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SOLVABILITY OF A NONLINEAR BOUNDARY
VALUE PROBLEM

S. PERES

Abstract. We study the existence and multiplicity of positive solutions of a nonlin-

ear second order ordinary differential equation with symmetric nonlinear boundary
conditions where both of the nonlinearities are of power type.

1. Introduction

We deal with the existence and number of positive solutions of the following class
of boundary value problems:

(1)

{
u′′(x) = aup(x), x ∈ (−l, l),
u′(±l) = ±uq(±l)

where p, q ∈ R a a, l > 0 are parameters.
Our principal reference is [5] where M. Chipot, M. Fila and P. Quittner studied

also the N -dimensional version of (1):
∆u(x) = aup(x), x ∈ Ω,
∂u

∂n
(x) = uq(x), x ∈ ∂Ω

where Ω ⊂ RN is a bounded domain, n is the unit outer normal vector to ∂Ω,
N ∈ N. First of all, they were interested in global existence and boundedness or
blow-up of positive solutions of the corresponding parabolic problem

(2)


ut = ∆u− aup in Ω× (0,∞),
∂u

∂n
= uq in ∂Ω× (0,∞),

u(·, 0) = u0 in Ω

where u0 : Ω → [0,∞) but they restricted their investigation to p, q > 1. The
same problem was independently studied in [12] for N = 1.
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The results from [5] have been generalised in many directions. In [14], the
behaviour of positive solutions of (2) was examined for all p, q > 1 while sign
changing solutions were considered in [6] for p, q > 1—in that case, up and uq

are replaced by |u|p−1u and |u|q−1u, respectively. Positive solutions of the elliptic
problem with −λu+ up on the right-hand side of the equation were dealt with in
[13] for λ ∈ R, p, q > 1 and later in [10] for λ ∈ R, p, q > 0, (p, q) /∈ (0, 1)2. In
[11] and [15], positive and sign changing solutions of the parabolic problem with
more general nonlinearities f(u), g(u) instead of aup, uq have been studied while
f(x, u), g(x, u) were considered in [2]. Further extensions of results from [5] can
be found in [1, 3, 4, 7, 8, 9]. Finally we mention [16], which was devoted to
elliptic problems with nonlinear boundary conditions.

In this paper, we focus only on (1) and we extend the results known for p, q > 1
to a larger set of parameters, namely to p > −1, q ≥ 0 and p = −1, q = 0. The
main results are included in Theorems 2.6 (a nonexistence result), 4.1 (p = −1,
q = 0), 5.4 (p > −1, q = 0), 6.6 (p > −1, 0 < q < p+1

2 ), 7.1 (p > −1, q = p+1
2 )

and 8.9 (p > −1, q > p+1
2 ). However, in case of p > −1, q > p+1

2 only symmetric
solutions are concerned and some small questions are left open (see the text above
Theorem 8.9). Our aim is to answer these questions in the future as well as to
examine the number of nonsymmetric solutions for p > −1, q > p+1

2 and the
solvability of (1) for the values of p and q not considered in this paper.

We use the method included in Section 3 (dealing with the case N = 1) of [5]:
After considering an appropriate initial value problem, we introduce a function
L or functions L1 and L2, the so-called time maps, the graphs of which directly
determine the number of solutions of (1), so we will need only the tools of real
analysis. On the other hand, it is not so easy to examine the properties of L, L1

and L2 because they are given by a formula that contains an improper integral,
with an upper limit, which is given only implicitly.

2. The initial value problem and the time maps

If u is a positive solution of (1), then u′(−l) < 0 < u′(l), therefore u has a
stationary point x0 ∈ (−l, l). So the function u(·+ x0) solves

(3)


u′′ = aup,

u(0) = m,

u′(0) = 0

for some m > 0. In the following theorem we summarise the facts known about
the solvability of this problem. The proof for p, q > 1 can be found in [5], for other
p, q it is done analogously.

Theorem 2.1 (for p, q > 1 see [5, pp. 53–54]). Suppose m, a > 0, p ∈ R. Then
(3) has a unique maximal solution. We will denote it by um,p,a and its domain by
(−Λm,p,a,Λm,p,a). Function um,p,a is even, strictly convex, unbounded from above
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and fulfils

(4) |x| = m
1−p
2

√
2a

Ip

(
um,p,a(x)

m

)
, x ∈ (−Λm,p,a,Λm,p,a)

where Ip : [1,∞)→ [0,∞) is given as

Ip(y) =


∫ y

1

√
p+ 1

V p+1 − 1
dV if p 6= −1,∫ y

1

dV√
lnV

if p = −1

and

(5) Λm,p,a =
m

1−p
2

√
2a

lim
y→∞

Ip(y)
{
<∞ if p > 1,
=∞ if p ≤ 1.

Finally, for x ∈ (−Λm,p,a,Λm,p,a) we have:

(6) |u′m,p,a(x)| =


√

2a
p+ 1

(
up+1
m,p,a(x)−mp+1

)
if p 6= −1,√

2a
(

lnum,p,a(x)− lnm
)

if p = −1.

Definition 2.2. For given p, q ∈ R, a, l > 0 denote the set of all positive
symmetric (i. e. even) and positive nonsymmetric solutions of (1) by S(l) =
S(l; p, q, a) and N (l) = N (l; p, q, a), respectively.

Remark 2.3 ([5, pp. 53–54]). Assume p, q ∈ R, a, l > 0. Obviously, S(l)
consists of all such functions um,p,a|[−l,l] that 0 < l < Λm,p,a and u′m,p,a(l) =
uqm,p,a(l). On the other hand, if l1 6= l2 are such numbers that 0 < li < Λm,p,a,
u′m,p,a(li) = uqm,p,a(li) for i = 1, 2 and l1+l2 = 2l, then um,p,a(·−(l1−l2)/2)|[−l,l] ∈
N (l).

Lemma 2.4 (for p, q > 1 see [5, pp. 54–55]). Let p, q ∈ R, a > 0. Then the
following statements are equivalent for arbitrary m, l > 0:

(i) l < Λm,p,a and u′m,p,a(l) = uqm,p,a(l),

(ii) the equation

(7) 0 = F(m,x) := Fp,q,a(m,x) :=


x2q

2a
− xp+1

p+ 1
+
mp+1

p+ 1
if p 6= −1,

x2q

2a
− lnx+ lnm if p = −1

with the unknown x > 0 has some solution R > m and

l =
m

1−p
2

√
2a

Ip

(
R

m

)
.

Proof. In order to derive (ii) from (i), it suffices to use (6), denote um,p,a(l) =:
R > m and realise (4) for x = l. The reversed implication is proved essentially in
the same way. �
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Function F(m, ·) has obviously different behaviour for p > −1, p = −1 and
p < −1 as well as for q > 0, q = 0 and q < 0. It also matters which of the
exponents 2q, p + 1 is greater. So we have to distinguish thirteen cases shown in
Figure 1.

Figure 1. Cases I to XIII.

Lemma 2.5 (for p, q > 1 see [5, proofs of Lemma 3.1 and 3.2 with pp. 57–58]).
Let p, q ∈ R, a,m > 0. Function F(m, ·) has at most two zeros and both lie
in (m,∞). We denote them Rp,q,a(m) =: R(m) if there is only one zero and
R1;p,q,a(m) =: R1(m) and R2;p,q,a(m) =: R2(m) if there are two while R1(m) <
R2(m).

Let us also introduce

M := Mp,q,a :=



(
2q − p− 1

2q

) 1
p+1
(
a

q

) 1
2q−p−1 if p 6= −1, q > 0, q > p+1

2
(V, VII),(

a

eq

) 1
2q

if p = −1, q > 0 (VI),(
−p+ 1

2a

) 1
p+1

if p < −1, q = 0 (VIII).

The following holds for the number of zeros:

(i) If q < 0 or q < p+1
2 or p = −1, q = 0 (cases I–III, IX–XIII), then F(m, ·)

has exactly one zero for arbitrary m > 0. Moreover, for p > −1, 0 < q <
p+1
2 (case III) we have

(8) R(m) >
(
a

q

) 1
2q−p−1

.



SOLVABILITY OF A NONLINEAR BOUNDARY VALUE PROBLEM 73

(ii) If p > −1, q = p+1
2 (case IV), then F(m, ·) has one zero for q < a and

none for q ≥ a.

(iii) If p < −1, q = 0 (case VIII), then F(m, ·) has one zero for m < M and
none for m ≥M .

(iv) If q > 0 and q > p+1
2 (cases V–VII), then F(m, ·) has two zeros for m < M ,

one for m = M and none for m > M . Meanwhile,

(9) R1(m) <
(
a

q

) 1
2q−p−1

︸ ︷︷ ︸
=R(M)

< R2(m).

Moreover,

R(m) =



e
1
2am if p = −1, q = 0 (I),(
mp+1 +

p+ 1
2a

) 1
p+1 if p > −1, q = 0 (II)

or p < −1, q = 0, m < M (VIII),(
a

a− q

) 1
2q

m
if p > −1, q = p+1

2 < a (IV)
or p < −1, q = p+1

2 (X).

Proof. Investigating the behaviour of F(m, ·), we obtain the facts collected in
Table 1. They are sufficient to determine the number of zeros of F(m, ·) in cases
I–IV and VIII–XIII as well as to verify (8).

In cases V–VII, F(m, ·) has exactly one relative minimum, the value of which
can be easily calculated. So there exist two zeros if and only if this minimum is
negative, what happens just for m < M . Further, for m = M there is only one
zero and for m > M there is none. The validity of (9) is apparent.

Now let us prove that each zero of F(m, ·) is greater than m. In cases I–IV
and VIII–XIII it is guaranteed by the simple fact that F(m,m) = m2q/2a > 0 for
p, q ∈ R, a,m > 0. In cases V and VII for m ≤M , we need to consider

m ≤M <

(
a

q

) 1
2q−p−1

too, similarly in case VI.
Finally, equation (7) is linear in lnx and xp+1 in cases I and II, VIII, IV, X

respectively, so explicit solutions can be found. �

Let us notice that the set of parameters p, q > 1, which was investigated in
[5], forms only part of cases III–V and we will see that more complicated and
interesting things happen outside it.

Although there is no difference in the properties of F(m, ·) summarised in Ta-
ble 1 between cases IX, X and XI, it is not clear whether or not different results
hold for (1) in these cases. For this reason we have not merged them into one case.

Now, as a simple consequence of Lemma 2.5, we formulate a nonexistence result
related to (1), and afterwards we introduce the notion of the time map.
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lim
x→0
F(m, x) monotonicity on (0,∞) lim

x→∞
F(m, x)

I. p = −1, q = 0 ∞
decreases

−∞

II. p > −1, q = 0 1
2a

+ mp+1

p+1
> 0

III. p > −1, 0 < q < p+1
2

mp+1

p+1
> 0

increases on`
0, (a/q)1/(2q−p−1)

˜
,

decreases onˆ
(a/q)1/(2q−p−1),∞

´
IV. p > −1, q = p+1

2

decreases if q < a,

is constant if q = a,
increases if q > a

−∞ if q < a,
mp+1

p+1
> 0 if q = a,

∞ if q > a

V. p > −1, q > p+1
2

decreases on`
0, (a/q)1/(2q−p−1)

˜
,

increases onˆ
(a/q)1/(2q−p−1),∞

´ ∞VI. p = −1, q > 0

∞

VII. p < −1, q > 0

VIII. p < −1, q = 0

decreases

1
2a

+ mp+1

p+1

> 0 if m > M ,

= 0 if m = M ,
< 0 if m < M

IX. p < −1, p+1
2

< q < 0

mp+1

p+1
< 0X. p < −1, q = p+1

2

XI. p < −1, q < p+1
2

XII. p = −1, q < 0
−∞

XIII. p > −1, q < 0

Table 1. The properties of F(m, ·).

Theorem 2.6. Let p ∈ R, a > 0.

(i) If q ≤ 0 or q ≤ p+1
2 (cases I–IV and VIII–XIII), then N (l) = ∅ for all

l > 0.

(ii) If p > −1, q = p+1
2 ≥ a (case IV), then S(l) = ∅ for all l > 0.

Definition 2.7. Let p, q ∈ R, a > 0 and

L(m) := Lp,q,a(m) :=
m

1−p
2

√
2a

Ip

(
Rp,q,a(m)

m

)
for all such m that Rp,q,a(m) is defined. We introduce L1;p,q,a(m) =: L1(m) and
L2;p,q,a(m) =: L2(m) analogously. We call functions L, L1 and L2 time maps.

Using Lemmata 2.4 and 2.5, we can reformulate the statement of Remark 2.3
in the following way:
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Lemma 2.8. For all p, q ∈ R, a, l > 0:

S(l) =
{
um,p,a

∣∣
[−l,l] : L(m) = l or L1(m) = l or L2(m) = l

}
,

N (l) =


{
um,p,a

(
· ±L2(m)−L1(m)

2

)∣∣∣
[−l,l]

: L1(m)+L2(m)=2l
} if q > 0

and q > p+1
2

(V–VII),
∅ otherwise.

Thus, to determine the number of positive symmetric solutions of (1) for given
p, q ∈ R, a, l > 0, we need to calculate the limits of functions L, L1, L2 at the
endpoints of their domains, to find the intervals where the functions are monotone
and finally to estimate their possible relative extrema. For nonsymmetric solutions
we execute the same with L1 + L2 if q > 0 a q > p+1

2 (cases V–VII). Therefore,
we now derive formulae for the derivatives of the time map and other functions
we will need in the rest of this article.

Lemma 2.9 (for p, q > 1 see [5, proofs of Theorem 3.1 and Lemma 3.5]).
Assume p, q ∈ R, a > 0. Let R be one of the functions R, R1, R2 and suppose that
its domain is an interval, denote it by I. Let L ∈ {L,L1, L2} be the corresponding
time map. Then R,L ∈ C∞(I) and the following formulae hold for m ∈ I:

R′(m) =
(

m

R(m)

)p 1
1− q

aR2q−p−1(m)
,(10) (

R(m)
m

)′
=

2q − p− 1
2amp+2

R2q(m)R′(m),(11) (
Ip

(
R(m)
m

))′
=

2q − p− 1√
2a

m
p−3
2

Rq−p(m)
1− q

aR2q−p−1(m)
,(12)

L′(m) =
1− p
2m
L(m) +

2q − p− 1
2amp+1

Rq(m)R′(m),(13)

L′′(m) = − p+ 1
2m
L′(m) +

2q − p− 1
2am2p+1

·
(

(q − 1)
q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

(14)

Proof. The C∞-smoothness of R and the formula for its derivative follows from
the implicit function theorem due to Lemma 2.5. If R ∈ {R1, R2} (cases V–VII),
then (9) is used as well. The other formulae can be derived from (10) in such a
way as it is done in [5] for p > 1. �

Now we introduce some further functions, the relation of which to the time
maps will be seen from the subsequent lemma. They will be used in the proofs of
Lemmata 6.5 and 8.6.

Definition 2.10. Let p, q ∈ R, p 6= 1, a > 0 and

K(m) := Kp,q,a(m) :=
2q − p− 1
(p− 1)a

Rq−pp,q,a(m)

1− q
aR

2q−p−1
p,q,a (m)
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for all such m that Rp,q,a(m) is defined. We introduce K1;p,q,a(m) =: K1(m) and
K2;p,q,a(m) =: K2(m) analogously.

Lemma 2.11. Assume p, q ∈ R, p 6= 1, a > 0. Let R be one of functions R, R1,
R2 and suppose that its domain is an interval, denote it by I. Let L ∈ {L,L1, L2}
and K ∈ {K,K1,K2} be the corresponding functions. Then K ∈ C∞(I) and the
following holds for all m ∈ I:

L′(m) = 0 ⇐⇒ L(m) = K(m),

K′(m) =
2q − p− 1

(p− 1)am2p

(
(q − 1)

q

a
R2q−p−1(m) + q − p

)
Rp+q−1(m)(R′(m))3.

Proof. Both of the assertions can be proved using Lemma 2.9. �

Remark 2.12. Let p, q ∈ R, a > 0 and let R, L and I have the same meaning
as in Lemma 2.11. It follows from (10) that R has no stationary point. So it can
be seen from (13) that if p = 1 (the case not dealt with in Lemma 2.11), then
either L′ ≡ 0 (for q = 1) or L has no stationary point (for q 6= 1).

In the subsequent sections we will look for extrema of L, among other things.
So assume now only p 6= 1. If m ∈ I is a stationary point of L, then L′′(m) = 0
(the case when it is more difficult to determine whether there is an extremum) if
and only if

(15) q =
p+ 1

2
or (q − 1)qR2q−p−1(m) = (p− q)a.

Let us notice that it is also a necessary and sufficient condition under thatK′(m)=0
holds. Thus:

(i) If q = p+1
2 or p = q = 0, then K′ ≡ 0.

(ii) If q = 0, p 6= 0,−1 or q = 1, then K has no stationary point.

(iii) If q 6= 0, 1, p+1
2 , then (15) is equivalent to

R2q−p−1(m) =
(p− q)a
(q − 1)q

,

which can hold for at most one m ∈ I due to the strict monotonicity of
R. Therefore, if (p, q) does not belong to cases V–VII, then K = K has
at most one stationary point, which will be denoted by m = mp,q,a (see
Lemma 6.5). On the other hand, if q > 0, p+1

2 (cases V–VII), then R1 and
R2 have disjoint ranges (due to (9)), so at most one of K1 and K2 can
have a stationary point, which will be denoted by m = mp,q,a as well (see
Definition 8.2 and Lemmata 8.3 (ii), 8.6, 8.7).

3. Properties of function Ip

The first lemma introduces the first two terms of the asymptotic expansion of Ip(y)
(see Theorem 2.1) for y → 1. In the next theorem we show explicit formulae of
Ip for special values of p. However, the most important statement of this section
is Lemma 3.4, which gives the asymptotic expansion of Ip(y) for y →∞, p > −1.
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It is essential for investigating the behaviour of the time maps in many cases but
was not needed in [5] for p, q > 1. Afterwards we also derive the corresponding
asymptotic expansion for p = −1.

We will use standard asymptotic notations: If f , g are functions defined in some
punctured neighbourhood of a point a ∈ R ∪ {±∞}, then

f(x) ∼ g(x), x→ a means lim
x→a

f(x)
g(x)

= 1,

f(x) = o(g(x)), x→ a means lim
x→a

f(x)
g(x)

= 0,

f(x) = O(g(x)), x→ a means lim sup
x→a

∣∣∣∣f(x)
g(x)

∣∣∣∣ <∞.
Lemma 3.1. For arbitrary p ∈ R we have

Ip(y) = 2
√
y − 1

(
1− p

12
(y − 1) + o(y − 1)

)
, y → 1.

Proof. Suppose p 6= −1. Then

Ip(y) =
∫ y−1

0

fp(x) dx

where

fp(x) =

√
p+ 1

(1 + x)p+1 − 1
=

1√
x

1√
1 + p

2x+ o(x)
=

1√
x
− p

4
√
x+o(

√
x), x→ 0.

(We used the Maclaurin polynomial of y 7→ (1 + y)α for α = p+ 1 and α = − 1
2 .)

So it suffices to integrate the obtained asymptotic expansion from 0 to y − 1.
The case p = −1 is analogous. �

Definition 3.2. For all s ≥ 0 set

ps := −2s− 1
2s+ 1

.

Thus, {
pn
}∞
n=0

=
(
1,− 1

3 ,−
3
5 ,−

5
7 , . . .

)
,{

pn+ 1
2

}∞
n=0

=
(
0,− 1

2 ,−
2
3 ,−

3
4 , . . .

)
.

The integral Ip can be explicitly calculated for these values.

Theorem 3.3. Let n ∈ N ∪ {0}. Then

(16) Ipn+1/2(y) = 2
√
n+ 1 Ĩn

(
y

1
n+1 − 1

)
, y ≥ 1

where

Ĩn(z) =
√
z

n∑
k=0

1
2k + 1

(
n

k

)
zk, z ≥ 0

and

(17) Ipn
(y) =

√
2(2n+ 1) În

(
y

2
2n+1

)
, y ≥ 1



78 S. PERES

where

În(z) =
(2n− 1)!!

(2n)!!

(
ln
(√
z +
√
z − 1

)
+

√
1− 1

z

n∑
k=1

(2k − 2)!!
(2k − 1)!!

zk

)
, z ≥ 1.

(We set (−1)!! := 1.)

Proof. Using the substitution√
V pn+1/2 − 1 =

√
V

1
n+1 − 1 =: u

and denoting ∫ √z
0

(
u2 + 1

)n du =: Ĩn(z),

we obtain (16). The integral Ĩn(z) can be calculated by the binomial theorem.
By the substitutions

V pn+1 = V
2

2n+1 =:
1

cos2 v
, v ∈

[
0, π2

)
, sin v =: u

we obtain (17) with

În(z) =
∫ √1− 1

z

0

du
(1− u2)n+1

.

Integrating În(z) by parts, we can derive the recurrent relation

În(z) =
2n− 1

2n

(
În−1(z) +

1
2n− 1

√
1− 1

z
zn
)
,

from which the formula in the theorem follows. �

We will also use the following special cases of (17) and (16):

(18)

I1(y) =
√

2 ln
(
y +

√
y2 − 1

)
,

I0(y) = 2
√
y − 1,

I−1/2(y) =
2
√

2
3
√√

y − 1
(√
y + 2

)
.

Lemma 3.4. For k ∈ N ∪ {0} and p ∈ (−1,∞) r {pk} put

bk(p) :=
(2k − 1)!!

(2k)!!
2

(2k + 1)(p− pk)
=

(2k − 1)!!
(2k)!!

1
p−1
2 + k(p+ 1)

and for p > −1 set
Bp :=

∑
k∈N∪{0}
pk 6=p

bk(p) ∈ R.

Then the following holds for y →∞:

(i) If p > 1, then
Ip(y)√
p+ 1

= Bp + o(1).
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(ii) If pn+1 < p < pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n∑
k=0

(−bk(p))︸ ︷︷ ︸
>0

y
1−p
2 −k(p+1)︸ ︷︷ ︸

>0

+Bp + o(1).

(iii) If p = pn for some n ∈ N ∪ {0}, then

Ip(y)√
p+ 1

=
n−1∑
k=0

(−bk(p))︸ ︷︷ ︸
>0

y
1−p
2 −k(p+1)︸ ︷︷ ︸

>0

+
(2n− 1)!!

(2n)!!
ln y +Bp + o(1).

Furthermore, the function p 7→ Bp belongs to C∞ on each of intervals (p0,∞),
(p1, p0), (p2, p1), . . . and decreases on each of them while

lim
p→p0+

Bp =∞, lim
p→∞

Bp = 0

and for all n ∈ N we have:

lim
p→pn+1+

Bp =∞, Bpn+1/2 = 0, lim
p→pn−

Bp = −∞.

Proof. It consists of

1. expressing Ip(y) as the sum of a series (see (19)),

2. proving the finiteness of Bp and verifying statements (i), (ii), (iii)

3. and examining the properties of the function p 7→ Bp.

1. Let p > −1 and y ≥ 1. The substitution V := x−1/(p+1) gives:

Ip(y)√
p+ 1

=
1

p+ 1

∫ 1

1/yp+1

1√
1− x

x−
1
2−

1
p+1 dx.

Using the Maclaurin series of the function x 7→ 1/
√

1− x, we get that

Ip(y)√
p+ 1

=
1
p+1

∫ 1

1/yp+1

( ∞∑
k=0

(2k−1)!!
(2k)!!

xk−
1
2−

1
p+1

)
dx.

Levi’s monotone convergence theorem allows us to exchange the order of
integration and summation, resulting in

(19)
Ip(y)√
p+ 1

=
∞∑
k=0

ak,p(y)

where

ak,p(y) =


bk(p)

(
1− y

1−p
2 −k(p+1)

)
if p 6= pk,

(2k − 1)!!
(2k)!!

ln y if p = pk.
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2. It is obvious that for all k ∈ N∪{0} and p > −1, ak,p is increasing, positive
on (1,∞) and

(20) lim
y→∞

ak,p(y) =

{
bk(p) if p > pk,

∞ if p ≤ pk.

Now let m ∈ N ∪ {0} and p > pm. Stirling’s formula (n! ∼
√

2πn(n/e)n

for n→∞) implies that

bk(p) ∼ 1√
π(p+ 1)k3/2

, k →∞,

which guarantees the convergence of
∑∞
k=m bk(p) (and also the finiteness of

Bp). We are going to prove that

(21) lim
y→∞

∞∑
k=m

ak,p(y) =
∞∑
k=m

bk(p)

because statement (i) follows from (19) and (21) with m = 0 while state-
ments (ii), (iii) from (19) and (21) with m = n+ 1.

The inequality “≤” in (21) is clear from (20) and the increase of ak,p.
In order to prove the opposite inequality, let us choose any ε > 0. We have
that

n0∑
k=m

bk(p) >
∞∑
k=m

bk(p)− ε

2

for some n0 ≥ m. The positivity of ak,p on (1,∞) together with (20) yields
that there exists a number K > 1 such that

∞∑
k=m

ak,p(y) >
n0∑
k=m

ak,p(y) >
n0∑
k=m

bk(p)− ε

2

for all y > K. Joining the last two inequalities, we obtain (21).

3. The decrease of p 7→ Bp on intervals (p0,∞), (p1, p0), (p2, p1), . . . follows
immediately from the decrease of functions bk on these intervals.

Let us now prove that (p 7→ Bp) ∈ C∞((−1,∞) r
⋃∞
n=0{pn}). We will

use the C∞-smoothness of functions bk. If we choose arbitrary m,n ∈
N ∪ {0} and [α, β] ⊆ (pn,∞), then applying the Weierstraß criterion, we
can verify that

∑∞
k=n(bk)(m) converges uniformly on [α, β], therefore we can

differentiate it term by term. So the sum of
∑∞
k=n bk belongs to C∞([α, β]),

thus also to C∞((pn,∞)), from which the C∞-smoothness of the function
p 7→ Bp on (−1,∞) r

⋃∞
n=0{pn} follows.

The one-sided limits of p 7→ Bp in p0, p1, . . . are found easily. They—
together with its continuity and decrease on (pn+1, pn)—guarantee the ex-
istence of a unique point p∗n ∈ (pn+1, pn) such that Bp∗n = 0. Statement (ii)
gives the expansion

Ip
n+ 1

2
(y) = 2

√
n+1

n∑
k=0

1
2n−2k+1

(2k−1)!!
(2k)!!

(
y

1
n+1

) 1
2+n−k

+
Bpn+1/2√
n+1

+ o(1)
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for y →∞. On the other hand, from (16), using the binomial theorem and
the Maclaurin polynomial of x 7→

√
1 + x of degree n, we obtain that

Ip
n+ 1

2
(y) =

√
z · 2
√
n+ 1

√
1− 1

z

n∑
i=0

1
2i+ 1

(
n

i

)
(z−1)i

=
n∑
k=0

cn,kz
1
2+n−k +O

(
1√
z

)
for z = y1/(n+1) → ∞ and some constants cn,k, k = 0, 1, . . . n. Conse-
quently, p∗n = pn+1/2.

Finally, in order to find limp→∞Bp, we employ the uniform convergence
of
∑∞
k=0 bk on (α,∞) for α > 1, and so we exchange the order of the limit

and the sum. �

The following assertions will be needed only in the proofs of Lemmata 8.7 and
8.8.

Theorem 3.5. The mapping (y, p) 7→ Ip(y) is continuous on [1,∞)× R. Fur-
thermore, p 7→ Ip(y) is decreasing on R for any y > 1.

Proof. Let us express Ip(y) as

Ip(y) =
∫ y

1

f(V, p) dV

where

f(V, p) =


√

p+ 1
V p+1 − 1

if p 6= −1, V > 1,

1√
lnV

if p = −1, V > 1.

Function f is continuous in both variables and is decreasing in V , consequently it
is continuous (on (1,∞) × R). Similarly, if we prove the continuity of p 7→ Ip(y)
for all y > 1 (for y = 1 it is evident), then using the continuity and increase of Ip
for any p ∈ R, we will have that (y, p) 7→ Ip(y) is continuous.

For this purpose, it will be important to know the behaviour of f(V, ·). We can
derive that for any p 6= −1 and V > 1:

∂

∂p

1
f2(V, p)

> 0 ⇐⇒ lnV p+1 +
1

V p+1
− 1 > 0,

which can be equivalently written as lnx < x−1 for x := 1/V p+1 ∈ (0, 1)∪(1,∞).
Thus, 1/2(V, ·) is increasing on R, therefore f(V, ·) is decreasing and the second
assertion of the lemma holds.

Now choose arbitrary y > 1, p0 ∈ R. Since f(·, p0) is an integrable majorant
of {f(·, p)}p≥p0 and f(V, ·) is continuous, we have the continuity of p 7→ Ip(y) on
[p0,∞). �
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Lemma 3.6. For every y > 1, n ∈ N:

I−1(y) =
n−1∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y
+O

(
y

lnn+1/2 y

)
, y →∞.

Proof. Set

In(y) :=
∫ y

e

dV

lnn+1/2 V

for all N ∈ N ∪ {0} and y > 1. Integrating by parts, we can derive the recurrent
relation

In(y) =
y

lnn+1/2 y
− e +

2n+ 1
2

In+1(y).

Using it n times, we obtain

I−1(y) = I0(y) +
∫ e

1

dV√
lnV

=
n−1∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y
+Rn(y)

where

Rn(y) =
∫ e

1

dV√
lnV

−
n−1∑
k=0

(2k − 1)!!
2k

e +
(2n− 1)!!

2n
In(y) ∼ (2n− 1)!!

2n
y

lnn+1/2 y

for y →∞, which can be proved using l’Hôpital’s rule. �

Notice that although Lemma 3.6 gives an asymptotic expansion, the corre-
sponding series

∞∑
k=0

(2k − 1)!!
2k

y

lnk+1/2 y

diverges for all y > 1.

4. Case I (p = −1, q = 0)

This case is the simplest one since from Lemma 2.5 it directly follows that

L(m) =
m√
2a

I−1

(
e

1
2a

)
, m > 0.

Thus, the time map, which determines the relation between m = u(0) and l for
u ∈ S(l), is linear. So substituting into Lemma 2.8, we obtain the following
theorem:

Theorem 4.1. Assume p = −1, q = 0, a > 0. Then for arbitrary l > 0:

S(l) =

{
um,−1,a

∣∣
[−l,l] : m =

√
2a

I−1

(
e

1
2a

) l} ,
N (l) = ∅.
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5. Case II (p > −1, q = 0)

In this section we answer the question of the solvability of (1) for

(22) p > −1, q = 0, a > 0

finding limm→0 L(m), limm→∞ L(m) and proving the monotonicity of L. However,
let us first summarise the properties of R that will be used in the subsequent
lemmata.

Lemma 5.1. Let (22) hold. Then R′ > 0 and

lim
m→0

R(m) =
(
p+ 1

2a

) 1
p+1

,

R(m) = m

(
1 +

1
2amp+1

+ o

(
1

mp+1

))
, m→∞.

Proof. It suffices to use the explicit formula for R(m) given by Lemma 2.5. �

Lemma 5.2. Assume (22). Then

lim
m→0

L(m) =


∞ if p ≥ 1,

2
1− p

(
p+ 1

2a

) 1
p+1

=: Lp,0,a(0) =: L(0) if p ∈ (−1, 1),

lim
m→∞

L(m) =


0 if p > 0,
1
a

if p = 0,

∞ if p ∈ (−1, 0).

Proof. For p > 1 and p = 1, limm→0 L(m) is easily found using Lemma 5.1 and
(5). In the case of p ∈ (−1, 1), it is of type ∞∞ :

lim
m→0

L(m) = lim
m→0

Ip
(R(m)

m

)
√

2am
p−1
2

and we calculate it by l’Hôpital’s rule, (12) and Lemma 5.1.
According to Lemmata 5.1 and 3.1:

L(m) ∼
√

2
a
m

1−p
2

√
R(m)
m
− 1, m→∞

while
R(m)
m
− 1 ∼ 1

2amp+1
, m→∞.

Connecting these two expansions, we obtain that L(m) ∼ 1
amp for m → ∞ and

the second assertion follows. �

Lemma 5.3. Let (22) hold. Then:

(i) If p > 0, then L′ < 0.

(ii) If p = 0, then L ≡ 1
a .
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(iii) If −1 < p < 0, then L′ > 0.

Proof.

(i) Firstly, let us consider p > 0. Due to (13), the case p ≥ 1 is clear. So let
0 < p < 1. If L has a stationary point m0 > 0, then L′′(m0) > 0 accord-
ing to (14) and Lemma 5.1, thus it is a point of strict relative minimum.
Therefore, either L has no stationary point or it has exactly one, which is
a point of global minimum. However, the second possibility contradicts the
fact that limm→∞ L(m) = 0 (Lemma 5.2).

(ii) For p = 0, Lemma 2.5 gives the formula R(m) = m + 1
2a , so L(m) = 1

a
according to (18).

(iii) Finally, let us have p ∈ (−1, 0) and let us proceed as for p ∈ (0, 1). Now L
attains a strict relative maximum in each of its stationary points. On the
other hand, limm→∞ L(m) = ∞ so the only possibility is that L′ > 0 on
(0,∞). �

Figure 2. The relation between m = u(0) and l for u ∈ S(l) in case II (p > −1, q = 0, a > 0)
according to Lemmata 2.8, 5.2 and 5.3. See also Theorem 5.4.

From the results of the last two lemmata (which are summarised in Figure 2),
applying Lemma 2.8, we obtain the main statement of this section:

Theorem 5.4. Assume (22) and l > 0. Then N (l) = ∅ and the following holds
for positive symmetric solutions of (1):

If p ≥ 1, then |S(l)| = 1 and L is decreasing. (Recall that L(u(0)) = l for any
u ∈ S(l).)
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If p = 0, then (1) has a solution only for l = 1
a , namely

S
(

1
a

)
=
{
x 7→ a

2
x2 +m, x ∈ [−l, l] : m > 0

}
.

If p < 1 and p 6= 0, then

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise

and L is strictly monotone. (See Lemma 5.2 about L(0) and limm→∞ L(m).)

The last question we will answer in this section is whether L·,0,a(0) is monotone.

Lemma 5.5. Suppose that (22) holds, let p be the unique solution of the equa-
tion p3 − 7p− 2 = 0 in (−1, 0) and set

a :=
p+ 1

2
e

2
3−p−2 ∈

(
1

2e2
,

1
e

)
.

Then:

(i) If a > a, then ∂
∂pLp,0,a(0) > 0 for p ∈ (−1, 1).

(ii) If a = a, then ∂
∂pLp,0,a(0) > 0 for p ∈ (−1, 1)r{p} and ∂

∂pLp,0,a(0)|p=p = 0.

(iii) If 0 < a < a, then p 7→ Lp,0,a(0) has two stationary points: p1 = p1(a) ∈
(−1, p) and p2 = p2(a) ∈ (p, 1) while ∂

∂pLp,0,a(0) > 0 for p ∈ (−1, p1) ∪
(p2, 1) and ∂

∂pLp,0,a(0) < 0 for p ∈ (p1, p2).

Furthermore, for all a > 0 we have

lim
p→−1+

Lp,0,a(0) = 0, lim
p→1−

Lp,0,a(0) =∞.

Proof. The limits of Lp,0,a(0) can be easily calculated. We also have that

∂

∂p
Lp,0,a(0) > 0 ⇐⇒ ln

p+ 1
2a
− (p+ 1)2

1− p
− 1 =: ψa(p) < 0.

So we need to examine the properties of ψa. It is not difficult to derive that

ψ′a(p) > 0 ⇐⇒ p3 − 7p− 2 =: ω(p) > 0.

Since ω is decreasing on (−1, 1) and ω(0) < 0 < limp→−1 ω(p), it has a unique zero
p ∈ (−1, 0). It means that ψa increases on (−1, p] and decreases on [p, 1). However,
limp→−1+ ψa(p) = limp→1− ψa(p) = −∞, thus L·,0,a(0) has the properties from
parts (i), (ii) or (iii) if ψa(p) < 0, ψa(p) = 0 or ψa(p) > 0, respectively.

Using that ω(p) = 0, we obtain:

ψa(p) = ln
p+ 1

2a
+

2
3− p

− 2 = 0 ⇐⇒ a = a.

Furthermore, a 7→ ψa(p) is decreasing, so really ψa(p) < 0 for a > a and ψa(p) > 0
for a ∈ (0, a). It remains to check that a ∈ ( 1

2e2 ,
1
e ). However, it can be directly

proved that ψa < 0 for a ≥ 1
e , so a < 1

e and ψa(0) ≥ 0 and consequently ψa(p) > 0
for a ≤ 1

2e2 , so a > 1
2e2 . �
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Let us mention that p ≈ −0.289 and using Cardano’s formula one can also
derive that

p = 2

√
7
3

cos
arccos 3

√
3

7
√

7
− 2π

3
.

6. Case III (p > −1, 0 < q < p+1
2 )

A part of case III was already examined in [5] (see Lemma 6.2). For the rest we
will need the asymptotic expansions of R(m) for m→ 0 and m→∞ (Lemma 6.1)
and also Lemma 3.4. We will deal only with

(23) p > −1, 0 < q <
p+ 1

2
, a > 0.

Lemma 6.1. Let (23) hold. Then R′ > 0 and

R(m)
R(0)

= 1− mp+1

(2q − p− 1)Rp+1(0)
+ o
(
mp+1

)
, m→ 0

R(m)
m

= 1 +
1
2a
m2q−p−1 +

4q − p
8a2

m2(2q−p−1) + o
(
m2(2q−p−1)

)
, m→∞

where

R(0) = Rp,q,a(0) = lim
m→0

R(m) =
(

2a
p+ 1

) 1
2q−p−1

.

Proof. It is clear from (10) and Lemma 2.5 (i) that R′ > 0, so R has a positive
and finite limit (denoted by R(0)) at 0, the value of which can be obtained from
the equality

0 = lim
m→0

F(m,R(m)) =
Rp+1(0)

2a

(
R2q−p−1(0)− 2a

p+ 1

)
.

Now we will look for such c, d > 0 that
R(m)
R(0)

− 1 ∼ cmd, m→ 0.

So let us calculate the following limit using l’Hôpital’s rule and (10):

lim
m→0

R(m)
R(0) − 1

md
= − p+ 1

(2q − p− 1)dRp+1(0)
lim
m→0

mp+1−d.

It should be positive and finite, determining the value of c. Therefore, we have
d = p+ 1 and c is also given as in the lemma.

The decrease of m 7→ R(m)/m ≥ 1 (see (11)) guarantees the existence of its
positive and finite limit at ∞. So we can use l’Hôpital’s rule and (10) to derive
that

A := lim
m→∞

R(m)
m

= lim
m→∞

(
m

R(m)

)p
=

1
Ap

.

Consequently, A = 1. The asymptotic expansion of R(m)/m for m → ∞ can be
also found by the method of undetermined coefficients, which we used for m→ 0.
However, let us show an iterative method borrowed from [5, proof of Lemma 3.3]:
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Multiplying the equality F(m,R(m)) = 0 (see (7)) by (p+1)/mp+1 and expressing
R(m)/m from it, we obtain:

(24)
R(m)
m

=

(
1 +

p+ 1
2a

m2q−p−1

(
R(m)
m

)2q
) 1

p+1

.

The expression (R(m)/m)2q on the right-hand side can be replaced by 1 +o(1), so

R(m)
m

=
(

1 +
p+ 1

2a
m2q−p−1 + o

(
m2q−p−1

)) 1
p+1

= 1 +
1
2a
m2q−p−1 + o

(
m2q−p−1

)
(We used the Maclaurin polynomial of x 7→ (1 + x)1/(p+1).) Now let us insert the
asymptotic expansion we have just obtained in the right-hand side of (24) again.
It yields

R(m)
m

=
(

1 +
p+ 1

2a
m2q−p−1 +

(p+ 1)q
2a2

m2(2q−p−1) + o
(
m2(2q−p−1)

)) 1
p+1

,

which can be rewritten in the form from the lemma.
Let us remark that we could use this iterative method in the case of m→ 0 as

well. We only would replace (24) by

R(m) = R(0)
(

1− mp+1

Rp+1(m)

) 1
2q−p−1

,

which can be derived from the equality F(m,R(m)) = 0 multiplying it by
(p+ 1)/Rp+1(m). �

Lemma 6.2 (for p, q > 1 see [5, Theorem 3.1]). If (23) holds and p ≥ 1, then

lim
m→0

L(m) =∞, L′ < 0 on (0,∞), lim
m→∞

L(m) = 0.

Proof. The proof from [5] for p, q > 1 is also valid for p > 1 and the case p = 1
is similar. �

In the next two lemmata we find the limits of L—denoted by L(0) and L(∞)—
for p < 1. For the proof of Lemma 6.5 it is also necessary to know the sign of
L− L(0) and L− L(∞) near 0 and ∞, respectively, for certain values of p, q.

Lemma 6.3. Assume (23) and p < 1. Then

lim
m→0

L(m) =
2

1− p

(
p+ 1

2a

) q−1
2q−p−1

=: Lp,q,a(0) =: L(0)

and furthermore, L > L(0) in some neighbourhood of 0 for − 1
3 < p ≤ 0 and

L < L(0) in some neighbourhood of 0 for 0 < p < 1.

Proof. The limm→0 L(m) is found the in same way as in Lemma 5.2. So choose
any p ∈ (− 1

3 , 1) and let us calculate the second term of the asymptotic expansion of
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L(m) for m→ 0, which will allow us to determine whether L < L(0) or L > L(0)
near 0. Lemma 6.1 yields:

R(m) = R(0)
(
1 +O

(
mp+1

))
= R(0)

(
1 + o

(
m

1−p
2

))
.

Joining it with the expansion of Ip(y) from Lemma 3.4, we obtain:

L(m) = L(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
.

As we know, Bp > 0 for p ∈ (− 1
3 , 0) and Bp < 0 for p ∈ (0, 1), guaranteeing the

validity of the statement of the lemma for these values of p.
It remains to examine p = 0. In that case we can use (18). So

L(m) = L(0)
√

1 +
2q

1− 2q
(2a)

1
1−2qm+ o(m) = L(0) +

2q
1− 2q

(2a)
q

1−2q︸ ︷︷ ︸
>0

m+ o(m)

due to Lemma 6.1. �

Lemma 6.4. If (23) holds and p < 1, then

lim
m→∞

L(m) =


0 if q < p,

1
a if q = p,

∞ if q > p

and furthermore, L > 1
a in some neighbourhood of ∞ for q = p.

Proof. The proof of the first statement does not differ from that of Lemma 5.2.
So let q = p and join the expansions of Lemmata 3.1 and 6.1 for m→∞:

L(m) =
1
a

√
1 +

3p
4a
mp−1 + o

(
mp−1

)(
1− p

24a
mp−1 + o

(
mp−1

))
=

1
a

+
p

3a2
mp−1 + o

(
mp−1

)
.

Since p ∈ (0, 1) and hence p
3a2 > 0, L > 1

a near ∞ indeed. �

Lemma 6.5. Suppose that (23) holds and for q > |p| set

m := mp,q,a :=
(

(p+ q)(2q − p− 1)
2q(q − 1)

) 1
p+1
(
a(q − p)
q(1− q)

) 1
2q−p−1

.

(i) If p < 1, q ≤ p, then L′ < 0 on (0,∞).

(ii) If p > 0, q > p, then L has a stationary point m0;p,q,a =: m0 ∈ (0,m] while
L′ < 0 on (0,m0), L′ > 0 on (m0,∞).

(iii) If p ≤ 0, q > −p, then L′ > 0 on (0,∞) r {m}.

(iv) If q ≤ −p, then L′ > 0 on (0,∞).
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Proof. It is similar to the proof of Lemma 5.3. So suppose that m0 > 0 is a
stationary point of L. From (14) it is clear that L′′(m0) has the same sign as

(1− q) q
a
R2q−p−1(m0) + p− q =: %p,q,a(m0) =: %(m0).

Therefore, if q ≤ p, then L has at most one stationary point and if it has some,
then it attains a strict relative minimum there. However, L cannot increase near
∞ (see Lemma 6.4), thus statement (i) holds.

In the rest of the proof we will deal with q > p. We have

L′′(m0) > 0 ⇐⇒ R(m0) <
(
a(q − p)
q(1− q)

) 1
2q−p−1

=: Rp,q,a =: R

and

R > R(0) ⇐⇒ (2q − p− 1)(p+ q) < 0 ⇐⇒ q > −p.

Since (R(0),∞) is the range of R, each stationary point of L is a point of strict
relative maximum for q ≤ −p and statement (iv) follows due to Lemma 6.4.

We will suppose q > −p from now on (together with q > p), thus − 1
3 < p < 1.

Consequently,

L′′(m0) > 0 ⇐⇒ m0 < R−1(R) = R

(
1− p+ 1

2a
R

2q−p−1
) 1

p+1

= m.

So Lemma 6.4 guarantees that L does not attain any relative extremum in (m,∞).
Furthermore, if p ≤ 0, then no point of relative extremum lies in (0,m) as well
(see Lemma 6.3), as it is stated in (iii). On the other hand, if p > 0, then a
similar consideration shows that L has exactly one relative extremum, which is a
global minimum attained at some point m0 ∈ (0,m] and in case of m0 < m, m
may be a stationary point of L as well. In order to complete the verification of
statement (ii), let us show that L cannot have two stationary points for 0 < p < 1,
q > p: From Lemma 2.11 we see that K ′(m) has the opposite sign to %(m) for
any m > 0. Consequently K decreases on (0,m]. However, if L had a relative
minimum at some point m0 ∈ (0,m) and m were another stationary point of L, we
would have K(m0) = L(m0) < L(m) = K(m) (see Lemma 2.11), a contradiction
to K(m0) > K(m). �

The properties of L ascertained in this section are summarised in Figure 3, which
shows all the possible graphs of L with the corresponding sets of parameters in the
(p, q)-plane, distinguished by colours. (Note that although we have not ruled out
in Lemma 6.5 the possibility that m is a stationary point of L for p ≤ 0, q > −p,
it has no influence on the number of solutions of (1).) Using Lemma 2.8 , we can
state the main result of this section. Recall that L(u(0)) = l for any u ∈ S(l) and
see also Lemmata 6.2, 6.3, 6.4 and 6.5 concerning L(0), limm→∞ L(m) and m0.

Theorem 6.6. Assume (23) and l > 0. Then N (l) = ∅ and the following holds
for the positive symmetric solutions of (1):
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If p > 0 and q > p, then

|S(l)| =


2 if l ∈ (L(m0), L(0)),

1 if l ∈ {L(m0)} ∪ [L(0),∞),
0 otherwise

and L decreases on (0,m0] and increases on [m0,∞), see Figure 3.
In all the other cases,

|S(l)| =

{
1 if l is between L(0) and lim

m→∞
L(m),

0 otherwise

and L is strictly monotone, see Figure 3.

7. Case IV (p > −1, q = p+1
2 )

In this case we have from Lemma 2.5 that the time map is defined only for q < a
and is given by

L(m) =
1√
2a

Ip

((
a

a− q

) 1
2q

︸ ︷︷ ︸
=:rq,a

)
m

1−p
2 , m > 0.

Thus, it is a bijection of (0,∞) onto (0,∞) for p 6= 1 and a constant function for
p = 1. Namely, we can use (18) to derive that

L1,1,a(m) =
1√
a

ln
√
a+ 1√
a− 1

=
1

2
√
a

ln
(√

a+ 1√
a− 1

)2

=
1

2
√
a

ln
√
a+ 1√
a− 1

.

Furthermore, solving (3) for p = 1, we obtain that um,1,a(x) = m ch(
√
ax). So

according to Lemma 2.8, we can state the following:

Theorem 7.1. Let p > −1, q = p+1
2 , a > 0. Then for arbitrary l > 0:

S(l) =



{
um,p,a

∣∣
[−l,l] : m =

( √
2a

Ip(rq,a)
l

) 2
1−p

}
if p 6= 1, q < a,

{
x 7→ m ch(

√
ax), x ∈ [−l, l] : m > 0

} if p = 1, a > 1,
l = 1

2
√
a

ln
√
a+1√
a−1

,

∅ otherwise,

N (l) = ∅.

8. Case V (p > −1, q > p+1
2 ), symmetric solutions

Recall that due to Lemma 2.5, we have the following time maps in case V: L1 <
L2 defined on (0,M) and L defined on {M}. In this section we describe their
behaviour for

(25) p > −1, q >
p+ 1

2
, a > 0.
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Lemma 8.1 (for p > 1 see [5, p. 57 and Lemma 3.3]). Assume (25). Then
R′1 > 0 while

lim
m→0

R1(m)
m

= 1, lim
m→M

R1(m) = R(M) =
(
a

q

) 1
2q−p−1

and R′2 < 0 while

lim
m→0

R2(m) =
(

2a
p+ 1

) 1
2q−p−1

=: R2;p,q,a(0) =: R2(0), lim
m→M

R2(m) = R(M).

Moreover,

R2(m)
R2(0)

= 1− mp+1

(2q−p−1)Rp+1
2 (0)

− 2q+p

2(2q−p−1)2R2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

)
for m→ 0.

Proof. It is clear from Lemma 2.5 (iv) and (10) that R′1 > 0 and R′2 < 0. The
limits of R1(m), R1(m)/m and R2(m) can be calculated in the same way as in [5]
for p > 1 and the derivation of the asymptotic expansion of R2(m) for m→ 0 does
not differ from that of R(m) for m→ 0 and m→∞ in the proof of Lemma 6.1. �

Definition 8.2. For p, q, a satisfying (25) and q < |p| set

m := mp,q,a :=
(

(p+ q)(2q − p− 1)
2q(q − 1)

) 1
p+1
(
a(p− q)
q(q − 1)

) 1
2q−p−1

.

Lemma 8.3 (for p > 1 see [5, Lemmata 3.1, 3.4, 3.3, 3.2 and 3.5]). If (25)
holds, then

lim
m→M

L1(m) = L(M), lim
m→M

L′1(m) =∞,

lim
m→0

L1(m) =


0 if q > p,

1
a if q = p,

∞ if q < p

and the following holds concerning the monotonicity of L1:

(i) If q ≥ p, then L′1 > 0.

(ii) If q < p, then there exists such a point m0;p,q,a =: m0 ∈ [m,M) that

L′1 < 0 on (0,m0), L′1 > 0 on (m0,M).

Proof. It does not differ from the proof that can be found in [5] for p, q > 1. �

Lemma 8.4 (for p > 1 see [5, Lemmata 3.1, 3.4 and 3.3]). If (25) holds, then

lim
m→M

L2(m) = L(M), lim
m→M

L′2(m) = −∞,

lim
m→0

L2(m) =


∞ if p ≥ 1,

2
1− p

(
p+ 1

2a

) q−1
2q−p−1

=: L2;p,q,a(0) =: L2(0) if p ∈ (−1, 1).
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Proof. The limits at M can be calculated in the same way as it was done in [5]
for p, q > 1 while the proof of the second part of the lemma is essentially the same
as that of Lemma 5.2. �

Lemma 8.5. Suppose that (25) holds. Then

(i) if 0 ≤ p < 1 or q < −p or p ≥ − 1
2 , q = −p, then L2 < L2(0) in some

neighbourhood of 0

(ii) and if p < 0, q > −p or p < − 1
2 , q = −p, then L2 > L2(0) in some

neighbourhood of 0.

(We recommend the reader to draw a picture about these two sets in the (p, q)-
plane.)

Proof. We use the asymptotic expansions of Ip(y) and R2(m) from Lemmata 3.4
and 8.1, respectively and our goal is to find the second term of the asymptotic
expansion of L2(m) for m→ 0 and to determine its sign. However, as we will see,
it has eight different forms depending on the value of p and q.

All the asymptotic expansions in this proof will concern y →∞ and m→ 0.

1. For − 1
3 < p < 1 the expansion of L2(m) looks like that of L(m) and is

derived in the same way as in the proof of Lemma 6.3.

2. If p = − 1
3 , then writing Bp+o(1) as O(1) and R2(m) as R2(0)(1+O(m2/3)),

we obtain:

L2(m) =
1
2

√
3
a
R

2/3
2 (m) +

1
2
√

3a
m2/3 ln

R2(m)
m

+O(m2/3)

= L2(0) +
1

2
√

3a
m2/3 ln

1
m

+O
(
m2/3

)
.

3. Now let −1 < p < − 1
3 . In general, we have the expansion

Ip(y)√
p+ 1

=
2

1− p
y

1−p
2 − 1

3p+ 1
y−

3p+1
2 + %p(y)

for some function %p, which is given by different formulae depending on p
and will be specified later. It can be derived from Lemma 8.1 that

R
1−p
2

2 (m) = R
1−p
2

2 (0)

(
1− 1− p

2(2q − p− 1)Rp+1
2 (0)

mp+1

− (1− p)(4q + 3p+ 1)

8(2q − p− 1)2R2(p+1)
2 (0)

m2(p+1) + o
(
m2(p+1)

))
and

R
− 3p+1

2
2 (m) = R

− 3p+1
2

2 (0)
(

1 +
3p+ 1

2(2q − p− 1)Rp+1
2 (0)

mp+1 + o
(
mp+1

))
,
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which yield:

(26)
L2(m) = L2(0) + Cp,q,am

p+1 +Dp,q,am
2(p+1)

+

√
p+ 1

2a
m

1−p
2 %p

(
R2(m)
m

)
+ o
(
m2(p+1)

)
where

Cp,q,a = − 2(p+ q)
(3p+ 1)(2q − p− 1)Rp+q2;p,q,a(0)


> 0 if q > −p,
= 0 if q = −p,
< 0 if q < −p,

Dp,q,a = − 8q + p− 1
4(2q − p− 1)2Rq+2p+1

2;p,q,a (0)
.

Using that %p(y) = o(y−(3p+1)/2) and R2(m) = O(1), we can rewrite (26)
in the form

L2(m) = L2(0) + Cp,q,am
p+1 + o

(
mp+1

)
,

thus further calculation are needed for q = −p.
(a) Let us consider −q = p ∈ (− 3

5 ,−
1
3 ). Since %p(y) = Bp + o(1) and

O(m2(p+1)) = o(m(1−p)/2), we have

L2(m) = L2(0) +

√
p+ 1

2a
Bpm

1−p
2 + o

(
m

1−p
2

)
from (26). According to Lemma 3.4, Bp < 0 for p ∈ (− 1

2 ,−
1
3 ) and

Bp > 0 for p ∈ (− 3
5 ,−

1
2 ). In the case p = − 1

2 the expansion from
Lemma 3.4 does not suffice for us but we can use (18) together with√

R2(m) = 4a−
√
m− m

4a
+ o(m)

to derive that

L2(m) =
16a
3

√
1−
√
m

2a
− m

16a2
+ o(m)

(
1 +
√
m

4a
− m

16a2
+ o(m)

)
= L2(0)− m

a
+ o(m).

(b) If −q = p = − 3
5 , then inserting %p(y) = 3

8 ln y + O(1) and R2(m) =
O(1) in (26), we obtain that

L2(m) = L2(0) +
3

8
√

5a
m4/5 ln

1
m

+O
(
m4/5

)
.

(c) Finally, for −q = p ∈ (−1,− 3
5 ) we have

%p(y) = − 3
4(5p+ 3)

y−
5p+3

2 + o
(
y−

5p+3
2

)
,
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which together with R2(m) = R2(0) + o(1) and (26) yields

L2(m) = L2(0) +
2p(p+ 1)

(5p+ 3)(3p+ 1)2Rp+1
2 (0)︸ ︷︷ ︸

>0

m2(p+1) + o
(
m2(p+1)

)
.

�

The next three lemmata deal with the monotonicity and the stationary points
of L2.

Lemma 8.6. Assume (25). The following holds:

(i) If p ≥ 0 or p ≥ − 1
2 , q = −p, then

L′2 < 0 on (0,M).

(ii) If p < 0, q > −p or p < − 1
2 , q = −p, then L2 has a unique stationary point

m0;p,q,a =: m0 ∈ (0,M) while

L′2 > 0 on (0,m0), L′2 < 0 on (m0,M).

(iii) If q < −p, then one of the following holds:

A: L′2 < 0 on (0,M),

B: L′2 < 0 on (0,m), L′2(m) = 0 and L′2 < 0 on (m,M),

C: L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2) and L′2 < 0 on (m2,M) for
some m1 = m1;p,q,a ∈ (0,m), m2 = m2;p,q,a ∈ [m,M).

Proof. The case p ≥ 1 is trivial, so let p < 1 and suppose that m0 ∈ (0,M) is
a stationary point of L2. Recall that L′2 < 0 near M due to Lemma 8.4.

Firstly, let us consider q ≥ 1. Then L′′2(m0) < 0, so there are only two possi-
bilities: Either L′2 < 0 on (0,M) or L2 has a unique stationary point, which is a
point of strict relative maximum. Lemma 8.5 guarantees that the first one holds
for p ≥ 0 and the second one for p < 0.

Now let q < 1. Consequently:

(27) L′′2(m0) < 0 ⇐⇒ R2(m0) <
(
a(q − p)
q(1− q)

) 1
2q−p−1

=: R2;p,q,a =: R2.

Recall that (R(M), R2(0)) is the range of R2. The inequality R2 > R(M) holds
always while R2 < R2(0) only for q < −p. (In the latter case, we have R2(m) =
R2.) So if q ≥ −p, then each stationary point of L2 is a point of strict relative
maximum and by means of Lemma 8.5 we have again that L′2 < 0 for p ≥ 0 and
for −q = p ∈ [− 1

2 ,−
1
3 ) and L2 has a unique stationary point for p < 0, q > −p

and for p < − 1
2 , q = −p.

From now on we will consider only q < −p (thus, −1 < p < − 1
3 and q < 1). So

we have
L′′2(m0) < 0 ⇐⇒ m0 > R−1

2

(
R2

)
= m.

It means that L2 has at most one stationary point (a point of strict relative mini-
mum) in (0,m), at most one (a point of strict relative maximum) in (m,M) and m
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may be a stationary point as well. Suppose that m and some m2 > m are both sta-
tionary points of L2, thus L2 increases on [m,m2]. Since K2 decreases on [m,M),
we have L2(m) = K2(m) > K2(m2) = L2(m2) (see Lemma 2.11), a contradiction.
Therefore, L2 has at most one stationary point in [m,M). Furthermore, due to
Lemma 8.5 only A, B or C can hold. �

Lemma 8.7. Assume (25) and q < −p. There exists a continuous function q∗ :
(−1,− 1

2 )→ R such that p+1
2 < q∗(p) < −p for p ∈ (−1,− 1

2 ), limp→−1/2 q
∗(p) = 1

2
and the following holds:

(i) If p ≥ − 1
2 , q < −p or p < − 1

2 , q < q∗(p), then

L′2 < 0 on (0,M).

(ii) If p < − 1
2 and q = q∗(p), then m is a stationary point of L2 while

L′2 < 0 on (0,m), L′2 < 0 on (m,M).

(iii) If p < − 1
2 and q∗(p) < q < −p, then L2 has two stationary points m1;p,q,a =:

m1, m2;p,q,a =: m2 while m1 < m < m2 and

L′2 < 0 on (0,m1), L′2 > 0 on (m1,m2), L′2 < 0 on (m2,M).

For all p ∈ (−1,− 1
2 ), q = q∗(p) is the only solution of the equation

Ip(g(p, q))− 1
1− p

√
2(q − p)(1− q)

q
g

1−p
2 (p, q)︸ ︷︷ ︸

=:G(p,q)

=: f(p, q) = 0

in (p+1
2 ,−p) where

g(p, q) =
(

2q(q − 1)
(2q − p− 1)(p+ q)

) 1
p+1

.

Proof. From Lemma 8.6 we already know that only A, B or C can hold for
q < −p. Let us notice the crucial role of the sign of L′2(m): If it is +, then C
holds, if 0, then B or C occurs and if −, then A holds. So we derive the following
condition:

L′2;p,q,a(mp,q,a) > 0 ⇐⇒ L2(m)− (1− q)R
2q−p−1

2
2

a(1− p)
R

1−p
2

2 > 0 ⇐⇒ f(p, q) > 0

(see (27) for the definition of R2) and in the sequel we

1. find limq→(p+1)/2 f(p, q)

2. and limq→−p f(p, q)

3. and investigate the monotonicity of f(p, ·).
Afterwards we will be able to describe the sets where f (or equivalently L′2(m)) is
positive, zero and negative, resp.



96 S. PERES

1. Since limq→(p+1)/2 g(p, q) = ∞, using the first term of the asymptotic ex-
pansion of Ip(y) for y →∞ (see Lemma 3.4), we obtain:

lim
q→ p+1

2

f(p, q)

g
1−p
2 (p, q)

=
3p+ 1

(1− p)
√
p+ 1

< 0,

thus
lim

q→ p+1
2

f(p, q) = −∞.

2. We are going to find limq→−p f(p, q), so we denote −q−p =: r for the sake of
simplicity. All the asymptotic expansions in this step will concern r → 0+
or y →∞. We will see that the first two terms of the asymptotic expansions
of Ip(g(p, q)) and G(p, q) are identical, therefore we need to calculate the
first three. We have:

G(p, q) =
2
√
p+ 1

1− p

√√√√1 + 3p+1
2p(p+1)r + 1

2p(p+1)r
2

1 + r
p

g
1−p
2 (p, q)

=
2
√
p+ 1

1− p

√
1 +

p− 1
2p(p+ 1)

r +
1

2p2(p+ 1)
r2 +O(r3) g

1−p
2 (p, q)

=
2
√
p+ 1

1− p

(
1 +

p− 1
4p(p+ 1)

r − p2 − 10p− 7
32p2(p+ 1)2

r2 +O
(
r3
))
g

1−p
2 (p, q).

It will be useful to write the asymptotic expansion of Ip(y) in the form

Ip(y)√
p+ 1

=
2

1− p

(
1 +

p− 1
2(3p+ 1)

1
yp+1

)
y

1−p
2 + %p(y)

where function %p will be specified later. Joining the last formula with

(28)

1
gp+1(p, q)

=
3p+ 1

2p(p+ 1)
r

1 + 2
3p+1r

1 + 2p+1
p(p+1)r + 1

p(p+1)r
2

=
3p+ 1

2p(p+ 1)
r

(
1− 4p2 + 3p+ 1

p(p+ 1)(3p+ 1)
r +O

(
r2
))
,

we obtain that

Ip(g(p, q)) =
2
√
p+1

1−p

(
1 +

p−1
4p(p+1)

r +
(1−p)(4p2+3p+1)
4p2(p+1)2(3p+1)

r2 +O
(
r3
))

· g
1−p
2 (p, q) +

√
p+1%p(g(p, q)),

consequently

(29)
f(p, q) =

(√
p+ 1(29p3 + 21p2 + 15p− 1)
16p2(p+ 1)2(3p+ 1)(p− 1)

r2 +O
(
r3
))
g

1−p
2 (p, q)

+
√
p+ 1%p(g(p, q)).
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(a) Let − 3
5 < p < − 1

3 , thus %p(y) = Bp + o(1). Since

g
1−p
2 (p, q) = O

(
r

p−1
2(p+1)

)
= o

(
1
r2

)
,

we have

f(p, q) =
√
p+ 1 Bp + o(1).

So limq→−p f(p, q) is negative for p ∈ (− 1
2 ,−

1
3 ), zero for p = − 1

2 and
positive for p ∈ (− 3

5 ,−
1
2 ) due to Lemma 3.4.

(b) If p = − 3
5 , then inserting %p(y) = 3

8 ln y + O(1) and g
1−p
2 (p, q) =

O( 1
r2 ) in (29), we obtain that

f(p, q) =
3
√

5
8
√

2
ln

1
r

+O(1) −→ ∞.

(c) For p ∈ (−1,− 3
5 ) we have

%p(y) =
(
− 3

4(5p+ 3)
1

y2(p+1)
+ o

(
1

y2(p+1)

))
y

1−p
2 ,

hence (29) yields

f(p, q) =
(

4(p+ 1)3/2

p(3p+ 1)(5p+ 3)(p− 1)
r2 + o

(
r2
))
g

1−p
2 (p, q) −→ ∞.

(See (28).)

So we have derived that

lim
q→−p

f(p, q)


< 0 if − 1

2 < p < − 1
3 ,

= 0 if p = − 1
2 ,

> 0 if − 1 < p < − 1
2 .

3. The increase of f(p, ·) can be proved using

∂f

∂q
(p, q) =

(√
p+1

gp+1(p, q)−1
−
√

(2q−p−1)(p−q)(p+q)
2q

)
∂g

∂q
(p, q)

+
q2−p

(1−p)q
√

2q(q−p)(1−q)
1√

gp+1(p, q)
g(p, q)

=
1
2q

√
(2q−p−1)(p+q)

p−q

(
q2−p

q(1−q)(1−p)
g(p, q) + (p+q)

∂g

∂q
(p, q)

)
and

∂g

∂q
(p, q) = − q2 − 2pq + p

q(1− q)(2q − p− 1)(p+ q)
g(p, q),
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which yield

∂f

∂q
(p, q) =

p+ q

q2(p− 1)

√
(p+ q)(p− q)

2q − p− 1
g(p, q) > 0.

From 1., 2. and 3. we can see that if p ∈ [− 1
2 ,−

1
3 ), q ∈ (p+1

2 ,−p), then
f(p, q) < 0, i. e. L′2 < 0. Moreover, f(p, ·) has a unique zero—denote it by
q∗(p)—for all p ∈ (−1,− 1

2 ) and

• if p+1
2 < q < q∗(p), then L′2(m) < 0, so A holds,

• if q∗(p) < q < −p, then L′2(m) > 0, so C holds with m2 > m

• and if q = q∗(p), then L′2(m) = 0, so either B holds or C with m2 = m. Nev-
ertheless, we prove that only B can hold for q = q∗(p): So suppose that C
holds for some p = p0 ∈ (−1,− 1

2 ) and q = q∗(p0), thus L′2;p0,q∗(p0),a(m̃)>0
for some m̃ ∈ (0,M). From the definition of R2 and the implicit func-
tion theorem it follows that R2;p0,·,a(m̃) is continuous, which together with
(13), (10) and Theorem 3.5 guarantees the continuity of L′2;p0,·,a(m̃). Hence,
L′2;p0,q∗(p0)−ε,a(m̃) > 0 if ε > 0 is small enough, giving a contradiction.

At this moment, assertions (i)–(iii) have been proved. Since f is continuous
due to Theorem 3.5, from the implicit function theorem we have the continu-
ity of q∗ as well. So there only remains to find its limit at − 1

2 . Recall that
limq→1/2 f(− 1

2 , q)=0 and choose arbitrary ε ∈ (0, 1
2 ). From the increase of f(− 1

2 , ·)
we have f(− 1

2 ,
1
2 − ε) < 0, therefore f(p, 1

2 − ε) < 0 for all p ∈ (− 1
2 − δ,−

1
2 ) and

some suitable δ ∈ (0, 1
2 ) and the increase of f(p, ·) yields that 1

2 − ε < q∗(p) < −p
for p ∈ (− 1

2 − δ,−
1
2 ). So we conclude that limp→−1/2 q

∗(p) = 1
2 . �

Lemma 8.8. There exists

lim
p→−1

q∗(p) =: q∗(−1) ∈ (0, 1).

Proof. An easy calculation yields that

lim
p→−1

g(p, q) = e
q+1

2q(1−q) =: ψ(q)

and

lim
p→−1

f(p, q) = I−1(ψ(q))−

√
1− q2

2q
ψ(q) =: ϕ(q)

for all q ∈ (0, 1). In the sequel we examine the behaviour of ϕ.
Since limq→0 ψ(q) =∞ and I−1(y) = o(y) for y →∞ (see Lemma 3.6),

ϕ(q) = − 1√
2q
(
1 + o(1)

)
ψ(q) −→ −∞, q −→ 0.
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Set r := 1 − q and consider r → 0+. Using Lemma 3.6 with n = 4 and the
formulae

1√
lnψ(q)

=
√
r

(
1− r

4
− 5

32
r2 − 13

128
r3 +O

(
r4
))
,

1
lnψ(q)

= r

(
1− r

2
− r2

4
+O

(
r3
))
,

1
ln2 ψ(q)

= r2
(
1− r +O

(
r2
))
,

1
ln3 ψ(q)

= r3
(
1 +O(r)

)
,

we obtain that

I−1(ψ(q)) =
√
r

(
1 +

r

4
+

7
32
r2 +

89
128

r3 +O
(
r4
))
ψ(q).

On the other hand,√
1− q2

2q
=
√
r
(

1− r

2

)1/2

(1− r)−1/2 =
√
r

(
1 +

r

4
+

7
32
r2 +

25
128

r3 +O
(
r4
))
,

hence

ϕ(q) =
r7/2

2
ψ(1− r)

(
1 +O(r)

)
=
r7/2

2
e

1
r + 1

2
(
1 +O(r)

)
−→ ∞.

It is not hard to derive that

ψ′(q) =
q2 + 2q − 1
2q2(1− q)2

ψ(q)

and

ϕ′(q) =

(
1√

lnψ(q)
−

√
1− q2

2q

)
ψ′(q) +

√
2q

1− q2
q2 + 1

4q2
ψ(q)

=
1− q
2q2

√
1− q2

2q
ψ(q) > 0.

So we conclude that ϕ has a unique zero q0 ∈ (0, 1). Since ϕ increases and
limp→−1 f(p, q) = ϕ(q), we have that for arbitrary ε ∈ (0,min{q0, 1 − q0}) there
exists such δ > 0 that

∀p ∈ (−1,−1 + δ) : f(p, q0 − ε) < 0 < f(p, q0 + ε),

hence
∀p ∈ (−1,−1 + δ) : q0 − ε < q∗(p) < q0 + ε

and therefore limp→−1 q
∗(p) = q0. �

Numerical calculations indicate that q∗ is probably decreasing, concave, its
graph touches the graph of q = −p in − 1

2 , and q∗(−1) ≈ 0.730. We would like to
prove some of these observations analytically in the future.
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We append Figure 4 with all the possible graphs of L1 and L2 and the corre-
sponding sets of (p, q), based on the lemmata of this section. These results are
sufficient to determine the number of the symmetric solutions of (1) in case V
depending on p, q, a, l (see Lemma 2.8) except for −1 < p < − 1

2 , q∗(p) < q < −p
because it is required to investigate, for which p, q is L2(0) > L2(m2). In view
of Lemmata 8.6 (ii) and 8.7 (ii), it can be expected that this domain is divided
by a continuous curve into three sets where L2(0) = L2(m2) for (p, q) lying on
the curve, L2(0) < L2(m2) above it and L2(0) > L2(m2) under it. This hypothe-
sis is also consistent with numerical calculations and will be an object of further
research.

So let us state the main result of this section.

Theorem 8.9. Suppose (25).

(a) If q < p, then {
|S(l)| : l > 0

}
=
{

0, 1, 2
}
.

(b) If q = p, then {
|S(l)| : l > 0

}
=
{

0, 1
}
.

(c) If p ≥ 1 and q > p, then

|S(l)| = 1 for l > 0.

(d) If 0 ≤ p < 1 or p ≥ − 1
2 , q ≤ −p or p < − 1

2 , q ≤ q∗(p), then{
|S(l)| : l > 0

}
=
{

0, 1
}
.

(e) If p < 0, q > −p or p < − 1
2 , q = −p, then{
|S(l)| : l > 0

}
=
{

0, 1, 2
}
.

(f) If p < − 1
2 and q∗(p) < q < −p, then{

|S(l)| : l > 0
}

=
{

0, 1, 2, 3
}
.

The exact dependence of |S(l)| on l as well as the monotonicity properties of L
are indicated in Figure 4. (Recall that L(u(0)) = l for any u ∈ S(l).)

In this paper, we have not dealt with the monotonicity of L1 + L2, which is
related to the number of nonsymmetric solutions of (1). It was proved in [5] that
(L1 + L2)′ < 0 for 1 < p ≤ 4 and for p > 4, q ≥ p − 1 − 1

p−2 . Our future goal
is to examine the behaviour of L1 + L2 for the rest of case V and to study cases
VI–XIII.

Acknowledgement. The author is grateful to Professor Marek Fila for his
help and to the referee for his valuable suggestions.
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Figure 3. The relation between m = u(0) and l for u ∈ S(l) in case III (p > −1, 0 < q < p+1
2

,

a > 0) according to Lemmata 2.8, 6.2, 6.3, 6.4 and 6.5. See also Theorem 6.6.
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Figure 4. The relation between m = u(0) and l for u ∈ S(l) in case V (p > −1, q > p+1
2

, a > 0)
according to Lemmata 2.8, 8.3, 8.4, 8.6, 8.7 and 8.8. See also Theorem 8.9.
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