ASSOCIATED PRIMES OF TOP LOCAL HOMOLOGY MODULES WITH RESPECT TO AN IDEAL

SH. REZAEI

ABSTRACT. Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian R-module with $\operatorname{Ndim}_R M = n$. In this paper we determine the associated primes of the top local homology module $\operatorname{H}^a_n(M)$.

1. INTRODUCTION

Throughout this paper assume that (R, \mathfrak{m}) is a commutative Noetherian local ring, \mathfrak{a} is an ideal of R and M is an R-module. In [2] Cuong and Nam defined the local homology modules $\mathrm{H}_{i}^{\mathfrak{a}}(M)$ with respect to \mathfrak{a} by

$$\mathrm{H}_{i}^{\mathfrak{a}}(M) = \varprojlim_{n} \mathrm{Tor}_{i}^{R}(R/\mathfrak{a}^{n}, M).$$

This definition is dual to Grothendieck's definition of local cohomology modules and coincides with the definition of Greenless and May in [6] for an Artinian R-module M. For basic results about local homology we refer the reader to [2, 3] and [13]; for local cohomology see [1].

In [8] Macdonald and Sharp studied the top local cohomology module with respect to the maximal ideal and showed that $\operatorname{Att}(\operatorname{H}^n_{\mathfrak{m}}(N)) = \{\mathfrak{p} \in \operatorname{Ass} N : \dim R/\mathfrak{p} = n\}$, where N is a finitely generated R-module of dimension n. Cuong and Nam proved in [2] a dual result stating that

$$\operatorname{Ass}_{\hat{B}}(\operatorname{H}_{d}^{\mathfrak{m}}(M)) = \{\mathfrak{p} \in \operatorname{Att}_{\hat{B}}(M) : \dim R/\mathfrak{p} = d\}$$

for a non-zero Artinian *R*-module *M* of Noetherian dimension *d*. In this paper we study the top local homology module $\operatorname{H}_{n}^{\mathfrak{a}}(M)$, where *M* is a non-zero Artinian *R*-module of Noetherian dimension *n* and \mathfrak{a} is an arbitrary ideal of *R*. The module $\operatorname{H}_{n}^{\mathfrak{a}}(M)$ is called a top local homology module because $\max\{i : \operatorname{H}_{i}^{\mathfrak{a}}(M) \neq 0\} \leq n$ by [2, Proposition 4.8].

A non-zero R-module M is called secondary if the multiplication map by any element a of R is either surjective or nilpotent. A secondary representation of the R-module M is an expression for M as a finite sum of secondary modules. If such a representation exists, we will say that M is representable. A prime ideal \mathfrak{p} of R

2010 Mathematics Subject Classification. Primary 13C14, 13C15, 13E10.

Received November 1, 2011; revised March 31, 2012.

Key words and phrases. Local homology; Artinian modules; associated primes.

SH. REZAEI

is said to be an attached prime of M if $\mathfrak{p} = (N :_R M)$ for some submodule N of M. If M admits a reduced secondary representation $M = S_1 + S_2 + \ldots + S_n$, then the set of attached primes $\operatorname{Att}_R(M)$ of M is equal to $\{\sqrt{0 :_R S_i} \text{ for } i = 1, \ldots, n\}$. Note that every Artinian R-module M is representable and minimal elements of the set $V(\operatorname{Ann}(M))$, the set of prime ideals of R containing ideal $\operatorname{Ann}(M)$, belong to $\operatorname{Att}(M)$. It is well known that if N is a submodule of Artinian R-module M, then $\operatorname{Att}(M/N) \subseteq \operatorname{Att}(M) \subseteq \operatorname{Att}(N) \cup \operatorname{Att}(M/N)$ (See [9, Section 6]).

We now recall the concept of Noetherian dimension $\operatorname{Ndim}_R(M)$ of an R-module M. For M = 0 we define $\operatorname{Ndim}_R(M) = -1$. Then by induction, for any integer $t \geq 0$, we define $\operatorname{Ndim}_R(M) = t$ when

- i) $\operatorname{Ndim}_R(M) < t$ is false, and
- ii) for every ascending chain $M_1 \subseteq M_2 \subseteq \ldots$ of submodules of M there exists an integer m_0 such that $\operatorname{Ndim}_R(M_{m+1}/M_m) < t$ for all $m \geq m_0$.

Thus M is non-zero and finitely generated if and only if $\operatorname{Ndim}_R(M) = 0$. If M is Artinian module, then $\operatorname{Ndim}_R(M) < \infty$. (For more details see [7] and [11]).

Following [5], for any *R*-module M, we define the cohomological dimension of M with respect to \mathfrak{a} as

$$\operatorname{cd}(\mathfrak{a}, M) = \max\{i : \operatorname{H}^{i}_{\mathfrak{a}}(M) \neq 0\}.$$

By [1, Theorem 6.1.2 and Theorem 6.1.4], we have $cd(\mathfrak{a}, M) \leq \dim M$ and $cd(\mathfrak{m}, M) = \dim M$. We will call

$$hd(\mathfrak{a}, M) := \max\{i : \mathrm{H}_{i}^{\mathfrak{a}}(M) \neq 0\}$$

the homological dimension of M with respect to \mathfrak{a} . It follows from [2, Propositions 4.8 and 4.10] that if M is an Artinian R-module, then $hd(\mathfrak{a}, M) \leq Ndim_R(M)$ and $hd(\mathfrak{m}, M) = Ndim_R(M)$.

Throughout the paper, for an *R*-module M, $E(R/\mathfrak{m})$ denotes the injective envelope of R/\mathfrak{m} and D(.) denotes the Matlis duality functor $\operatorname{Hom}_R(., E(R/\mathfrak{m}))$. It is well known that $\dim D(M) = \dim M$. Also, if M is an Artinian *R*-module, then $M \simeq DD(M)$ and D(M) is a Noetherian \hat{R} -module. (See [1, Theorem 10.2.19] and [10, Theorem 1.6(5)]).

Note that if M is an Artinian R-module, then $\operatorname{H}_{i}^{\mathfrak{a}}(M) \simeq \operatorname{D}(\operatorname{H}_{\mathfrak{a}}^{i}(\operatorname{D}(M)))$ for all i (See [2, Proposition 3.3(ii)]), and therefore $\operatorname{hd}(\mathfrak{a}, M) = \operatorname{cd}(\mathfrak{a}, \operatorname{D}(M))$. Thus $\operatorname{hd}(\mathfrak{a}, M) \leq \operatorname{dim} \operatorname{D}(M) = \operatorname{dim} M$.

The main result of this paper shows that if M is a non-zero Artinian R-module such that $\operatorname{Ndim}_R M = n$, then

 $\operatorname{Ass}_{R}(\operatorname{H}^{\mathfrak{a}}_{n}(M)) = \{\mathfrak{P} \cap R : \mathfrak{P} \in \operatorname{Att}_{\hat{R}} M \text{ and } \operatorname{cd}(\mathfrak{a}\hat{R}, \hat{R}/\mathfrak{P}) = n\}.$

2. THE RESULTS

To prove our main result, we need the following lemmas.

Lemma 2.1. Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R and $0 \to L \to M \to N \to 0$ be an exact sequence of Artinian R-modules. Then $hd(\mathfrak{a}, M) = Max\{hd(\mathfrak{a}, L), hd(\mathfrak{a}, N)\}$.

198

199

Proof. Since D(M) is Noetherian \hat{R} -module, by [5, Corollary 2.3(i)], $cd(a\hat{R}, D(N)) \leq cd(a\hat{R}, D(M))$. Hence by the Independence Theorem ([1, Theorem 4.2.1]), $cd(\mathfrak{a}, D(N)) \leq cd(\mathfrak{a}, D(M))$. Therefore $hd(a, N) \leq hd(a, M)$. From the long exact sequence

$$\mathrm{H}_{i+1}^{\mathfrak{a}}(L) \to \mathrm{H}_{i+1}^{\mathfrak{a}}(M) \to \mathrm{H}_{i+1}^{\mathfrak{a}}(N) \to \mathrm{H}_{i}^{\mathfrak{a}}(L) \to \mathrm{H}_{i}^{\mathfrak{a}}(M) \to \dots$$

we deduce that $hd(\mathfrak{a}, L) \leq hd(\mathfrak{a}, M)$. Hence $Max\{hd(\mathfrak{a}, L), hd(\mathfrak{a}, N)\} \leq hd(\mathfrak{a}, M)$. From the above long exact sequence we also infer that $hd(\mathfrak{a}, M) \leq Max\{hd(\mathfrak{a}, L), hd(\mathfrak{a}, N)\}$ and the proof is complete. \Box

Lemma 2.2. Let (R, \mathfrak{m}) be a complete local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian module. Then $cd(\mathfrak{a}, R/\mathfrak{p}) \leq hd(\mathfrak{a}, M)$ for all $\mathfrak{p} \in Att(M)$.

Proof. Since D(M) is a Noetherian *R*-module and $\text{Supp}(R/\mathfrak{p}) \subseteq \text{Supp}(D(M))$ for all $\mathfrak{p} \in \text{Ass } D(M)$, by [5, Theorem 2.2] we infer that $\text{cd}(\mathfrak{a}, R/\mathfrak{p}) \leq \text{cd}(\mathfrak{a}, D(M))$ for all $\mathfrak{p} \in \text{Ass } D(M)$. Since Att(M) = Ass D(M) and $\text{cd}(\mathfrak{a}, D(M)) = \text{hd}(\mathfrak{a}, M)$, we obtain $\text{cd}(\mathfrak{a}, R/\mathfrak{p}) \leq \text{hd}(\mathfrak{a}, M)$ for all $\mathfrak{p} \in \text{Att}(M)$.

Lemma 2.3. Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R and M be an Artinian R-module. Then $hd(\mathfrak{a}, M) \leq cd(\mathfrak{a}, R/Ann M)$.

Proof. Let $R' := R/\operatorname{Ann} M$. By [12, Theorem 3.3], $\operatorname{H}_{i}^{\mathfrak{a}}(M) \simeq \operatorname{H}_{i}^{\mathfrak{a}R'}(M)$ for all *i*. Thus $\operatorname{hd}(\mathfrak{a}, M) = \operatorname{hd}(\mathfrak{a}R', M)$. Since $\operatorname{hd}(\mathfrak{a}R', M) \leq \operatorname{cd}(\mathfrak{a}R', R')$ (see [6, Corollary 3.2]) and $\operatorname{cd}(\mathfrak{a}R', R') = \operatorname{cd}(\mathfrak{a}, R')$ (see [5, Lemma 2.1]), we conclude that $\operatorname{hd}(\mathfrak{a}, M) \leq \operatorname{cd}(\mathfrak{a}, R')$.

Lemma 2.4. Let (R, \mathfrak{m}) be a complete local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian module of dimension n with $hd(\mathfrak{a}, M) = n$. Then the set

 $\Sigma := \{N^{'}: N^{'} is \ a \ submodule \ of \ M \ and \ \operatorname{hd}(\mathfrak{a}, M/N^{'}) < n\}$

has a smallest element N. The module N has the following properties:

- i) $hd(\mathfrak{a}, N) = \dim N = n$.
- ii) N has no proper submodule L such that $hd(\mathfrak{a}, N/L) < n$.
- *iii)* Att $(N) = \{ \mathfrak{p} \in Att(M) : cd(\mathfrak{a}, R/\mathfrak{p}) = n \}.$
- iv) $\operatorname{H}_{n}^{\mathfrak{a}}(N) \simeq \operatorname{H}_{n}^{\mathfrak{a}}(M).$

Proof. It is clear that $M \in \Sigma$ and thus Σ is not empty. Since M is an Artinian R-module, the set Σ has a minimal member N. By Lemma 2.1, if $N_1, N_2 \in \Sigma$, then $\operatorname{hd}(\mathfrak{a}, M/N_1 \cap N_2) < n$. Since the intersection of any two members of Σ is again in Σ , it follows that N is contained in every member of Σ implying that N is the smallest element of Σ .

i) Since $\operatorname{hd}(\mathfrak{a}, M/N) < n$, from the exact sequence $0 \to N \to M \to M/N \to 0$ and Lemma 2.1 we obtain $\operatorname{hd}(\mathfrak{a}, N) = n$. From $n = \operatorname{hd}(\mathfrak{a}, N) \leq \dim N \leq \dim M = n$ we derive $\dim N = n$.

ii) Suppose that L is a submodule of N such that $hd(\mathfrak{a}, N/L) < n$. From the exact sequence

$$0 \to N/L \to M/L \to M/N \to 0$$

SH. REZAEI

and Lemma 2.1 we infer $hd(\mathfrak{a}, M/L) < n$. Hence $L \in \Sigma$ and L = N.

iii) If $\mathfrak{p} \in \operatorname{Att}(N)$, then $\mathfrak{p} = \operatorname{Ann}(N/L)$, where L is a submodule of N. By (ii), $\operatorname{hd}(\mathfrak{a}, N/L) = n$. Hence $n = \operatorname{hd}(\mathfrak{a}, N/L) \leq \dim R/\mathfrak{p} \leq \dim(M) = n$. Thus $\dim(R/\mathfrak{p}) = \dim(M)$. Since $\dim(M) = \dim(R/\operatorname{Ann}(M))$, we conclude that \mathfrak{p} is a minimal element of the set V(Ann(M)). Thus $\mathfrak{p} \in \operatorname{Att}(M)$.

On the other hand, using Lemma 2.3, we derive $n = hd(\mathfrak{a}, N/L) \leq cd(\mathfrak{a}, R/\mathfrak{p}) \leq \dim(R/\mathfrak{p}) \leq \dim(M) = n$. Therefore $cd(\mathfrak{a}, R/\mathfrak{p}) = n$.

Now suppose that $\mathfrak{p} \in \operatorname{Att}(M)$ and $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$. Since $\operatorname{hd}(\mathfrak{a}, M/N) < n$ and $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$, Lemma 2.2 implies that $\mathfrak{p} \notin \operatorname{Att}(M/N)$. Therefore $\mathfrak{p} \in \operatorname{Att}(N)$.

iv) The exact sequence $0 \to N \to M \to M/N \to 0$ induces the exact sequence

$$\operatorname{H}_{n+1}^{\mathfrak{a}}(M/N) \to \operatorname{H}_{n}^{\mathfrak{a}}(N) \to \operatorname{H}_{n}^{\mathfrak{a}}(M) \to \operatorname{H}_{n}^{\mathfrak{a}}(M/N) \to$$

Since $hd(\mathfrak{a}, M/N) < n$, $H^{\mathfrak{a}}_{n+1}(M/N) = H^{\mathfrak{a}}_n(M/N) = 0$. Therefore $H^{\mathfrak{a}}_n(N) \simeq H^{\mathfrak{a}}_n(M)$.

Theorem 2.5. Let (R, \mathfrak{m}) be a complete local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian module of dimension n. Then

$$\operatorname{Ass}(\operatorname{H}_{n}^{\mathfrak{a}}(M)) = \{ \mathfrak{p} \in \operatorname{Att}(M) : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n \}.$$

Proof. If n = 0, then M has a finite length and therefore $\mathfrak{a}^k M = 0$ for some $k \in \mathbb{N}$. Hence

$$\operatorname{Ass}(\operatorname{H}^{\mathfrak{a}}_{n}(M)) = \operatorname{Ass}(M) = \{\mathfrak{m}\} = \operatorname{Att}(M) = \{\mathfrak{p} \in \operatorname{Att}(M) : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = 0\}.$$

Thus we can assume that n > 0. If $\operatorname{H}_{n}^{\mathfrak{a}}(M) = 0$, then $\operatorname{hd}(\mathfrak{a}, M) < n$. Hence by Lemma 2.2 $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) < n$ for all $\mathfrak{p} \in \operatorname{Att}(M)$. This implies $\{\mathfrak{p} \in \operatorname{Att}(M) : \operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n\} = \emptyset = \operatorname{Ass}(\operatorname{H}_{n}^{\mathfrak{a}}(M))$ and the result has been proved in this case. Now assume that n > 0 and $\operatorname{H}_{n}^{\mathfrak{a}}(M) \neq 0$. Then $\operatorname{hd}(\mathfrak{a}, M) = \dim M = n$. By Lemma 2.4, we can assume that M has no proper submodule L with $\operatorname{hd}(\mathfrak{a}, M/L) < n$ and we must show that $\operatorname{Ass}(\operatorname{H}_{n}^{\mathfrak{a}}(M)) = \operatorname{Att}(M)$.

If $r \notin \bigcup_{\mathfrak{p}\in\operatorname{Att} M}\mathfrak{p}$, then the exact sequence $0 \to (0:_M r) \to M \xrightarrow{r} M \to 0$ induces the exact sequence $\operatorname{H}_n^{\mathfrak{a}}(0:_M r) \to \operatorname{H}_n^{\mathfrak{a}}(M) \xrightarrow{r} \operatorname{H}_n^{\mathfrak{a}}(M)$. Using [3, Lemma 4.7], we obtain $\operatorname{Ndim}_R(0:_M r) \leq n-1$, and therefore $\operatorname{H}_n^{\mathfrak{a}}(0:_M r) = 0$. Since $0 \to \operatorname{H}_n^{\mathfrak{a}}(M) \xrightarrow{r} \operatorname{H}_n^{\mathfrak{a}}(M)$ is exact, we infer $r \notin \bigcup_{\mathfrak{p}\in\operatorname{Ass} \operatorname{H}_n^{\mathfrak{a}}(M)}\mathfrak{p}$ and $\bigcup_{\mathfrak{p}\in\operatorname{Ass} \operatorname{H}_n^{\mathfrak{a}}(M)}\mathfrak{p} \subseteq \bigcup_{\mathfrak{p}\in\operatorname{Att} M}\mathfrak{p}$. Since Att M is a finite set, every $\mathfrak{p} \in \operatorname{Ass}_R(\operatorname{H}_n^{\mathfrak{a}}(M))$ is included in some $\mathfrak{q} \in \operatorname{Att} M$. For such \mathfrak{q} there exists a submodule L of M satisfying $\mathfrak{q} = \operatorname{Ann}(M/L)$. Hence $n = \operatorname{hd}(\mathfrak{a}, M/L) \leq \dim M/L \leq \dim R/\mathfrak{q} \leq \dim R/\mathfrak{p} \leq n$. This shows $\mathfrak{p} = \mathfrak{q}$ and $\operatorname{Ass} \operatorname{H}_n^{\mathfrak{a}}(M) \subseteq \operatorname{Att}(M)$.

To prove the reverse inclusion, assume $\mathfrak{p} \in \operatorname{Att}(M)$. There exists a submodule L of M such that $\operatorname{Att}(L) = \{\mathfrak{p}\}$. Since we have assumed that M has no proper submodule U with $\operatorname{hd}(\mathfrak{a}, M/U) < n$, Lemma 2.4 implies that $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$. Hence by Lemma 2.2, we have $\operatorname{hd}(\mathfrak{a}, L) = n$ and $\operatorname{H}_n^\mathfrak{a}(L) \neq 0$. Since $\operatorname{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$ and $\operatorname{Att}(L/U) \subseteq \operatorname{Att} L = \{\mathfrak{p}\}$ for all submodules U, Lemma 2.2 shows that L cannot have any proper submodule U such that $\operatorname{hd}(\mathfrak{a}, L/U) < n$. Analogously as above, we obtain $\operatorname{Ass} \operatorname{H}_n^\mathfrak{a}(L) \subseteq \operatorname{Att}(L) = \{\mathfrak{p}\}$. Since $\operatorname{H}_n^\mathfrak{a}(L) \neq 0$, we establish that $\operatorname{Ass} \operatorname{H}_n^\mathfrak{a}(L) = \{\mathfrak{p}\}$. However, from the exact sequence $0 \to \operatorname{H}_n^\mathfrak{a}(L) \to \operatorname{H}_n^\mathfrak{a}(M) \to$

200

 $\mathrm{H}_{n}^{\mathfrak{a}}(M/L)$ we see that $\{\mathfrak{p}\} = \mathrm{Ass}\,\mathrm{H}_{n}^{\mathfrak{a}}(L) \subseteq \mathrm{Ass}\,\mathrm{H}_{n}^{\mathfrak{a}}(M)$. Therefore $\mathfrak{p} \in \mathrm{Ass}\,\mathrm{H}_{n}^{\mathfrak{a}}(M)$, that completes the proof. \Box

Corollary 2.6. Let (R, \mathfrak{m}) be a complete local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian module of dimension n. Then

$$\operatorname{Ass}(\operatorname{H}_{n}^{\mathfrak{m}}(M)) = \{\mathfrak{p} \in \operatorname{Att}(M) : \dim(R/\mathfrak{p}) = n\}.$$

Proof. Since $\operatorname{cd}(\mathfrak{m}, R/\mathfrak{p}) = \dim R/\mathfrak{p}$, it follows from Theorem 2.5.

The following Theorem is the main result of this paper.

Theorem 2.7. Let (R, \mathfrak{m}) be a local ring, \mathfrak{a} be an ideal of R and M be a non-zero Artinian R-module with $\operatorname{Ndim}_R M = n$. Then

$$\operatorname{Ass}_{R}(\operatorname{H}^{\mathfrak{a}}_{n}(M)) = \{\mathfrak{P} \cap R : \mathfrak{P} \in \operatorname{Att}_{\hat{R}} M \text{ and } \operatorname{cd}(\mathfrak{a} R, R/\mathfrak{P}) = n\}.$$

Proof. Since dim_{\hat{R}} D(M) = dim_{\hat{R}} M = Ndim_R M = n (for details consult [4]), by [1, Theorem 7.1.6], Hⁿ_{a\hat{R}}(D(M)) is an Artinian local cohomology module and D(Hⁿ_{a\hat{R}}(D(M))) \simeq H^{a\hat{R}}_n(M) is a Noetherian \hat{R} -module. It is well known that Ass_R(L) = {𝔅 ∩ R : 𝔅 ∈ Ass_{\hat{R}} L} for each finitely generated \hat{R} -module L (See [9, Exercise 6.7]). Thus Ass_R(H^{a\hat{R}}_n(M)) = {𝔅 ∩ R : 𝔅 ∈ Ass_{\hat{R}}(M) as R-modules, we conclude that Ass_R(H^a_n(M)) = {𝔅 ∩ R : 𝔅 ∈ Ass_{\hat{R}}(H^{a\hat{R}}_n(M)) = {𝔅 ∩ R : 𝔅 ∈ Ass_{\hat{R}}(H^{a\hat{R}}_n(M))}. According to Theorem 2.5, Ass_{\hat{R}}(H^{a\hat{R}}_n(M)) = {𝔅 ∩ R : 𝔅 ∈ Att_{\hat{R}} M and cd(a $\hat{R}, \hat{R}/𝔅) = n$ }. Therefore Ass_R(H^a_n(M)) = {𝔅 ∩ R : 𝔅 ∈ Att_{\hat{R}} M and cd(a $\hat{R}, \hat{R}/𝔅) = n$ }.

Acknowledgment. I would like to thank the referee for the invaluable comments on the manuscript.

References

- Brodmann M. P. and Sharp R. Y., Local cohomology An algebraic introduction with geometric applications, Cambr. Uni. Press, 1998.
- Cuong N. T. and Nam T. T., The I-adic completion and local homology for Artinian modules, Math. Proc. Camb. Phil. Soc. 131 (2001), 61–72.
- **3.** _____, A local homology theory for linearly compact modules, J. Algebra **319** (2008), 4712–4737.
- 4. _____, On the Noetherian dimension of Artinian modules, Vietnam J. Math. 30(2) (2002), 121–130.
- 5. Divaani-Aazar K., Naghipour R. and Tousi M., Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), 3537–3544.
- Greenless J. P. C. and May J. P., Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), 438–453.
- Kirby D., Dimension and length for Artinian modules, Quart. J. Math. 41(2) (1990), 419–429.
- Macdonald I. G. and Sharp R.Y., An elementary proof of the non-vanishing of certain local cohomology modules, Quart. J. Math. Oxford 23 (1972), 197-204.
- 9. Matsumura H., Commutative Ring Theory, CSAM 8 Cambridge, 1994.

SH. REZAEI

- 10. Ooishi A., Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976), 573-587.
- Roberts R. N., Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. (3)26 (1975), 269–273.
- Simon A. M., Adic completion and some dual homological results, Publications mathematiques 36 (1992), no 2B, 965–979.
- 13. Tang Z., Local homology theory for artinian modules, Comm. Algebra 22 (1994), 1675–1684.

Sh. Rezaei, Department of Mathematics, Faculty of Science, Payame Noor University (PNU), Khomein, Iran, *e-mail*: Sha.rezaei@gmail.com