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SUMMATION FORMULAE FOR THE LEGENDRE
POLYNOMIALS

SUBUHI KHAN and A. A. AL-GONAH

Abstract. In this paper, summation formulae for the 2-variable Legendre poly-

nomials in terms of certain multi-variable special polynomials are derived. Several

summation formulae for the classical Legendre polynomials are also obtained as ap-
plications. Further, Hermite-Legendre polynomials are introduced and summation

formulae for these polynomials are also established.

1. Introduction and preliminaries

We recall that the 2-variable Legendre polynomials (2VLeP) Rn(x, y) are defined
by the series [13]

Rn(x, y) = (n!)2
n∑

k=0

(−1)n−kykxn−k

(k!)2[(n− k)!]2
(1.1)

and specified by the following generating function

C0(−yt) C0(xt) =
∞∑

n=0

Rn(x, y)
tn

(n!)2
,(1.2)

where C0(x) denotes the 0th order Tricomi function. The nth order Tricomi func-
tions Cn(x) are defined as [20]

Cn(x) =
∞∑

r=0

(−1)rxr

r!(n+ r)!
.(1.3)

The 2VLeP Rn(x, y) are linked to the classical Legendre polynomials Pn(x) [1]
by the following relation

Rn

(
1− x

2
,

1 + x

2

)
= Pn(x).(1.4)
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Further, we recall a second form of the 2-variable Legendre polynomials (2VLeP)
Sn(x, y) which are defined by the series [4, p. 158] (see also [9])

Sn(x, y) = n!
n∑

k=0

(−1)kxkyn−2k

(k!)2(n− 2k)!
(1.5)

and specified by the following generating function

exp(yt) C0(xt2) =
∞∑

n=0

Sn(x, y)
tn

n!
.(1.6)

Next, we recall that the higher-order Hermite polynomials, some times called
the Kampé de Fériet or the Gould-Hopper polynomials (GHP) H(m)

n (x, y), are
defined as [18, p. 58, (6.2)] (see also [3])

gm
n (x, y) = H(m)

n (x, y) = n!
[ n

m ]∑
k=0

ykxn−mk

k!(n−mk)!
,(1.7)

where m is a positive integer. These polynomials are specified by the generating
function

exp(xt+ ytm) =
∞∑

n=0

H(m)
n (x, y)

tn

n!
.(1.8)

In particular, we note that

H(1)
n (x, y) = (x+ y)n,(1.9)

H(2)
n (x, y) = Hn(x, y),(1.10)

where Hn(x, y) denotes the 2-variable Hermite-Kampé de Fériet polynomials
(2VHKdFP) [2], defined by the generating function

exp(xt+ yt2) =
∞∑

n=0

Hn(x, y)
tn

n!
.(1.11)

We note the following link between the 2VHKdFP Hn(x, y) and the 2VLeP
Sn(x, y) [9, p. 613]

Hn(y,−D−1
x ) = Sn(x, y),(1.12)

where D−1
x denotes the inverse of the derivative operator Dx := ∂

∂x and is defined
in such a way that

D−n
x

{
f(x)

}
=

1
(n− 1)!

∫ x

0

(x− ξ)n−1f(ξ)dξ,(1.13)

so that for f(x) = 1, we have

D−n
x

{
1
}

=
xn

n!
.(1.14)

In view of equations (1.8) and (1.11), we note the following link

H(2)
n

(
x,−1

2

)
= Hn

(
x,−1

2

)
= Hen(x),(1.15)
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where Hen(x) denotes the classical Hermite polynomials [1].
Also, we recall that the 2-variable generalized Laguerre polynomials (2VgLP)

mLn(x, y) are defined by the series [12, p. 213]

mLn(x, y) = n!
[ n

m ]∑
r=0

xryn−mr

(r!)2(n−mr)!
(1.16)

and by the following generating function

exp(yt) C0(−xtm) =
∞∑

n=0

mLn(x, y)
tn

n!
.(1.17)

We note the following link between the 2VgLP mLn(x, y) and the GHPH
(m)
n (x, y)

[12, p. 213]

mLn(x, y) = H(m)
n (y,D−1

x ).(1.18)

In particular, we note that

2Ln(−x, y) = Sn(x, y),(1.19)

1Ln(−x, y) = Ln(x, y),(1.20)

where Ln(x, y) denotes the 2-variable Laguerre polynomials (2VLP) [14] (see also
[16]), defined by means of the generating function

exp(yt) C0(xt) =
∞∑

n=0

Ln(x, y)
tn

n!
.(1.21)

In terms of classical Laguerre polynomials Ln(x) [1], it is easily seen from
definition (1.16) and relation (1.20) that

1Ln(−x, 1) = Ln(x, 1) = Ln(x).(1.22)

Again, we recall that the 2-variable generalized Laguerre type polynomials
(2VgLtP) [m]Ln(x, y) are defined by the series [7, p. 603]

[m]Ln(x, y) = n!
[ n

m ]∑
k=0

yk(−x)n−mk

k![(n−mk)!]2
(1.23)

and by the following generating function

exp(ytm) C0(xt) =
∞∑

n=0

[m]Ln(x, y)
tn

n!
.(1.24)

For m = 2 and x → −x, the polynomials [m]Ln(x, y) reduce to the 2-variable
Hermite type polynomials (2VHtP) Gn(x, y) [9], i.e., we have

[2]Ln(−x, y) = Gn(x, y).(1.25)

In view of equations (1.21) and (1.24), we note the following link

[1]Ln(x, y) = Ln(x, y).(1.26)
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Further, we recall that the 3-variable Laguerre-Hermite polynomials (3VLHP)
LHn(x, y, z) are defined by the series [15, p. 241]

LHn(x, y, z) = n!
[ n
2 ]∑

k=0

zkLn−2k(x, y)
k!(n− 2k)!

(1.27)

and specified by the following generating function

exp(yt+ zt2) C0(xt) =
∞∑

n=0

LHn(x, y, z)
tn

n!
.(1.28)

In particular, we note that

LHn

(
x, y,−1

2

)
= LH

∗
n(x, y),(1.29)

LHn(x, 1,−1) = LHn(x),(1.30)

where LH
∗
n(x, y) denotes the 2-variable Laguerre-Hermite polynomials (2VLHP)

[16] and LHn(x) denotes the Laguerre-Hermite polynomials (LHP) [17], respec-
tively.

Furthermore, we recall that the 3-variable Hermite-Laguerre polynomials
(3VHLP) HLn(x, y, z) are defined by the series [11, p. 58]

HLn(x, y, z) = n!
n∑

k=0

(−1)kzn−kHk(x, y)
(k!)2(n− k)!

(1.31)

and by the following generating function

exp(zt) HC0(x, y; t) =
∞∑

n=0

HLn(x, y, z)
tn

n!
,(1.32)

where HC0(x, y; t) denotes the Hermite-Tricomi functions defined by the following
operational definition [11, p. 58]

HC0(x, y; t) = exp
(
y
∂2

∂x2

){
C0(xt)

}
.(1.33)

The special polynomials of more than one variable provide new means of analysis
for the solutions of a wide class of partial differential equations often encountered
in physical problems. It happens very often that the solution of a given problem in
physics or applied mathematics requires the evaluation of infinite sums, involving
special functions. Problems of this type arise, for example, in the computation of
the higher-order moments of a distribution or in evaluation of transition matrix ele-
ments in quantum mechanics. In [5], Dattoli showed that the summation formulae
of special functions, often encountered in applications ranging from electromag-
netic processes to combinatorics, can be written in terms of Hermite polynomials
of more than one variable.

In this paper, we derive the explicit summation formulae for the 2VLeP Rn(x, y)
in terms of the product of certain multi-variable special polynomials. Also, we de-
rive the implicit summation formula for the 2VLeP Sn(x, y). Summation formulae



SUMMATION FORMULAE FOR THE LEGENDRE POLYNOMIALS 131

for the classical Legendre polynomials Pn(x) are obtained as special cases of the
summation formulae for the 2VLeP Rn(x, y). Further, the Hermite-Legendre poly-
nomials HRn(x, y, z) are introduced and summation formulae for these polynomials
are also obtained.

2. Summation formulae for the 2-variable Legendre polynomials

First, we prove the following explicit summation formula for the 2VLeP Rn(x, y)
by using generating functions (1.8), (1.21) and (1.24) of GHP H

(m)
n (x, y), 2VLP

Ln(x, y) and 2VgLtP [m]Ln(x, y), respectively.

Theorem 2.1. The following explicit summation formula for the 2VLePRn(x, y)
in terms of the product of GHP H

(m)
n (x, y), 2VgLtP [m]Ln(x, y) and 2VLP Ln(x, y)

holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr(−z, w) Ln−k−r(x, y).

(2.1)

Proof. Consider the product of 2VLP generating function (1.21) and 2VgLtP
generating function (1.24) in the following form

exp(yt) C0(xt) exp(wtm) C0(zt)

=
∞∑

n=0

∞∑
r=0

Ln(x, y) [m]Lr(z, w)
tn+r

n!r!
.

(2.2)

Replacing n by n− r in the r.h.s. of equation (2.2) and then using the lemma
[20, p. 100]

∞∑
n=0

∞∑
r=0

A(r, n) =
∞∑

n=0

n∑
r=0

A(r, n− r),(2.3)

we find

C0(xt) C0(zt) exp(yt+ wtm)

=
∞∑

n=0

n∑
r=0

(
n

r

)
[m]Lr(z, w) Ln−r(x, y)

tn

n!
,

(2.4)

which on shifting the exponential to the r.h.s. and then using the generating
function (1.8) in the r.h.s. becomes

C0(xt) C0(zt)

=
∞∑

n=0

∞∑
k=0

n∑
r=0

(
n

r

)
H

(m)
k (−y,−w) [m]Lr(z, w) Ln−r(x, y)

tn+k

n!k!
.

(2.5)
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Again, replacing n by n− k in the r.h.s. of equation (2.5), we get

C0(zt) C0(xt)

=
∞∑

n=0

n∑
k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr(z, w) Ln−k−r(x, y)

tn

n!
.

(2.6)

Finally, using generating function (1.2) in the l.h.s. of equation (2.6) and then
equating the coefficients of like powers of t in the resultant equation, we get asser-
tion (2.1) of Theorem 2.1. �

Remark 2.1. Taking m = 2 in assertion (2.1) of Theorem 2.1 and using rela-
tions (1.10) and (1.25), we deduce the following consequence of Theorem 2.1.

Corollary 2.1. The following summation formula for the 2VLeP Rn(x, y) in-
volving product of 2VHKdFP Hn(x, y), 2VHtP Gn(x, y) and 2VLP Ln(x, y) holds
true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y,−w) Gr(z, w) Ln−k−r(x, y).

(2.7)

Note. For y = 1, equation (2.7) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−1,−w) Gr(z, w) Ln−k−r(x).

(2.8)

Again, for w = 1
2 , equation (2.7) yields to the following summation formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−y) Gr

(
z,

1
2

)
Ln−k−r(x, y).

(2.9)

Remark 2.2. Taking m = 1 in assertion (2.1) of Theorem 2.1 and using rela-
tions (1.9) and (1.26), we deduce the following consequence of Theorem 2.1.

Corollary 2.2. The following explicit summation formula for the 2VLePRn(x, y)
in terms of product of the 2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−1)k(y + w)k Lr(−z, w) Ln−k−r(x, y).

(2.10)

Note. For w = −y, equation (2.10) yields to the following summation formula

Rn(x, z) = n!
n∑

r=0

(
n

r

)
Lr(−z,−y) Ln−r(x, y),(2.11)
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which for y = 1 gives the following summation formula

Rn(x, z) = n!
n∑

r=0

(
n

r

)
Lr(−z,−1) Ln−r(x).(2.12)

Again, for y = w = 1, equation (2.10) yields to the following summation for-
mula:

Rn(x, z) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−2)k Lr(−z) Ln−k−r(x).(2.13)

Remark 2.3. Using generating functions (1.11), (1.21) and (1.28) of 2VHKdFP
Hn(x, y), 2VLP Ln(x, y) and 3VLHP LHn(x, y, z) respectively and proceeding on
the same lines of proof of Theorem 2.1, we get the following result.

Theorem 2.2. The following explicit summation formula for the 2VLePRn(x, y)
in terms of the product of 2VHKdFP Hn(x, y), 3VLHP LHn(x, y, z) and
2VLP Ln(x, y) holds true

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − w,−v) LHr(−z, w, v) Ln−k−r(x, y).

(2.14)

Note. For y = 1 and v = − 1
2 , equation (2.14) yields to the following summation

formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk

(
−1− w, 1

2

)
LH
∗
r (−z, w) Ln−k−r(x).

(2.15)

Again, for y = 1 and v = 1
2 , equation (2.14) yields to the following summation

formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−1− w) LHr

(
−z, w, 1

2

)
Ln−k−r(x).

(2.16)

Further, for w = 1 and v = −1, equation (2.14) yields to the following summa-
tion formula

Rn(x, z)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − 1, 1) LHr(−z) Ln−k−r(x, y).

(2.17)

Next, we prove the following result involving the 2VLeP Sn(x, y).
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Theorem 2.3. The following implicit summation formula for the 2VLePSn(x, y)
holds true

Sk+l(y, w) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+rSk+l−n−r(y, x).(2.18)

Proof. We start by a recently derived summation formula for the 2VHKdFP
Hn(x, y) [19, p. 1539]

Hk+l(w, y) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+rHk+l−n−r(x, y).(2.19)

Replacing y by −D−1
y in the above equation, we have

Hk+l(w,−D−1
y ) =

k,l∑
n,r=0

(
k

n

)(
l

r

)
(w − x)n+rHk+l−n−r(x,−D−1

y ),(2.20)

which using relation (1.12) gives assertion (2.18) of Theorem 2.3. �

Alternate proof. Replacing y by D−1
y in the following result [19, p. 1538]

H
(m)
k+l (w, y) =

k,l∑
n,r=0

(
k

n

)(
l

r

)
(w − x)n+rH

(m)
k+l−n−r(x, y)(2.21)

and then using link (1.18), we get the following summation formula for 2VgLP
mLn(x, y)

mLk+l(y, w) =
k,l∑

n,r=0

(
k

n

)(
l

r

)
(w − x)n+r

mLk+l−n−r(y, x).(2.22)

Now, taking m = 2 and replacing y by −y in equation (2.22) and using relation
(1.19), we get assertion (2.18) of Theorem 2.3. �

Remark 2.4. Taking l = 0 in assertion (2.18) of Theorem 2.3, we deduce the
following consequence of Theorem 2.3

Corollary 2.3. The following implicit summation formula for the 2VLePSn(x,y)
holds true

Sk(y, w) =
k∑

n=0

(
k

n

)
(w − x)n Sk−n(y, x).(2.23)

3. Applications

In this section, we derive the summation formulae for the classical Legendre poly-
nomials Pn(x) as applications of the results derived in the previous section.

I. Replacing x by 1−x
2 and z by 1+x

2 in equations (2.1), (2.7), (2.10) and (2.11)
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and using relation (1.4), we get the following explicit summation formulae for the
classical Legendre polynomials Pn(x)

Pn(x)

(3.1)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−y,−w) [m]Lr

(
−1− x

2
, w

)
Ln−k−r

(
1− x

2
, y

)
,

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y,−w)Gr

(
1 + x

2
, w

)
Ln−k−r

(
1− x

2
, y

)
,

(3.2)

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−1)k(y+w)kLr

(
−1− x

2
, w

)
Ln−k−r

(
1−x

2
, y

)
,

(3.3)

Pn(x) = n!
n∑

r=0

(
n

r

)
Lr

(
−1− x

2
,−y

)
Ln−r

(
1− x

2
, y

)
.

(3.4)

Next, taking y = 1 in equations (3.2) and (3.4) and using relation (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−1,−w) Gr

(
1 + x

2
, w

)
Ln−k−r

(
1− x

2

)
,

(3.5)

Pn(x) = n!
n∑

r=0

(
n

r

)
Lr

(
−1− x

2
,−1

)
Ln−r

(
1− x

2

)
.

(3.6)

Further, taking y = w = 1 in equation (3.3) and using relation (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−2)k Lr

(
−1− x

2

)
Ln−k−r

(
1− x

2

)
.(3.7)

Furthermore, taking w = 1
2 in equation (3.2) and using relation (1.15), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−y) Gr

(
1 + x

2
,

1
2

)
Ln−k−r

(
1− x

2
, y

)
.

(3.8)
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II. Replacing x by 1−x
2 and z by 1+x

2 in equation (2.14) and using relation (1.4),
we get the following explicit summation formulae for the classical Legendre poly-
nomials Pn(x)

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
× Hk(−y − w,−v) LHr

(
−1− x

2
, w, v

)
Ln−k−r

(
1− x

2
, y

)
.

(3.9)

Next, taking y = 1 and v = − 1
2 in equation (3.9) and using relations (1.22) and

(1.29), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
×Hk

(
−1− w, 1

2

)
LH
∗
r

(
−1− x

2
, w

)
Ln−k−r

(
1− x

2

)
.

(3.10)

Further, taking y = 1 and v = 1
2 in equation (3.9) and using relations (1.15)

and (1.22), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hek(−1− w) LHr

(
−1−x

2
, w,

1
2

)
Ln−k−r

(
1−x

2

)
.

(3.11)

Furthermore, taking w = 1 and v = −1 in equation (3.9) and using relation
(1.30), we get

Pn(x) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−y − 1, 1) LHr

(
−1−x

2

)
Ln−k−r

(
1− x

2
, y

)
.

(3.12)

4. Concluding remarks

Operational methods can be used to simplify the derivation of the properties asso-
ciated with ordinary and generalized special functions and to define new families
of functions. We recall that the 2VHKdFP Hn(x, y) have the following operational
definition

Hn(x, y) = exp
(
y
∂2

∂x2

){
xn
}
.(4.1)

Now, in view of definition (4.1) the 3VHLP HLn(x, y, z) are specified by the
following operational definition [11, p. 58]

HLn(x, y, z) = exp
(
y
∂2

∂x2

){
Ln(x, z)

}
.(4.2)
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In order to introduce Hermite-Legendre polynomials (HLeP) HRn(x, y, z), we
replace y by z in generating function (1.2) and then operate exp

(
y ∂2

∂x2

)
on both

sides of the resultant equation. Now, using operational definition (1.33) in the
l.h.s. of the resultant equation, we get the following generating function of the
HLeP HRn(x, y, z)

C0(−zt) HC0(x, y; t) =
∞∑

n=0

HRn(x, y, z)
tn

(n!)2
,(4.3)

where HRn(x, y, z) are defined as

HRn(x, y, z) = exp
(
y
∂2

∂x2

){
Rn(x, z)

}
.(4.4)

It is worthy to note that the method adopted in this paper can be exploited
to establish further consequences regarding other families of special polynomials.
Here, we establish summation formulae for the HLeP HRn(x, y, z). To this aim,
we consider the product of generating functions (1.24) and (1.32) of the 2VgLtP
and 3VHLP respectively, in the following form

exp(zt)HC0(x, y; t) exp(vtm) C0(wt)

=
∞∑

n,r=0

HLn(x, y, z) [m]Lr(w, v)
tn+r

n!r!
.

(4.5)

Now, following the same lines of proof of Theorem 2.1 and in view of generating
function (4.3), we get the following summation formula for the HLeP HRn(x, y, z)

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
H

(m)
k (−z,−v) [m]Lr(−w, v) HLn−k−r(x, y, z),

(4.6)

which for m = 2 gives the following summation formula

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
Hk(−z,−v) Gr(−w, v) HLn−k−r(x, y, z).

(4.7)

Again, for m = 1, equation (4.6) yields to the following summation formula

HRn(x, y, w)

= n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
(−z − v)k Lr(−w, v) HLn−k−r(x, y, z).

(4.8)

We remark that the summation formula (4.6) can also be obtained after replac-
ing y by z, z by w and w by v in assertion (2.1) of Theorem 2.1 and operating
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exp
(
y ∂2

∂x2

)
on the resultant equation and then using operational definitions (4.2)

and (4.4).
Similarly, by considering the product of generating functions (1.28) and (1.32)

of the 2VgLtP and 3VHLP, respectively, and following the same method, we get
another summation formula for the HLeP HRn(x, y, z)

HRn(x, y, w) = n!
n∑

k=0

n−k∑
r=0

(
n

k

)(
n− k
r

)
×Hk(−z − v,−u) LHr(−w, v, u) HLn−k−r(x, y, z),(4.9)

which can also be obtained after replacing y by z, z by w, w by v and v by
u in assertion (2.14) of Theorem 2.2 and operating exp

(
y ∂2

∂x2

)
on the resultant

equation and then using operational definitions (4.2) and (4.4).
Very recently Dattoli et al. [8] introduced a two-variable extension of the Le-

gendre polynomials Pn(x, y), defined by the generating function

1√
1 + xt+ yt2

=
∞∑

n=0

Pn(x, y) tn.(4.10)

To give another example of the method adopted in this paper, we derive a
summation formula for the 2-variable Chebyshev polynomials (2VCP) Un(x, y) [6]
in terms of the product of the polynomials Pn(x, y). To this aim, we consider the
product of generating function (4.10) in the following form

1
(1 + xt+ yt2)

=
∞∑

n=0

∞∑
r=0

Pn(x, y)Pr(x, y) tn+r.(4.11)

Replacing x by −2x in equation (4.11) and then replacing n by n − r in the
r.h.s. of the resultant equation, we find

1
(1− 2xt+ yt2)

=
∞∑

n=0

n∑
r=0

Pn−r(−2x, y)Pr(−2x, y) tn.(4.12)

Now, using the generating function [10, p. 43] (see also [6])

1
(1− 2xt+ yt2)

=
∞∑

n=0

Un(x, y) tn(4.13)

of the 2VCP Un(x, y) in the l.h.s. of equation (4.12), we get the following summa-
tion formula

Un(x, y) =
n∑

r=0

Pn−r(−2x, y) Pr(−2x, y).(4.14)

The above examples prove the usefulness of the method adopted in this paper.
Further, to bolster up the contention of using operational techniques, certain new
families of special polynomials will be introduced in a forthcoming investigation.
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