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AN INTEGRODIFFERENTIAL EQUATION WITH FRACTIONAL
DERIVATIVES IN THE NONLINEARITIES

ZHENYU GUO and MIN LIU

Abstract. An integrodifferential equation with fractional derivatives in the non-

linearities is studied in this article, and some sufficient conditions for existence and
uniqueness of a solution for the equation are established by contraction mapping

principle.

1. Introduction

This article is concerned with the existence and uniqueness of a solution of the
following integrodifferential equation with fractional derivatives in the nonlineari-
ties:

u′′(t) = Au(t) + f
(
t, u(t),cDα1u(t), · · · ,cDαmu(t)

)
+
∫ t

0

g
(
t, s, u(s),cDβ1u(s), · · · ,cDβnu(s)

)
ds, t > 0,

u(0) = u0 ∈ X, u′(0) = u1 ∈ X,

(1)

where A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ≥ 0 of bounded linear operators on a Banach space X with norm ‖ · ‖, f and g
are nonlinear mappings from R+×Xm to X and R+×R+×Xn to X, respectively,
0 < αi, βj < 1 for i = 1, · · · ,m and j = 1, · · · , n, u0 and u1 are given initial data
in X.

Recently, fractional order differential equations and systems have been payed
much attention, of examples, the monograph of Kilbas et al. [10], and the papers
by Anguraj et al. [1], Benchohra et al. [2]–[4], Guo and Liu [5]–[7], Hernandez
[8], Hernandez et al. [9] Kirane et al. [11], Tatar [12]–[15] and the references
therein.

Applying the Banach contraction principle, we obtain a result of uniqueness of
a solution for problem (1). To simplify our task, we will treat the following simpler
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problem

u′′(t) = Au(t) + f
(
t, u(t),cDαu(t)

)
+
∫ t

0

g
(
t, s, u(s),cDβu(s)

)
ds, t > 0,

u(0) = u0 ∈ X, u′(0) = u1 ∈ X.

(2)

The general case can be derived easily.

2. Preliminaries

Let us recall a basic definition in fractional calculus, which can be found in the
literature.

Definition 2.1. The Caputo fractional derivative of order 0 < α < 1 is defined
by

cDαf(x) =
1

Γ(1− α)

∫ x

0

(x− t)−αf ′(t)dt,(3)

provided the right-hand side is pointwise defined on (0,+∞).

Now list the following hypotheses for convenience
(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t),

t ∈ R, of bounded linear operators in the Banach space X.
The associated sine family S(t), t ∈ R is defined by

S(t)x :=
∫ t

0

C(s)xds, t ∈ R, x ∈ X.(4)

For C(t) and S(t), it is known (see [16]) that there exist constants M ≥ 1
and ω ≥ 0 such that

|C(t)| ≤M eω|t|, |S(t)− S(t0)| ≤M
∣∣∣ ∫ t

t0

eω|s| ds
∣∣∣, t, t0 ∈ R.(5)

Let XA = D(A) endowed with the graph norm ‖x‖A = ‖x‖+ ‖Ax‖.
(H2) f : R+ ×XA ×X → X is continuously differentiable,
(H3) g : R+ × R+ ×XA ×X → X is continuous and continuously differentiable

with respect to its first variable,
(H4) f , f ′ (the total derivative of f),g and g1 (the partial derivative of g with

respect to its first variable) are Lipschitz continuous with respect to the
last two variables, that is

‖f(t, x1, y1)− f(t, x2, y2)‖ ≤ Lf
(
‖x1 − x2‖A + ‖y1 − y2‖

)
,

‖f ′(t, x1, y1)− f ′(t, x2, y2)‖ ≤ Lf ′
(
‖x1 − x2‖A + ‖y1 − y2‖

)
,

‖g(t, s, x1, y1)− g(t, s, x2, y2)‖ ≤ Lg
(
‖x1 − x2‖A + ‖y1 − y2‖

)
,

‖g1(t, s, x1, y1)− g1(t, s, x2, y2)‖ ≤ Lg1
(
‖x1 − x2‖A + ‖y1 − y2‖

)(6)

for some positive constants Lf , Lf ′ ,Lg and Lg1 .
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Lemma 2.2 ([16]). Assume that (H1) is satisfied. Then

(i) S(t)X ⊂ E, t ∈ R,
(ii) S(t)E ⊂ XA, t ∈ R,
(iii) (d/dt)C(t)x = AS(t)x, x ∈ E, t ∈ R,
(iv) (d2/dt2)C(t)x = AC(t)x = C(t)Ax, x ∈ XA, t ∈ R, where

E := {x ∈ X : C(t)x is once continuously differentiable on R}.(7)

Lemma 2.3 ([16]). Assume that (H1) holds, v : R → X is a continuously
differentiable function and q(t) =

∫ t
0
S(t − s)v(s)ds. Then, q(t) ∈ XA, q′(t) =∫ t

0
C(t− s)v(s)ds and q′′(t) =

∫ t
0
C(t− s)v′(s)ds+ C(t)v(0) = Aq(t) + v(t).

Definition 2.4. A function u(·) ∈ C2(I,X) is called a classical solution of
problem (2) if u(t) ∈ XA satisfies the equation in (2) and the initial conditions are
verified.

Definition 2.5. A continuously differentiable solution of the integrodifferential
equation

u(t) = C(t)u0 + S(t)u1 +
∫ t

0

S(t− s)f
(
s, u(s),cDαu(s)

)
ds

+
∫ t

0

S(t− s)
∫ s

0

g
(
s, τ, u(τ),cDβu(τ)

)
dτds

(8)

is called a mild solution of problem (2).

3. Main results

In this section, the theorem of existence and uniqueness of a solution for equation
(2) will be given.

Theorem 3.1. Assume that (H1)–(H4) hold. If u0 ∈ XA, u1 ∈ E and Lf < 1,
then there exist T > 0 and a unique function u : (0, T ) → X,u ∈ C((0, T ), XA) ∩
C2((0, T ), X) which satisfies (2).

Proof. For t ∈ (0, T ), define a mapping

(Ku)(t) := C(t)u0 + S(t)u1 +
∫ t

0

S(t− s)f
(
s, u(s),cDαu(s)

)
ds

+
∫ t

0

S(t− s)
∫ s

0

g
(
s, τ, u(τ),cDβu(τ)

)
dτds.

(9)

It follows from u0 ∈ XA and AC(t)u0 = C(t)Au0 that C(t)u0 ∈ XA. Clearly,
S(t)u1 ∈ XA because u1 ∈ E and S(t)E ⊂ XA (see (ii) of Lemma 2.2). Moreover,
by Lemma 2.3, (H2) and (H3), we know that both integral terms in (9) are in XA.
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Therefore, Ku ∈ C((0, T ), XA). By Lemma 2.3, we have

(AKu)(t) = C(t)Au0 +AS(t)u1 +
∫ t

0

C(t− s)f ′
(
s, u(s),cDαu(s)

)
ds

+ C(t)f(0, u0,
cDαu0)− f

(
t, u(t),cDαu(t)

)
+
∫ t

0

C(t− s)
[ ∫ s

0

g1

(
s, τ, u(τ),cDβu(τ)

)
dτ

+ g
(
s, s, u(s),cDβu(s)

)]
ds

−
∫ t

0

g
(
t, τ, u(τ),cDβu(τ)

)
dτ, t ∈ (0, T ).

(10)

Differentiating (9), we get

(Ku)′(t) = AS(t)u0 + C(t)u1 +
∫ t

0

C(t− s)f
(
s, u(s),cDαu(s)

)
ds

+
∫ t

0

C(t− s)
∫ s

0

g
(
s, τ, u(τ),cDβu(τ)

)
dτds, t ∈ (0, T ).(11)

Hence, Ku ∈ C1((0, T ), X) and K maps C1 into C1.
It is claimed that K is a contraction on C1 endowed with the metric

ρ(u, v) := sup
0≤t≤T

(
‖u(t)− v(t)‖+ ‖A(u(t)− v(t))‖+ ‖u′(t)− v′(t)‖

)
.(12)

For u, v ∈ C1, it can be derived that

‖(Ku)(t)− (Kv)(t)‖

≤
∫ t

0

|S(t− s)|
[
Lf
(
‖u(s)− v(s)‖A + ‖cDαu(s)−c Dαv(s)‖

)
+
∫ s

0

Lg
(
‖u(τ)− v(τ)‖A + ‖cDβu(τ)−c Dβv(τ)‖

)
dτ
]
ds

≤
∫ t

0

M

∫ t−s

0

eωτ dτ
[
Lf
(
‖u(s)− v(s)‖A

+
1

Γ(1− α)

∫ s

0

(s− τ)−α‖u′(τ)− v′(τ)‖dτ
)

+
∫ s

0

Lg
(
‖u(τ)− v(τ)‖A

+
1

Γ(1− β)

∫ τ

0

(τ − σ)−β‖u′(σ)− v′(σ)‖dσ
)
dτ
]
ds
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≤ M

∫ T

0

eωτ dτ
∫ t

0

[
Lf
(
‖u(s)− v(s)‖A

+
s1−α

Γ(2− α)
sup

0≤t≤T
‖u′(t)− v′(t)‖

)
+
∫ s

0

Lg
(
‖u(τ)− v(τ)‖A +

τ1−β

Γ(2− β)
sup

0≤t≤T
‖u′(t)− v′(t)‖

)
dτ

]
ds

≤ M

∫ T

0

eωτ dτ
∫ t

0

[
Lf max

{
1,

T 1−α

Γ(2− α)

}
ρ(u, v)

+ Lg max
{

1,
T 1−β

Γ(2− β)

}
ρ(u, v)s

]
ds

≤ M

∫ T

0

eωτ dτ max
{

1,
T 1−α

Γ(2− α)
,
T 1−β

Γ(2− β)

}
(Lf + LgT/2)Tρ(u, v),

(13)

‖(AKu)(t)− (AKv)(t)‖

≤
∫ t

0

M eω(t−s) Lf ′
(
‖u(s)− v(s)‖A + ‖cDαu(s)−c Dαv(s)‖

)
ds

+ Lf
(
‖u(t)− v(t)‖A + ‖cDαu(t)−c Dαv(t)‖

)
+
∫ t

0

M eω(t−s)
[ ∫ s

0

Lg1
(
‖u(τ)−v(τ)‖A+‖cDβu(τ)−cDβv(τ)‖

)
dτ

+ Lg
(
‖u(s)− v(s)‖A + ‖cDβu(s)−c Dβv(s)‖

)]
ds

+
∫ t

0

Lg
(
‖u(τ)− v(τ)‖A + ‖cDβu(τ)−c Dβv(τ)‖

)
dτ

≤
∫ T

0

M eω(T−s) dsLf ′ max
{

1,
T 1−α

Γ(2− α)

}
ρ(u, v)

+ Lf max
{

1,
T 1−α

Γ(2− α)

}
ρ(u, v)

+
∫ T

0

M eω(T−s) ds

[
Lg1 max

{
1,

T 1−β

Γ(2− β)

}
T

+ Lg max
{

1,
T 1−β

Γ(2− β)

}]
ρ(u, v) + Lg max

{
1,

T 1−β

Γ(2− β)

}
Tρ(u, v)

≤ max
{

1,
T 1−α

Γ(2− α)
,
T 1−β

Γ(2− β)

}
·
[ ∫ T

0

M eω(T−s) ds
(
Lf ′ + Lg1T + Lg

)
+ LgT + Lf

]
ρ(u, v),

(14)
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and
‖(Ku)′(t)− (Kv)′(t)‖

≤
∫ t

0

M eω(t−s)
[
Lf
(
‖u(s)− v(s)‖A + ‖cDαu(s)−c Dαv(s)‖

)
ds

+
∫ s

0

Lg
(
‖u(τ)− v(τ)‖A + ‖cDβu(τ)−c Dβv(τ)‖

)
dτ
]
ds

≤
∫ T

0

M eω(T−s) dsmax
{

1,
T 1−α

Γ(2− α)
,
T 1−β

Γ(2− β)

}(
Lf + LgT

)
ρ(u, v),

(15)

The above three relations (13)–(15) and condition Lf < 1 guarantee that for
sufficiently small T , K is a contraction on C1. Therefore, there exists a unique
mild solution u ∈ C1. Clearly, u ∈ C2((0, T ), X) and satisfies the problem (2).
This completes the proof. �

Acknowledgment. The authors would like to thank the anonymous referee
for his/her comments that helped them improve this article.

References

1. Anguraj A., Karthikeyan P. and Trujillo J. J., Existence of Solutions to Fractional Mixed

Integrodifferential Equations with Nonlocal Initial Condition, Advances in Difference Equa-

tions, (2011), Article ID 690653, 12 pages.
2. Benchohra M., Henderson J., Ntouyas S. K. and. Ouahab A, Existence results for fractional

order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008),

1340–1350.
3. Benchohra M. and Ntouyas S. K., Existence of mild solutions of second order initial value

problems for delay integrodifferential inclusions with nonlocal conditions, Mathematica Bo-

hemica 4(127) (2002), 613–622.
4. , Existence results for the semi-infinite interval for first and second order integrodif-

ferential equations in Banach spaces with nonlocal conditions, Acta Univ. Palacki. Olomuc,

Fac. Rer. Nat. Mathematica 41 (2002), 13–19.
5. Guo Z. and Liu M., Existence and uniqueness of solutions for fractional order integrodif-

ferential equations with nonlocal initial conditions, Pan-American Math. J. 21(3) (2011),
51–61.

6. , Unique solutions for systems of fractional order differential equations with infinite

delay, Bull. Math. Anal. Appl. 3(1)(2011), 142–147.
7. , On solutions of a system of higher-order nonlinear fractional differential equations,

Bull. Math. Anal. Appl. 3(4)(2011), 59–68.

8. Hernandez M. E., Existence of solutions to a second order partial differential equation with
nonlocal conditions, Electr. J. Diff. Eqs. 51 (2003), 1–10.
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