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I-CONVERGENCE TO A SET

P. LETAVAJ

Abstract. We will deal with the sequences of points of a metric space. We will
introduce I-convergence to a set and give a sufficient condition to a sequence to be

I-convergent to a set. A connection between this “limit set” and the set of I-cluster

points is investigated.

Introduction

In the paper [4] the authors introduced the notion of Γ2-statistical convergence
to a set C for double sequences where some properties of C were required. There
arose the question whether it is possible to do an analogous construction for usual
sequences of points of a metric space considering I-convergence, i.e. whether it is
possible to define I-convergence to a set for sequences of points of arbitrary met-
ric space and whether some results of [4] can be obtained for I-convergence to a set.

Notations and definitions

Let (X, ρ) be a metric space. We will use the following notations:

B(x, ε) = {y ∈ X : ρ(x, y) < ε} for x ∈ X and ε > 0,

ρ(x,K) = inf{ρ(x, y) : y ∈ K} for x ∈ X and K ⊂ X,
B(K, ε) = {x ∈ X : ρ(x,K) < ε} for K ⊂ X and ε > 0.

Definition A. Let N be the set of positive integers. A non-void family I ⊂ 2N

is said to be a proper ideal in N if

(i) A ∪B ∈ I for any A,B ∈ I,
(ii) if A ∈ I and B ⊂ A, then B ∈ I,
(iii) N /∈ I.

(See [2].)

Definition B. A proper ideal I is said to be admissible if {x} ∈ I for each
x ∈ X. (See [2].)

Received May 11, 2010; revised September 02, 2010.

2001 Mathematics Subject Classification. Primary 40A35.

Key words and phrases. Ideal convergence; minimal closed set; cluster point.



104 P. LETAVAJ

Definition C. Let I be an admissible ideal. A sequence x = {xn}∞n=1, xn ∈ X
is said to be I-convergent to ξ ∈ X if for each ε > 0, A(ε) = {n : ρ(xn, ξ) ≥ ε} ∈ I.
(See [2].)

Definition D. A point ξ ∈ X is said to be an I-cluster point of a sequence
x = {xn}∞n=1, xn ∈ X if for each ε > 0, the set {n : ρ(xn, ξ) < ε} does not belong
to I. The set of all I-cluster points of the sequence x = {xn}∞n=1 is denoted by
Γx(I). (See [1].)

Definition E. A sequence x = {xn}∞n=1, xn ∈ X, is said to be I-bounded if
there is a compact set K ⊂ X such that the set {n : ρ(xn,K) > 0} ∈ I. (Cf. [2].)

I-convergence of sequences of points of a metric space
to the set

Definition 1. Let I be an admissible ideal and x = {xn}∞n=1 be a sequence,
xn ∈ X. Let C ⊂ X be a non-void closed set with the following property

{j ∈ N : ρ(xj , C) ≥ ε} ∈ I for each ε > 0.(1)

The set C is said to be the minimal closed set fulfilling (1) if for each closed set
C ′ ⊂ C such that C \ C ′ 6= ∅, the condition (1) does not hold. (Cf. [4].)

Definition 2. A sequence x = {xn}∞n=1, xn ∈ X, is said to be I-convergent to
the set C if C is a non-void minimal closed set fulfilling (1). (Cf. [4].)

The next assertion is an easy consequence of Definition 2.

Lemma 1. If a sequence x = {xn}∞n=1, xn ∈ X, I-converges to ξ, then x is
I-convergent to the set C = {ξ}.

For some sequences there is no minimal closed set fulfilling (1). This shows the
following example.

Example. Let X = R (R - the real line), I = {A ⊂ N : A is finite} and se-
quence x = {xn}∞n=1 be defined as follows: xn = n. Every interval [a,∞), a > 0
fulfills condition (1). Since

⋂
a>0

[a,∞) = ∅ there is no non-void minimal closed set

fulfilling (1).

The next theorem gives a sufficient condition for a sequence to be I-convergent
to a set.

Theorem 1. Let x = {xn}∞n=1, xn ∈ X, be an I-bounded sequence. Then it is
I-convergent to the set Γx(I).

The next assertion we will be used in the proof of Theorem 1.

Lemma 2. If x = {xn}∞n=1, xn ∈ X is I-bounded then Γx(I) is a non-void
compact set.

Proof. I-boundedness of x = {xn}∞n=1 implies the existence of a compact set K
such that {j : ρ(xj ,K) > 0} ∈ I. We show Γx(I) ⊂ K. Suppose ξ ∈ Γx(I) \K.
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Then there is ε > 0 such that B(ξ, ε)∩K = ∅. Then {j : xj ∈ B(ξ, ε)} ⊂ {j : xj /∈
K} and {j : xj /∈ K} ∈ I imply {j : xj ∈ B(ξ, ε)} ∈ I – a contradiction. It is
known that Γx(I) is a closed set (see [1, 3]). Hence Γx(I) ⊂ K is a compact set.

We show Γx(I) 6= ∅ by contradiction. Let none of ξ ∈ X be an I-cluster point,
i. e. for each ξ ∈ K there exists ε(ξ) > 0 such that {j : ρ(xj , ξ) < ε(ξ)} ∈ I. The
family {B(ξ, ε(ξ))}ξ∈K is an open cover of K. Since K is a compact there is n
such that

K ⊂
n⋃
i=1

B(ξi, ε(ξi)) and {j : xj ∈ K} ⊂
n⋃
i=1

{j : xj ∈ B(ξi, ε(ξi))} ∈ I.

Thus {j : xj /∈ K} /∈ I. This is a contradiction with I-boundedness of x={xn}∞n=1.
The proof of Lemma 2 is finished. �

Proof of Theorem 1. To complete the proof we show that:
a) Γx(I) fulfills condition (1);
b) Γx(I) is the minimal closed set fulfilling (1).

a) Since {xn}∞n=1 is I-bounded, there is a compact K such that {j : xj /∈
K} ∈ I and Γx(I) ⊂ K (see the proof of Lemma 2). Let ε > 0. Put M =
K ∩ (X \ B(Γx(I), ε)). Obviously M is a compact set and {B(ξ, ε(ξ))}ξ∈M is its
open cover. (ε(ξ) is such that {j : xj ∈ B(ξ, ε(ξ))} ∈ I and ε(ξ) < ε for each
ξ ∈M .) Hence there is a finite cover S of M ,⋃

S = P =
n⋃
i=1

B(ξi, ε(ξi)) ⊃M and X \ P ⊂ X \M.

Let A′ denote the complement of the set A. Then

X \ (K ′ ∪ P ) ⊂ B(Γx(I), ε) and B(Γx(I), ε)′ ⊂ K ′ ∪ P.
Hence

{j : xj /∈ B(Γx(I), ε)} ⊂ {j : xj ∈ K ′ ∪ P}

⊂ {j : xj ∈ K ′} ∪
n⋃
i=1

{j : xj ∈ B(ξi, ε(ξi))}.

On the right hand side, there are n + 1 summands from I and consequently
{j : xj /∈ B(Γx(I), ε)} ∈ I. Hence Γx(I) fulfils (1).

b) We show that Γx(I) is the minimal closed set fulfilling (1). Suppose that
there is a closed set C, C ⊂ Γx(I), such that Γx(I) \ C 6= 0. Then for some
ξ ∈ Γx(I), there is ε > 0 such that B(ξ, ε) ∩ C = ∅. Then

B
(
ξ,
ε

3

)
∩B

(
C,

ε

3

)
= ∅ and B

(
ξ,
ε

3

)
⊂ X \B

(
C,

ε

3

)
.

Since ξ ∈ Γx(I), we have{
j : xj ∈ B

(
ξ,
ε

3

)}
/∈ I and

{
j : xj /∈ B

(
C,

ε

3

)}
/∈ I.

This shows minimality of Γx(I). �
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Theorem 2. Let a sequence x = {xn}∞n=1, xn ∈ X, be I-convergent to a set C.
Then C = Γx(I).

Proof. First we show that the inclusion Γx(I) ⊂ C holds. If there is ξ ∈ Γx(I)\
C, then there exists ε > 0 such that B(ξ, ε)∩B(C, ε) = ∅ and B(ξ, ε) ⊂ X\B(C, ε).
So we have {j : xj ∈ B(ξ, ε)} ⊂ {j : xj /∈ B(C, ε)}. Since ξ is an I-cluster point,
{j : xj ∈ B(ξ, ε)} /∈ I and also {j : xj /∈ B(C, ε)} /∈ I, we get a contradiction with
the condition (1). Thus Γx(I) ⊂ C.

By contradiction we show C ⊂ Γx(I). Suppose ξ ∈ C \ Γx(I). Then there is a
δ > 0 such that {j : xj ∈ B(ξ, ε)} ∈ I holds for every ε, 0 < ε < δ. Let η > 0. Put
W = B(C \B(ξ, ε), η), Y = B(C, η) and Z = B(ξ, ε). Then X \W ⊂ (X \Y )∪Z.
C is the minimal closed set satisfying (1) {j : xj /∈ Y } ∈ I and {j : xj ∈ Z} ∈ I
by our choice of δ. Consequently {j : xj /∈ W} ∈ I. This is a contradiction with
the minimality of the closed set C satisfying (1) since C \B(ξ, ε) ( C.

The proof is finished. �
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