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THE CESÀRO χ2 SEQUENCE SPACES
DEFINED BY A MODULUS

N. SUBRAMANIAN

Abstract. In this paper we define the Cesàro χ2 sequence space Cesq
p

“
χ2

f

”
defined

by a modulus and exhibit some general properties of the space.

1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued
single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set
of positive integers. Then, w2 is a linear space under the coordinate wise addition
and scalar multiplication.

An initial work on double sequence spaces is found in Bromwich [4]. Later on,
they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir
and Solankan [2], Tripathy [17], Turkmenoglu [19] and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : sup
m,n∈N

|xmn|tmn <∞
}
,

Cp (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn − l|tmn = 1 for some l ∈ C
}
,

C0p (t) :=
{

(xmn) ∈ w2 : p− lim
m,n→∞

|xmn|tmn = 1
}
,

Lu (t) :=

{
(xmn) ∈ w2 :

∞∑
m=1

∞∑
n=1

|xmn|tmn <∞

}
,

Cbp (t) := Cp (t) ∩Mu (t) and C0bp (t) = C0p (t) ∩Mu (t)

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p− limm,n→∞ denotes the limit in the Pringsheim’s sense. In case tmn = 1 for all
m,n ∈ N, Mu (t), Cp (t), C0p (t), Lu (t), Cbp (t) and C0bp (t) are reduced to the sets
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Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may summarize the knowl-
edge given in some documents related to the double sequence spaces. Gökhan and
Colak [21, 22] proved that Mu (t) and Cp (t), Cbp (t) are complete paranormed
spaces of double sequences and gave the α-, β-, γ- duals of the spaces Mu (t)
and Cbp (t). Quite recently, Zelter [23] in her PhD thesis, essentially studied both
the theory of topological double sequence spaces and the theory of summability
of double sequences. Mursaleen and Edely [24] recently introduced the statisti-
cal convergence and Cauchy for double sequences and gave the relation between
statistical convergent and strongly Cesàro summable double sequences. Next,
Mursaleen [25] and Mursaleen and Edely [26] defined the almost strong regularity
of matrices for double sequences and applied these matrices to establish a core
theorem and introduced the M -core for double sequences and determined those
four dimensional matrices transforming every bounded double sequence x = (xjk)
into one whose core is a subset of the M -core of x. More recently, Altay and Basar
[27] defined the spaces BS, BS (t), CSp, CSbp, CSr and BV of double sequences
consisting of all double series whose sequence of partial sums are in the spaces
Mu, Mu (t), Cp, Cbp, Cr and Lu, respectively, and also examined some properties
of those sequence spaces and determined the α-duals of the spaces BS,BV, CSbp
and the β (ϑ)− duals of the spaces CSbp and CSr of double series. Further Basar
and Sever [28] introduced the Banach space Lq of double sequences correspond-
ing to the well-known space `q of single sequences and examined some properties
of the space Lq. Quite recently Subramanian and Misra [29] studied the space
χ2
M (p, q, u) of double sequences and gave some inclusion relations.

Spaces that are strongly summable sequences were discussed by Kuttner [31],
Maddox [32], and others. The class of sequences which are strongly Cesàro sum-
mable with respect to a modulus was introduced by Maddox [8] as an extension
of the definition of strongly Cesàro summable sequences. Connor [33] further ex-
tended this definition to a definition of strong A-summability with respect to a
modulus where A = (an,k) is a nonnegative regular matrix and established some
connections among strong A-summability, strong A-summability with respect to a
modulus, and A-statistical convergence. In [34] the notion of convergence of dou-
ble sequences was presented by A. Pringsheim. Also, in [35]–[38] and [39] the four
dimensional matrix transformation (Ax)k,` =

∑∞
m=1

∑∞
n=1 a

mn
k` xmn was studied

extensively by Robison and Hamilton. This will be accomplished by presenting
the following sequence spaces:

Cesqp
(
χ2
f

)
= d (x, 0)

=

x∈χ2 := lim
m,n→∞

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n) |xmn|)
1

m+n

))pmn
 1

pmn

= 0


and

Cesqp
(
Λ2
f

)
= d (x, 0)

=

x ∈ χ2 := sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn|)
1

m+n

))pmn
 1

pmn

<∞
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where f is a modulus function. Other implications, general properties and varia-
tions will also be presented.

In the sequel of the paper we need the following inequality

(a+ b)p ≤ ap + bp(1.1)

for a, b,≥ 0 and 0 < p < 1. The double series
∑∞
m,n=1 xmn is called con-

vergent if and only if the double sequence (smn) is convergent, where smn =∑m,n
i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|
1/m+n

<∞.
The vector space of all double analytic sequences will be denoted by Λ2. A se-
quence x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as
m,n→∞. The double gai sequences will be denoted by χ2. Let φ = {all finite
sequences}.

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the se-
quence is defined by x[m,n] =

∑m,n
i,j=0xij=ij for all m,n ∈ N ; where =ij denotes

the double sequence whose only non zero term is a 1
(i+j)! in the (i, j)th place for

each i, j ∈ N.
An FK-space (or a metric space) X is said to have AK property if (=mn) is a

Schauder basis for X. Or equivalently x[m,n] → x.
An FDK-space is a double sequence space endowed with a complete metrizable;

locally convex topology under which the coordinate mappings x = (xk) → (xmn)
(m,n ∈ N) are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space
(
LM
)
. Lin-

denstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail and
proved that every Orlicz sequence space `M contains a subspace isomorphic to
`p (1 ≤ p <∞). Subsequently, different classes of sequence spaces were defined by
Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3], Tripa-
thy et al. [18], Rao and Subramanian [15] and many others. The Orlicz sequence
spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing and convex with M (0) = 0, M (x) > 0 for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced
by subadditivity of M , then this function is called modulus function, defined by
Nakano [12] and further discussed by Ruckle [16] and Maddox [8], and many
others.

An Orlicz functionM is said to satisfy the ∆2-condition for all values of u if there
exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0). The ∆2-condition
is equivalent to M (`u) ≤ K`M (u) for all values of u and for ` > 1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct
Orlicz sequence space

`M =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
.
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The space `M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
becomes a Banach space which is called an Orlicz sequence space. For M (t) = tp,
(1 ≤ p <∞), the spaces `M coincide with the classical sequence space `p.

If X is a sequence space, we give the following definitions:
(i) X

′
is the continuous dual of X;

(ii) Xα =

{
a = (amn) :

∞∑
m,n=1

|amnxmn| <∞, for each x ∈ X

}
;

(iii) Xβ =

{
a = (amn) :

∞∑
m,n=1

amnxmn is convergent, for each x ∈ X

}
;

(iv) Xγ =

{
a = (amn) : sup

mn
≥ 1,

∣∣∣∣∣ M,N∑
m,n=1

amnxmn

∣∣∣∣∣ <∞, for each x ∈ X

}
;

(v) let X be an FK-space ⊃ φ; then Xf =
{
f(=mn) : f ∈ X ′

}
;

(vi) Xδ =
{
a = (amn) : sup

mn
|amnxmn|1/m+n

<∞, for each x ∈ X
}

;

Xα, Xβ , Xγ are called α- (or Köthe-Toeplitz)-dual ofX, β- (or generalized- Köthe-
Toeplitz)-dual of X, γ-dual of X, δ-dual of X, respectively. Xα was defined by
Gupta and Kamptan [20]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but Xβ ⊂ Xγ

does not hold, since the sequence of partial sums of a double convergent series
need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [30] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0 and `∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and `∞ denote the classes of convergent, null and bounded scalar

valued single sequences, respectively. The difference space bvp of the classical
space `p was introduced and studied in the case 1 ≤ p ≤ ∞ by Basar and Altay
in [42] and in the case 0 < p < 1 by Altay and Basar in [43]. The spaces c (∆),
c0 (∆), `∞ (∆) and bvp are Banach spaces normed by

‖x‖ = |x1|+ sup
k≥1
|∆xk| and ‖x‖bvp

=

( ∞∑
k=1

|xk|p
)1/p

, (1 ≤ p <∞) .

Later on the notion was further investigated by many others. We now introduce
the following difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1)
= xmn − xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N.
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2. Definitions and Preliminaries

Cesqp
(
χ2
f

)
and Cesqp

(
Λ2
f

)
denote the Pringscheims sense of Cesàro double gai

sequence space of modulus and Pringscheims sense of Cesàro double analytic se-
quence space of modulus, respecctively.

Definition 2.1. A modulus function was introduced by Nakano [12]. We recall
that a modulus f is a function from [0,∞)→ [0,∞) such that

(1) f (x) = 0 if and only if x = 0,
(2) f (x+ y) ≤ f (x) + f (y) for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|), it

follows from here that f is continuous on [0,∞).

Definition 2.2. LetA =
(
amnk,`

)
denote a four dimensional summability method

that maps the complex double sequences x into the double sequence Ax where the
k, `-th term to Ax is as follows:

(Ax)k` =
∞∑
m=1

∞∑
n=1

amnk` xmn.

Such transformation is said to be nonnegative if amnk` is nonnegative.

The notion of regularity for two dimensional matrix transformations was pre-
sented by Silverman [40] and Toeplitz [41]. Following Silverman and Toeplitz,
Robison and Hamilton presented the following four dimensional analog of regu-
larity for double sequences in which they both added an adiditional assumption
of boundedness. This assumption was made because a double sequence which is
P -convergent is not necessarily bounded.

Definition 2.3. Let p ∈ [1,∞) and q be a double gai sequence of positive real
numbers such that

Qij =
i∑

m=0

j∑
n=0

qmn, i, j ∈ N,

Cesqp
(
χ2
f

)
= d (x, 0)

=

x∈χ2 := lim
m,n→∞

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n) |xmn|)
1

m+n

))pmn
 1

pmn

= 0


If qmn = 1 for all m,n ∈ N, then Cesqp

(
χ2
f

)
reduces to Cesp

(
χ2
f

)
, and if f (x) = x,

then Cesqp
(
χ2
f

)
reduces to Cesqp

(
χ2
)
.

Definition 2.4. Let p ∈ [1,∞) and q be a double analytic sequence of positive
real numbers such that

Qij =
i∑

m=0

j∑
n=0

qmn, i, j ∈ N,
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Cesqp
(
Λ2
f

)
= d (x, 0)

=

x ∈ χ2 := sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn|)
1

m+n

))pmn
 1

pmn

<∞

 .

If qmn = 1 for all m,n ∈ N, then Cesqp
(

Λ2
f

)
reduces to Cesp

(
Λ2
f

)
, and if f (x) = x,

then Cesqp
(

Λ2
f

)
reduces to Cesqp

(
Λ2
)
.

The space Cesqp
(
χ2
f

)
is a metric space with the metric

d (x, y)

= inf

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn−ymn|)
1

m+n

))pmn
 1

pmn

≤ 1


The space Cesqp

(
Λ2
f

)
is a metric space with the metric

d (x, y)

= inf

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

(|xmn − ymn|)
1

m+n

))pmn
 1

pmn

≤ 1

 .

3. Main Results

Proposition 3.1. Let x, y ∈ Cesqp
(
χ2
f

)
. Then for any ε > 0 and L > 0, there

exists δ > 0 such that (d (x+ y, 0) , 0)pmn = d (x, 0)pmn + ε, whenever d (x, 0)p ≤ L
and d (y, 0)pmn ≤ δ.

Proof. For any fix ε > 0,

d (x+ y, 0)pmn =
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn + ymn|)
1

m+n

))pmn

≤
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

))pmn
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≤ (1− β)
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+ (β)
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

· (β)
∞∑
i=1

∞∑
j=1

 1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

)
β

pmn

≤
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

+
β

2

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

2qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn

· β
2

∞∑
i=1

∞∑
j=1

 1
Qij

i∑
m=1

j∑
n=1

2qmnf
(

((m+ n)! |ymn|)
1

m+n

)
β

pmn

≤ d (x, 0)pmn +
ε

2

+
(

2
β

)pmn−1 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |ymn|)
1

m+n

))pmn

≤ d (x, 0)pmn +
ε

2
+
ε

2
≤d (x, 0)pmn + ε.

�

Proposition 3.2. For every p = (pmn),[
Cesqp

(
Λ2
f

)]β
=
[
Cesqp

(
Λ2
f

)]α
=
[
Cesqp

(
Λ2
f

)]γ
=
[
Cesqp

(
η2
f

)]β
,

where[
Cesqp

(
η2
f

)]
=

⋂
N∈N−{1}

x = xmn :
∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|N

m+n
pmn

)) 1
pmn

<∞

 .

Proof. First we show that
[
Cesqp

(
η2
f

)]
⊂
[
Cesqp

(
Λ2
f

)]β
.
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Let x ∈
[
Cesqp

(
η2
f

)]
and y ∈

[
Cesqp

(
Λ2
f

)]β
. Then we can find a positive

integer N such that(
|ymn|1/m+n

)
< max

1, sup
m,n≥1

∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|ymn|

1
m+n

)pmn

) 1
pmn

 < N

for all m,n.
Hence we may write∣∣∣∣∣∑
m,n

xmnymn

∣∣∣∣∣ ≤∑
m,n

|xmnymn| ≤
∑
mn

(f (|xmnymn|)) ≤
∑
m,n

(
f
(
|xmn|Nm+n

))
.

Since x ∈ Cesqp

(
η2
f

)
. The series on the right side of the above inequality is

convergent, whence x ∈ Cesqp
(

Λ2
f

)
. Hence

[
Cesqp

(
η2
f

)]
⊂
[
Cesqp

(
Λ2
f

)]β
.

Now we show that
[
Cesqp

(
Λ2
f

)]β
⊂
[
Cesqp

(
η2
f

)]
.

For this, let x ∈
[
Cesqp

(
Λ2
f

)]β
and suppose that x /∈

[
Cesqp

(
Λ2
f

)]
. Then there

exists a positive integer N > 1 such that
∑
m,n (f (|xmn|Nm+n)) =∞.

If we define ymn = Nm+nSgnxmn m,n = 1, 2, · · · , then y ∈
[
Cesqp

(
Λ2
f

)]
.

But, since∣∣∣∣∣∑
m,n

xmnymn

∣∣∣∣∣ =
∑
mn

(f (|xmnymn|)) =
∑
m,n

(
f
(
|xmn|Nm+n

))
=∞,

we get x /∈
[
Cesqp

(
Λ2
f

)]β
, which contradicts the assumption x ∈

[
Cesqp

(
Λ2
f

)]β
.

Therefore x ∈
[
Cesqp

(
η2
f

)]
and

[
Cesqp

(
Λ2
f

)]β
=
[
Cesqp

(
η2
f

)]
.

(ii)and (iii) can be shown in a similar way of (i). Therefore, we omit it. �

Proposition 3.3. Let p = (pmn) be a Cesàro space of double analytic modulus
sequence of strictly positive real numbers pmn. Then

(i) Cesqp
(

Λ2
f

)
is a paranormed space with

g (x) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|

1
m+n

)) pmn
M


1

pmn

(3.1)

if and only if h = inf pmn > 0, where M = max (1, H) and H = sup pmn.
(ii) Cesqp

(
Λ2
f

)
is a complete paranormed linear metric space if the condition p

in (3.1) is satisfied.
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Proof. The proof of (i). Sufficiency. Let h > 0. It is trivial that g (θ) = 0 and
g (−x) = g (x).

The inequality g (x+ y) ≤ g (x) + g (y) follows from the inequality (3.1),
since pmn/M ≤ 1 for all positive integers m,n. We also may write g (λx) ≤
max

(
|λ| , |λ|h/M

)
g (x), since |λ|pmn ≤ max

(
|λ|h , |λ|M

)
for all positive integers

m,n and for any λ ∈ C, the set of complex numbers. Using this inequality, it can
be proved that λx → θ, when x is fixed and λ → 0, or λ → 0 and x → θ, or λ is
fixed and x→ θ.

Necessity. Let Cesqp
(

Λ2
f

)
be a paranormed space with the paranorm

g (x) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(
|xmn|

1
m+n

)) pmn
M


1

pmn

and suppose that h = 0. Since |λ|pmn/M ≤ |λ|h/M = 1 for all positive integers m,n
and λ ∈ C such that 0 < |λ| ≤ 1, we have

sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (|λ|)

) pmn
M


1

pmn

= 1.

Hence it follows that

g (λx) = sup

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (|λ|)

) pmn
M


1

pmn

= 1

for x = (α) ∈ Cesqp
(

Λ2
f

)
as λ→ 0. But this contradicts the assumption Cesqp

(
Λ2
f

)
is a paranormed space with g (x) .

The proof of (ii) is clear. �

Corollary 3.4. Cesqp
(

Λ2
f

)
is a complete paranormed space with the natural

paranorm if and only if Cesqp
(

Λ2
f

)
= Cesq

(
Λ2
f

)
.

Proposition 3.5. For every p = (pmn) , Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
&Cesqp

(
Λ2
f

)
.

Proof. The proof of (i). First, we show that Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
. We

know that
[
Cesqp

(
χ2
f

)]
⊂ Cesqp

(
Λ2
f

)
.[

Cesqp
(

Λ2
f

)]β
⊂
[
Cesqp

(
χ2
f

)]β
. But

[
Cesqp

(
Λ2
f

)]β
= Cesqp

(
η2
f

)
by Proposi-

tion 3.2. Therefore,

Cesqp
(
η2
f

)
⊂
[
Cesqp

(
χ2
f

)]β
.(3.2)
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The proof of (ii). Now we show that
[
Cesqp

(
χ2
f

)]β
& Cesqp

(
Λ2
f

)
.

Let y = (ymn) be an arbitrary point
[
Cesqp

(
χ2
f

)]β
. If y is not Cesqp

(
Λ2
f

)
, then

for each natural number q, we can find an index mpnq such that ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmqnq
f
((

(mq + nq)!
∣∣ymqnq

∣∣) 1
mq+nq

))pmn
 1

pmn

> q

for (1, 2, 3, · · · ). Define x = {xmn} by ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn >

) q
1

m+n

for (mn) = (mqnq) and some q ∈ N; and ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) = 0, otherwise.

Then x is Cesqp
(
χ2
f

)
, but for infinitely mn, ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |ymnxmn|)pmn)
1

pmn

) > 1.(3.3)

Consider the sequence z = {zmn} , where

Q11 (q11f (2!z11)pmn)pmn = Q11 (q11f (2!x11)pmn)pmn − s

with

s =

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ;

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmn|)pmn)
1

pmn

)
=

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) .

The z is a point of Cesqp
(
χ2
f

)
. Also ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmn|)pmn)
1

pmn

) = 0.
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Hence z is in Cesqp
(
χ2
f

)
. But, by the equation (3.3), ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |zmnymn|)pmn)
1

pmn

)
does not converge and so

∑∑
xmnymn diverges. Thus, the sequence y would not

be
[
Cesqp

(
χ2
f

)]β
. This contradiction proves that

[
Cesqp

(
χ2
f

)]β ⊂ Cesqp
(
Λ2
f

)
.(3.4)

If we now choose f = id, where id is the identity and

1
Q1j

(q1n ((m+ n)!y1n)) =
1
Q1j

(q1n ((m+ n)!x1n))

and
1
Qij

(qmn ((m+ n)!ymn)) =
1
Qij

(qmn ((m+ n)!xmn)) = 0, (m, i > 1)

for all n, j, then obviously x ∈ Cesqp
(
χ2
f

)
and y ∈ Cesqp

(
Λ2
f

)
, but∑∑

xmnymn =∞.(3.5)

Hence y /∈
[
Cesqp

(
χ2
f

)]β
.

From (3.4) and (3.5), we are granted
[
Cesqp

(
χ2
f

)]β
& Cesqp

(
Λ2
f

)
. �

Proposition 3.6. In Cesqp
(
χ2
f

)
weak convergence does not imply strong con-

vergence.

Proof. Assume that weak convergence implies strong convergence Cesqp
(
χ2
f

)
.

Then, we would have
[
Cesqp

(
χ2
f

)]ββ
= Cesqp

(
χ2
f

)
[see Wilansky]. But[

Cesqp
(
χ2
f

)]ββ &
[
Cesqp

(
Λ2
f

)]β
= Cesqp

(
η2
f

)
.

Thus
[
Cesqp

(
χ2
f

)]ββ
6= Cesqp

(
χ2
f

)
. Hence weak convergence does not imply strong

convergence in Cesqp
(
χ2
f

)
. �

Proposition 3.7. Let f be an modulus function which satisfies the ∆2-condition.
Then Cesqp

(
χ2
)
⊂ Cesqp

(
χ2
f

)
.

Proof. Let

x ∈ Cesqp
(
χ2
)
.(3.6)
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Then  ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmn (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ ε
for sufficiently large m,n and every ε > 0. ∞∑

i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ f (ε)

(because f is non-decreasing). This implies ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf (((m+ n)! |xmn|)pmn)
1

pmn

) ≤ Kf (ε) < (ε)

(by the ∆2-condition, for some K > 0 and by defining f (ε) < ε
K ).

lim
m,n→∞

 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn
 1

pmn

=0.(3.7)

Hence

x ∈ Cesqp
(
χ2
f

)
.(3.8)

From (3.6) and (3.8), we get Cesqp
(
χ2
)
⊂ Cesqp

(
χ2
f

)
. �

Proposition 3.8.
[
Cesqp

(
Λ2
f

)]β
& Cesqp

(
χ2
f

)
.

Proof. Let (xmn) ∈
[
Cesqp

(
Λ2
f

)]β
∑∑

|xmnymn| <∞(3.9)

for all (ymn) ∈
[
Cesqp

(
Λ2
f

)]β
. Assume that (xmn) /∈ Cesqp

(
χ2
f

)
. Then there exists

a sequence of positive integers

f (|xmr+nr |) >
1(

(mr + nr!2)(mr+nr)
) , (r = 1, 2, 3, · · · ) .

Take

ymr+nr
=

 (2 (mr + nr)!)
mr+nr for r = 1, 2, 3, · · · ,

ymr+nr = 0 otherwise.

Then (ymn) ∈
[
Cesqp

(
Λ2
f

)]
. But

∑∑
|xmnymn| =

∞∑
r=1

|xmr+nr
ymr+nr

| = f

( ∞∑
r=1

|xmr+nr
ymr+nr

|

)
> 1 + 1 + 1 + · · · .
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We know that the infinite series 1 + 1 + 1 + . . . diverges. Hence
∑∑

|xmnymn|
diverges. This contradicts (3.9). Hence (xmn) ∈ Cesqp

(
χ2
f

)
. Therefore,[

Cesqp
(
Λ2
f

)]β ⊂ Cesqp
(
χ2
f

)
.(3.10)

If we now choose p = (pmn), it is a constant f = id, where id is the identity and
1
Q1j

(q1n ((1 + n)!y1n)) =
1
Q1j

(q1n ((1 + n)!x1n)) and

1
Qij

(qmn ((m+ n)!ymn)) =
1
Qij

(qmn ((m+ n)!xmn)) = 0

where (m, i > 1) for all n, j, then obviously x ∈ Cesqp
(
χ2
f

)
and y ∈ Cesqp

(
Λ2
f

)
,

but ∑∑
xmnymn =∞.(3.11)

Hence y /∈
[
Cesqp

(
χ2
f

)]β
.

From (3.10) and (3.1), we are granted
[
Cesqp

(
Λ2
f

)]β
& Cesqp

(
χ2
f

)
. �

Proposition 3.9. Let
(

Cesqp
(
χ2
f

))∗
denote the dual space of Cesqp

(
χ2
f

)
. Then

we have
(

Cesqp
(
χ2
f

))∗
= Cesqp

(
Λ2
f

)
.

Proof. We recall that

x = =mn =


0, 0, . . . 0, 0, . . . 0
0, 0, . . . 0, 0, . . . 0
...
0, 0, . . . 1

(m+n)! , 0, . . . 0
0, 0, . . . 0, 0, . . . 0


with 1

(m+n)! in the (m,n)th position and zero otherwise, with

x = =mn


 ∞∑
i=1

∞∑
j=1

(
1
Qij

i∑
m=1

j∑
n=1

qmnf
(

((m+ n)! |xmn|)
1

m+n

))pmn
 1

pmn



=


0, 0, . . . 0, 0, . . . 0
...
0, 0, . . .

(
(m+n)!
(m+n)!

)
, 0, . . . 0

0, 0, . . . 0, 0, . . . 0

 =


0, 0, . . . 0, 0, . . . 0
0, 0, . . . 0, 0, . . . 0
...
0, 0, . . . 11/m+n, 0, . . . 0
0, 0, . . . 0, 0, . . . 0


which is a Cesqp

(
χ2
f

)
sequence. Hence =mn ∈ Cesqp

(
χ2
f

)
. Let us take f (x) =∑∞

m=1

∑∞
n=1 xmnymn with x ∈ Cesqp

(
χ2
f

)
and f ∈

(
Cesqp

(
χ2
f

))∗
. Take x =
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(xmn) = =mn ∈ Cesqp
(
χ2
f

)
. Then

|ymn| ≤ ‖f‖ d (=mn, 0) <∞ for each m,n.

Thus (ymn) is a bounded sequence and hence an Cesàro double analytic sequence of

modulus. In other words y ∈ Cesqp
(

Λ2
f

)
. Therefore

(
Cesqp

(
χ2
f

))∗
= Cesqp

(
Λ2
f

)
.

�
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