) := C(t)u_0 + S(t)u_1 + \int_0^t S(t-s)f(s, u(s), {}^c D^{\alpha}u(s)) ds + \int_0^t S(t-s) \int_0^s g(s, \tau, u(\tau), {}^c D^{\beta}u(\tau)) d\tau ds.$$

It follows from $u_0 \in X_A$ and $AC(t)u_0 = C(t)Au_0$ that $C(t)u_0 \in X_A$. Clearly, $S(t)u_1 \in X_A$ because $u_1 \in E$ and $S(t)E \subset X_A$ (see (ii) of Lemma 2.2). Moreover, by Lemma 2.3, (H2) and (H3), we know that both integral terms in (9) are in X_A . Therefore, $Ku \in C((0,T), X_A)$. By Lemma 2.3, we have

$$(AKu)(t) = C(t)Au_{0} + AS(t)u_{1} + \int_{0}^{t} C(t-s)f'(s, u(s), {}^{c}D^{\alpha}u(s))ds + C(t)f(0, u_{0}, {}^{c}D^{\alpha}u_{0}) - f(t, u(t), {}^{c}D^{\alpha}u(t)) + \int_{0}^{t} C(t-s) \Big[\int_{0}^{s} g_{1}(s, \tau, u(\tau), {}^{c}D^{\beta}u(\tau)) d\tau + g(s, s, u(s), {}^{c}D^{\beta}u(s)) \Big] ds - \int_{0}^{t} g(t, \tau, u(\tau), {}^{c}D^{\beta}u(\tau)) d\tau, \qquad t \in (0, T).$$

Differentiating (9), we get

$$(Ku)'(t) = AS(t)u_0 + C(t)u_1 + \int_0^t C(t-s)f(s,u(s),^c D^{\alpha}u(s))ds$$

(11)
$$+ \int_0^t C(t-s)\int_0^s g(s,\tau,u(\tau),^c D^{\beta}u(\tau))d\tau ds, \quad t \in (0,T).$$

Hence, $Ku \in C^1((0,T), X)$ and K maps C^1 into C^1 . It is claimed that K is a contraction on C^1 endowed with the metric

(12)
$$\rho(u,v) := \sup_{0 \le t \le T} \left(\|u(t) - v(t)\| + \|A(u(t) - v(t))\| + \|u'(t) - v'(t)\| \right).$$

For $u, v \in C^1$, it can be derived that

$$\begin{split} \| (Ku)(t) - (Kv)(t) \| \\ &\leq \int_0^t |S(t-s)| \Big[L_f \big(\| u(s) - v(s) \|_A + \|^c D^\alpha u(s) - {}^c D^\alpha v(s) \| \big) \\ &+ \int_0^s L_g \big(\| u(\tau) - v(\tau) \|_A + \|^c D^\beta u(\tau) - {}^c D^\beta v(\tau) \| \big) \mathrm{d}\tau \Big] \mathrm{d}s \\ &\leq \int_0^t M \int_0^{t-s} \mathrm{e}^{\omega \tau} \, \mathrm{d}\tau \Big[L_f \big(\| u(s) - v(s) \|_A \\ &+ \frac{1}{\Gamma(1-\alpha)} \int_0^s (s-\tau)^{-\alpha} \| u'(\tau) - v'(\tau) \| \mathrm{d}\tau \big) \\ &+ \int_0^s L_g \big(\| u(\tau) - v(\tau) \|_A \\ &+ \frac{1}{\Gamma(1-\beta)} \int_0^\tau (\tau-\sigma)^{-\beta} \| u'(\sigma) - v'(\sigma) \| \mathrm{d}\sigma \big) \mathrm{d}\tau \Big] \mathrm{d}s \end{split}$$

108

$$\leq M \int_{0}^{T} e^{\omega \tau} d\tau \int_{0}^{t} \left[L_{f} \left(\|u(s) - v(s)\|_{A} + \frac{s^{1-\alpha}}{\Gamma(2-\alpha)} \sup_{0 \leq t \leq T} \|u'(t) - v'(t)\| \right) + \int_{0}^{s} L_{g} \left(\|u(\tau) - v(\tau)\|_{A} + \frac{\tau^{1-\beta}}{\Gamma(2-\beta)} \sup_{0 \leq t \leq T} \|u'(t) - v'(t)\| \right) d\tau \right] ds$$

$$\leq M \int_{0}^{T} e^{\omega \tau} d\tau \int_{0}^{t} \left[L_{f} \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)} \right\} \rho(u, v) + L_{g} \max \left\{ 1, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} \rho(u, v)s \right] ds$$

$$\leq M \int_{0}^{T} e^{\omega \tau} d\tau \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)}, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} (L_{f} + L_{g}T/2) T \rho(u, v),$$

$$\begin{split} \|(AKu)(t) - (AKv)(t)\| \\ &\leq \int_{0}^{t} M e^{\omega(t-s)} L_{f'} (\|u(s) - v(s)\|_{A} + \|^{c} D^{\alpha} u(s) - {}^{c} D^{\alpha} v(s)\|) ds \\ &+ L_{f} (\|u(t) - v(t)\|_{A} + \|^{c} D^{\alpha} u(t) - {}^{c} D^{\alpha} v(t)\|) \\ &+ \int_{0}^{t} M e^{\omega(t-s)} \left[\int_{0}^{s} L_{g_{1}} (\|u(\tau) - v(\tau)\|_{A} + \|^{c} D^{\beta} u(\tau) - {}^{c} D^{\beta} v(\tau)\|) d\tau \\ &+ L_{g} (\|u(s) - v(s)\|_{A} + \|^{c} D^{\beta} u(s) - {}^{c} D^{\beta} v(s)\|) \right] ds \\ &+ \int_{0}^{t} L_{g} (\|u(\tau) - v(\tau)\|_{A} + \|^{c} D^{\beta} u(\tau) - {}^{c} D^{\beta} v(\tau)\|) d\tau \\ (14) &\leq \int_{0}^{T} M e^{\omega(T-s)} ds L_{f'} \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)} \right\} \rho(u, v) \\ &+ L_{f} \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)} \right\} \rho(u, v) \\ &+ \int_{0}^{T} M e^{\omega(T-s)} ds \left[L_{g_{1}} \max \left\{ 1, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} T \\ &+ L_{g} \max \left\{ 1, \frac{T^{1-\beta}}{\Gamma(2-\alpha)} \right\} \right] \rho(u, v) + L_{g} \max \left\{ 1, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} T \rho(u, v) \\ &\leq \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)}, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} \\ &\cdot \left[\int_{0}^{T} M e^{\omega(T-s)} ds \left(L_{f'} + L_{g_{1}}T + L_{g} \right) + L_{g}T + L_{f} \right] \rho(u, v), \end{split}$$

and

$$\|(Ku)'(t) - (Kv)'(t)\| \leq \int_0^t M e^{\omega(t-s)} \left[L_f (\|u(s) - v(s)\|_A + \|^c D^\alpha u(s) - {}^c D^\alpha v(s)\|) ds \right] ds$$
(15)

$$+ \int_0^s L_g (\|u(\tau) - v(\tau)\|_A + \|^c D^\beta u(\tau) - {}^c D^\beta v(\tau)\|) d\tau ds$$

$$\leq \int_0^T M e^{\omega(T-s)} ds \max \left\{ 1, \frac{T^{1-\alpha}}{\Gamma(2-\alpha)}, \frac{T^{1-\beta}}{\Gamma(2-\beta)} \right\} (L_f + L_g T) \rho(u, v),$$

The above three relations (13)–(15) and condition $L_f < 1$ guarantee that for sufficiently small T, K is a contraction on C^1 . Therefore, there exists a unique mild solution $u \in C^1$. Clearly, $u \in C^2((0,T), X)$ and satisfies the problem (2). This completes the proof.

Acknowledgment. The authors would like to thank the anonymous referee for his/her comments that helped them improve this article.

References

- Anguraj A., Karthikeyan P. and Trujillo J. J., Existence of Solutions to Fractional Mixed Integrodifferential Equations with Nonlocal Initial Condition, Advances in Difference Equations, (2011), Article ID 690653, 12 pages.
- Benchohra M., Henderson J., Ntouyas S. K. and. Ouahab A, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), 1340–1350.
- Benchohra M. and Ntouyas S. K., Existence of mild solutions of second order initial value problems for delay integrodifferential inclusions with nonlocal conditions, Mathematica Bohemica 4(127) (2002), 613–622.
- _____, Existence results for the semi-infinite interval for first and second order integrodifferential equations in Banach spaces with nonlocal conditions, Acta Univ. Palacki. Olomuc, Fac. Rer. Nat. Mathematica 41 (2002), 13–19.
- Guo Z. and Liu M., Existence and uniqueness of solutions for fractional order integrodifferential equations with nonlocal initial conditions, Pan-American Math. J. 21(3) (2011), 51-61.
- Unique solutions for systems of fractional order differential equations with infinite delay, Bull. Math. Anal. Appl. 3(1)(2011), 142–147.
- _____, On solutions of a system of higher-order nonlinear fractional differential equations, Bull. Math. Anal. Appl. 3(4)(2011), 59–68.
- 8. Hernandez M. E., Existence of solutions to a second order partial differential equation with nonlocal conditions, Electr. J. Diff. Eqs. 51 (2003), 1–10.
- Hernandez M. E., Henríquez H. R. and McKibben M. A., Existence of solutions for second order partial neutral functional differential equations, Integr. Equ. Oper. Theory 62 (2008), 191–217.
- Kilbas A. A., Srivastava H. M. and Trujillo J. J., Theory and Applications of Fractional Differential Equations, Amsterdam, The Netherlands, 2006.
- Kirane M., Medved M. and Tatar N., Semilinear Volterra integrodifferential problems with fractional derivatives in the nonlinearities, Abstract and Applied Analysis, (2011) Article ID 510314, 11 pages.
- Tatar N.-e., Well-posedness for an abstract semilinear Volterra integrofractional-differential problem, Comm. Appl. Anal. 14 (2010), 491–505.

110

AN INTEGRODIFFERENTIAL EQUATION

- 13. _____, The existence of mild and classical solutions for a second-order abstract fractional problem, Nonl. Anal. T.M.A. 73 (2010), 3130–3139.
- 14. _____, Existence results for an evolution problem with fractional nonlocal conditions, Computers and Mathematics with Applications **60** (2010), 2971–2982.
- **15.** _____, Mild solutions for a problem involving fractional derivatives in the nonlinearity and in the nonlocal conditions, Adv. Diff. Eqs. **18** (2011), 1–12.
- Travis C. and Webb G., Cosine families and abstract nonlinear second order differential equations, Acta Mathematica Academiae Scientiarum Hungaricae 32(1-2) (1978) 76–96.

Zhenyu Guo, School of Sciences, Liaoning Shihua University Fushun, Liaoning 113001, China, *e-mail*: guozy@163.com

Min Liu, School of Sciences, Liaoning Shihua University Fushun, Liaoning 113001, China, *e-mail*: min_liu@yeah.net