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PERTURBATION RESULTS FOR WEYL TYPE THEOREMS

M. BERKANI and H. ZARIOUH

Abstract. In [12] we introduced and studied properties (gab) and (gaw), which

are extensions to the context of B-Fredholm theory, of properties (ab) and (aw)
respectively, introduced also in [12]. In this paper we continue the study of these

properties and we consider their stability under commuting finite rank, compact

and nilpotent perturbations. Among other results, we prove that if T is a bounded
linear operator acting on a Banach space X, then T possesses property (gaw) if and

only if T satisfies generalized Weyl’s theorem and E(T ) = Ea(T ).
We also prove that if T possesses property (ab) or property (aw) or property

(gaw), respectively, and N is a nilpotent operator commuting with T, then T + N

possesses property (ab) or property (aw) or property (gaw) respectively. The same
result holds for property (gab) in the case of a-polaroid operators.

1. Introduction

Throughout this paper, let L(X) denote the Banach algebra of all bounded linear
operators acting on an infinite-dimensional complex Banach space X. For T ∈
L(X), let N(T ), R(T ), σ(T ) and σa(T ) denote the null space, the range, the spec-
trum and the approximate point spectrum of T , respectively. Let α(T ) and β(T )
be the nullity and the deficiency of T defined by α(T ) = dimN(T ) and β(T ) =
codimR(T ). Recall that an operator T ∈ L(X) is called an upper semi-Fredholm
if α(T ) <∞ and R(T ) is closed, while T ∈ L(X) is called a lower semi-Fredholm
if β(T ) <∞. Let SF+(X) denote the class of all upper semi-Fredholm operators.
If T ∈ L(X) is an upper or lower semi-Fredholm operator, then T is called a semi-
Fredholm operator, and the index of T is defined by ind(T ) = α(T ) − β(T ). If
both α(T ) and β(T ) are finite, then T is called a Fredholm operator. An operator
T ∈ L(X) is called a Weyl operator if it is a Fredholm operator of index 0. Define

SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}.
The classes of operators defined above generate the following spectra: the Weyl
spectrum σW (T ) of T ∈ L(X) is defined by

σW (T ) = {λ ∈ C : T − λI is not a Weyl operator},
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while the Weyl essential approximate spectrum σSF−+
(T ) of T is defined by

σSF−+
(T ) = {λ ∈ C : T − λI 6∈ SF−+ (X)}.

For T ∈ L(X), let ∆(T ) = σ(T )\σW (T ) and ∆a(T ) = σa(T )\σSF−+ (T ). Following

Coburn [16], we say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) = E0(T ),
where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}. Here and elsewhere in this
paper, for A ⊂ C, isoA is the set of all isolated points of A, and accA denote the
set of all points of accumulation of A.

According to Rakočević [25], an operator T ∈ L(X) is said to satisfy a-Weyl’s
theorem if ∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) <∞}.

It is known [25] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but the converse does not hold in general.

Recall that the ascent a(T ), of an operator T , is defined by

a(T ) = inf{n ∈ N : N(Tn) = N(Tn+1)}
and the descent δ(T ) of T is defined by

δ(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}
with inf ∅ =∞. An operator T ∈ L(X) is called Drazin invertible if it has a finite
ascent and descent. The Drazin spectrum σD(T ) of an operator T is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.
An operator T ∈ L(X) is called Browder if it is Fredholm of finite ascent and
descent and is called upper semi-Browder if it is upper semi-Fredholm of finite
ascent. The Browder spectrum σb(T ) of T is defined by

σb(T ) = {λ ∈ C : T − λI is not Browder}
and the upper semi-Browder spectrum σub(T ) of T is defined by

σub(T ) = {λ ∈ C : T − λI is not upper semi-Browder}
(see [15] and [24]).

Define also the set LD(X) by

LD(X) = {T ∈ L(X) : a(T ) <∞ and R(T a(T )+1) is closed }
and

σLD(T ) = {λ ∈ C : T − λI 6∈ LD(X)}.
Following [10], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈
LD(X). We say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that
λ ∈ σa(T ) is a left pole of T of finite rank if λ is a left pole of T and α(T−λI) <∞.
Let Πa(T ) denote the set of all left poles of T and let Π0

a(T ) denotes the set of all
left poles of T of finite rank.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the
set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) :
α(T −λI) <∞}. According to [19], a complex number λ is a pole of the resolvent
of T if and only if 0 < max (a(T − λI), δ(T − λI)) <∞. Moreover, if this is true
then a(T−λI) = δ(T−λI). According also to [19], the space R((T−λI)a(T−λI)+1)
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is closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and Π0(T ) ⊂
Π0
a(T ).
For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of

T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If
for some integer n the range space R(Tn) is closed and T[n] is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-
B-Fredholm operator. In this case the index of T is defined as the index of the
semi-Fredholm operator T[n], see [11]. Moreover, if T[n] is a Fredholm operator,
then T is called a B-Fredholm operator, see [5]. A semi-B-Fredholm operator is
an upper or a lower semi-B-Fredholm operator. An operator T is said to be a
B-Weyl operator [6, Definition 1.1] if it is a B-Fredholm operator of index zero.
The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator},
and the B-Fredholm spectrum σBF (T ) of T is defined by

σBF (T ) = {λ ∈ C : T − λI is not a B-Fredholm operator}.
For T ∈ L(X), let ∆g(T ) = σ(T )\σBW (T ). According to [10], an operator T ∈

L(X) is said to satisfy generalized Weyl’s theorem if ∆g(T ) = E(T ), where E(T ) =
{λ ∈ isoσ(T ) : α(T − λI) > 0}. According also to [10] we say that generalized
Browder’s theorem holds for T ∈ L(X) if ∆g(T ) = Π(T ), and that Browder’s
theorem holds for T ∈ L(X) if ∆(T ) = Π0(T ). It is proved in [4, Theorem 2.1]
that generalized Browder’s theorem is equivalent to Browder’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators,

SBF−+ (X) = {T ∈ SBF+(X) : ind(T ) ≤ 0}.
The upper B-Weyl spectrum σSBF−+

(T ) of T is defined by

σSBF−+
(T ) = {λ ∈ C : T − λI /∈ SBF−+ (X)}.

Let ∆g
a(T ) = σa(T ) \ σSBF−+ (T ). We say that a-Browder’s theorem holds for

T ∈ L(X) if ∆a(T ) = Π0
a(T ), and that generalized a-Browder’s theorem holds for

T ∈ L(X) if ∆g
a(T ) = Πa(T ). It is proved in [4, Theorem 2.2] that generalized

a-Browder’s theorem is equivalent to a-Browder’s theorem. According to [10], an
operator T ∈ L(X) is said to satisfy generalized a-Weyl’s theorem if ∆g

a(T ) =
Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λI) > 0}. It is known [10] that an
operator obeying generalized a-Weyl’s theorem obeys generalized Weyl’s theorem,
but the converse is not true in general.

Definition 1.1. An operator T ∈ L(X) is called a-polaroid (resp. isoloid)
if all isolated points of the approximate point spectrum are left poles of T , i.e.
isoσa(T ) = Πa(T ) (resp. all isolated points of the spectrum are eigenvalues of T ,
i.e. isoσ(T ) = E(T )).

In [12], we introduced and studied the new properties (gab), (ab), (gaw) and
(aw) (see Definition 2.1). Properties (gab) and (gaw) extend properties (ab) and
(aw) respectively to the context of B-Fredholm theory. In this paper we study the
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preservation of these properties under perturbations by finite rank, compact and
nilpotent operators. In the second section in a first step we give an equivalence
condition for properties (gaw) and (aw) and we prove that under the assumption
Π(T ) = Ea(T ), the two properties are equivalent. We show in Theorem 2.3 that
if T ∈ L(X) possesses property (gaw), then T obeys generalized Weyl’s theorem,
but the converse does not hold in general as shown by Example 2.4.

In the third section, in Theorem 3.1 we prove that if T ∈ L(X) possesses
property (ab) and N ∈ L(X) is a nilpotent operator commuting with T , then
T + N possesses property (ab), and in Theorem 3.2 we prove a similar result for
property (gab) in the case of a-polaroid operators. We also prove in Theorem 3.6
that if T ∈ L(X) possesses property (gaw) and N ∈ L(X) is a nilpotent operator
commuting with T , then T +N possesses property (gaw), and in Theorem 3.5 we
prove a similar result for property (aw).

In the last part, we provide certain conditions under which the new properties
are preserved under commuting compact and finite rank perturbations. Thus, we
prove in Theorem 4.5 that if T ∈ L(X) is an operator possessing property (gab)
and F ∈ L(X) is a finite rank operator commuting with T such that Πa(T +F ) ⊂
σa(T ), then T + F possesses property (gab). Similarly, we prove in Theorem 4.3
that if T ∈ L(X) is an operator possessing property (ab) and K ∈ L(X) is a
compact operator commuting with T such that Π0

a(T +K) ⊂ σa(T ), then T +K
possesses property (ab). We end this section by some illustrating examples.

2. Property (gaw) and generalized Weyl’s theorem

Definition 2.1. [12] Let T ∈ L(X). We will say that:
(i) T possesses property (ab) if ∆(T ) = Π0

a(T ).
(ii) T possesses property (gab) if ∆g(T ) = Πa(T ).
(iii) T possesses property (aw) if ∆(T ) = E0

a(T ).
(iv) T possesses property (gaw) if ∆g(T ) = Ea(T ).

In a first step we give an equivalence condition for properties (gaw) and (aw).
In [12, Theorem 3.3], it is proved that if T ∈ L(X) possesses property (gaw) then
T possesses property (aw) and the converse is not true in general. But under the
assumption Π(T ) = Ea(T ), the following result proves that the two properties are
equivalent.

Theorem 2.2. Let X be a Banach space and let T ∈ L(X). Then T possesses
property (gaw) if and only if T possesses property (aw) and Π(T ) = Ea(T ).

Proof. Assume that T possesses property (gaw), then σ(T )\σBW (T ) = Ea(T ).
From [12, Theorem 3.3], T possesses property (aw). By Theorem 3.5 and Corol-
lary 2.6 of [12], T satisfies generalized Browder’s theorem, that is σ(T )\σBW (T ) =
Π(T ). Hence Π(T ) = Ea(T ).
Conversely, assume that T possesses property (aw) and Π(T ) = Ea(T ). If
λ ∈ ∆g(T ), we can assume without loss of generality that λ = 0. Then T is
a B-Weyl operator. In particular T is an operator of topological uniform descent
[11].
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We show that 0 is a pole of the resolvent of T . Since T is B-Weyl, from [11,
Corollary 3.2], there exists ε > 0 such that T − µI is Weyl for every µ such that
0 < |µ| < ε. Let |µ| < ε and µ 6∈ σ(T ), then a(T − µI) = δ(T − µI) = 0. In
the second case µ ∈ σ(T ), then µ ∈ σ(T ) \ σW (T ) = E0

a(T ) since T possesses
property (aw). Therefore µ ∈ Π0(T ) and a(T − µI) = δ(T − µI) < ∞. From
[18, Corollary 4.8] we conclude that a(T ) = δ(T ) < ∞. As 0 ∈ σ(T ), then
0 ∈ Π(T ) = Ea(T ).

On the other hand, if λ ∈ Ea(T ), then λ ∈ Π(T ). Therefore T − λI is a
B-Fredholm operator of index 0. Thus λ ∈ ∆g(T ). Hence ∆g(T ) = Ea(T ) and T
possesses property (gaw). �

Theorem 2.3. Let X be a Banach space and let T ∈ L(X). Then T possesses
property (gaw) if and only if T satisfies generalized Weyl’s theorem and E(T ) =
Ea(T ).

Proof. Assume that T possesses property (gaw), then σ(T )\σBW (T ) = Ea(T ).
If λ ∈ σ(T ) \ σBW (T ), then λ ∈ Ea(T ). Since T possesses property (gaw), it
follows that Ea(T ) = Π(T ). Therefore λ ∈ Π(T ). As Π(T ) ⊂ E(T ) is always true,
then σ(T )\σBW (T ) ⊂ E(T ). Now if λ ∈ E(T ), as we have always E(T ) ⊂ Ea(T ),
then λ ∈ Ea(T ) = σ(T ) \ σBW (T ). Hence σ(T ) \ σBW (T ) = E(T ), i.e. T satisfies
generalized Weyl’s theorem and E(T ) = Ea(T ).
Conversely, assume that T satisfies generalized Weyl’s theorem and E(T ) = Ea(T ).
Then σ(T ) \ σBW (T ) = E(T ) and E(T ) = Ea(T ). So σ(T ) \ σBW (T ) = Ea(T )
and T possesses property (gaw). �

The following example shows that there is an operator obeying generalized
a-Weyl’s theorem and generalized Weyl’s theorem but not the property (gaw).

Example 2.4. Let R ∈ L(`2(N)) be the unilateral right shift and S ∈ L(`2(N))
the operator defined by S(x1, x2, x3, . . .) = (0, x2, x3, x4, . . .).

Consider the operator T defined on the Banach space X = `2(N) ⊕ `2(N) by
T = R ⊕ S, then σ(T ) = D(0, 1) is the closed unit disc in C, isoσ(T ) = ∅ and
σa(T ) = C(0, 1) ∪ {0}, where C(0, 1) is the unit circle of C. Moreover, we have
σSBF−+

(T ) = C(0, 1) and Ea(T ) = {0}. Hence σa(T ) \ σSBF−+ (T ) = Ea(T ), i.e. T
obeys generalized a-Weyl’s theorem and so T obeys generalized Weyl’s theorem.
On the other hand, σBW (T ) = D(0, 1). Then σ(T )\σBW (T ) 6= Ea(T ) and T does
not possess property (gaw).

Similarly to Theorem 2.3, we have the following result in the case of property
(aw).

Theorem 2.5. Let X be a Banach space and let T ∈ L(X). Then T possesses
property (aw) if and only if T satisfies Weyl’s theorem and E0(T ) = E0

a(T ).

Proof. Suppose that T possesses property (aw), then σ(T ) \ σW (T ) = E0
a(T ).

From Theorem 3.6 and Theorem 2.4 of [12], T satisfies Browder’s theorem, that
is σ(T ) \ σW (T ) = Π0(T ). Since we have always Π0(T ) ⊂ E0(T ), then σ(T ) \
σW (T ) ⊂ E0(T ). Now let us consider λ ∈ E0(T ), then λ ∈ E0

a(T ) = σ(T )\σW (T ).
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Hence σ(T )\σW (T ) = E0(T ), i.e. T satisfies Weyl’s theorem and E0(T ) = E0
a(T ).

Conversely, assume that Weyl’s theorem holds for T and E0(T ) = E0
a(T ). Then

σ(T ) \ σW (T ) = E0(T ) and E0(T ) = E0
a(T ). So σ(T ) \ σW (T ) = E0

a(T ) and T
possesses property (aw). �

Generally, a-Weyl’s theorem and Weyl’s theorem do not imply property (aw).
Indeed, if we consider the operator T as in Example 2.4, then σSF−+

(T ) = C(0, 1)

and E0
a(T ) = {0}. Hence σa(T )\σSF−+ (T ) = E0

a(T ), i.e. T obeys a-Weyl’s theorem.
So T obeys Weyl’s theorem. On the other hand, σW (T ) = D(0, 1). Consequently,
σ(T ) \ σW (T ) 6= E0

a(T ) and T does not possess property (aw).

3. Nilpotent perturbations

Theorem 3.1. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a
nilpotent operator commuting with T , then T possesses property (ab) if and only
if T +N possesses property (ab).

Proof. As N is nilpotent and commutes with T , we know that σa(T ) =
σa(T +N), and σ(T ) = σ(T +N). Moreover, from [22, Lemma 2], we know that
σW (T ) = σW (T + N). If λ ∈ σ(T + N) \ σW (T + N), then λ ∈ σ(T ) \ σW (T ) =
Π0
a(T ), since T possesses property (ab). Therefore λ ∈ isoσa(T+N). As T+N−λI

is an upper semi-Fredholm with ind(T + N − λI) ≤ 0, by [10, Theorem 2.8] we
have λ ∈ Π0

a(T +N). Hence σ(T +N) \ σW (T +N) ⊂ Π0
a(T +N). On the other

hand, if λ ∈ Π0
a(T + N), then T + N − λI is an upper semi-Fredholm such that

ind(T+N−λI) ≤ 0. From [17, Theorem 2.13], T−λI is an upper semi-Fredholm of
index less or equal than zero. As λ ∈ isoσa(T ), then λ ∈ Π0

a(T ) which implies that
λ ∈ σ(T+N)\σW (T+N). Finally, we have σ(T+N)\σW (T+N) = Π0

a(T+N) and
T +N possesses property (ab). Conversely, assume that T +N possesses property
(ab). By symmetry, we have T = (T +N)−N possesses property (ab). �

Theorem 3.2. Let X be a Banach space and let T ∈ L(X) be an a-polaroid
operator. If T possesses property (gab) and N ∈ L(X) is a nilpotent operator
commuting with T , then T +N possesses property (gab).

Proof. It is well known that σ(T ) = σ(T +N). By virtue of [12, Corollary 2.7],
we know that if T possesses property (gab), then σBW (T ) = σD(T ) and Π(T ) =
Πa(T ). Let λ ∈ σ(T+N)\σBW (T+N). There is no loss of generality if we assume
that λ = 0. Then T + N is a B-Weyl operator. We show that T + N has ascent
a(T +N) finite. Since T +N is B-Weyl, there exists ε > 0 such that T +N − µI
is Weyl for every µ such that 0 < |µ| < ε. Therefore T − µI is Weyl. Let |µ| < ε
and µ 6∈ σ(T ) = σ(T +N), then a(T +N −µI) = 0. The second possibility is that
µ ∈ σ(T ), then µ ∈ σ(T ) \ σW (T ). Since T possesses property (gab), then from
[12, Theorem 2.2], T possesses property (ab). So µ ∈ σ(T ) \ σW (T ) = Π0

a(T ).
Thus µ ∈ isoσa(T ) = isoσa(T + N). As T + N − µI is an upper semi-Fredholm
operator, then by Theorem 3.23 and Theorem 3.16 of [1], we deduce that the ascent
a(T + N − µI) < ∞. From [18, Corollary 4.8] we conclude that a(T + N) < ∞.
Since T +N is B-Weyl, it is also an operator of topological uniform descent, and
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for n large enough, R((T + N)n) is closed. By [21, Lemma 12], we then deduce
that R((T+N)a(T+N)+1) is closed. Clearly, 0 ∈ σa(T+N), since T+N is B-Weyl.
Hence 0 ∈ Πa(T +N).

To show the opposite inclusion, let us consider λ ∈ Πa(T + N). Then λ ∈
isoσa(T + N) = isoσa(T ). Since T is a-polaroid, then λ ∈ Πa(T ) = Π(T ). From
[13, Lemma 2.2] we know that Π(T ) = Π(T + N). Thus T + N − λI is Drazin
invertible, hence B-Weyl, so that λ ∈ σ(T +N) \ σBW (T +N). Hence σ(T +N) \
σBW (T +N) = Πa(T +N) and T +N possesses property (gab). �

In [14] the authors asked the following question: let T ∈ L(X) and letN ∈ L(X)
be a nilpotent operator commuting with T . Under which conditions Πa(T +N) =
Πa(T )? The next corollary answers positively this question, in the case of
a-polaroid operators possessing property (gab).

Corollary 3.3. Let X be a Banach space and let T ∈ L(X) be an a-polaroid
operator possessing property (gab). If N ∈ L(X) is a nilpotent operator commuting
with T , then Πa(T +N) = Πa(T ).

Proof. We already have that σ(T + N) = σ(T ), Π(T ) = Π(T + N). Since T
possesses property (gab), T satisfies generalized Browder’s theorem which implies
by [13, Theorem 2.3] that T + N satisfies generalized Browder’s theorem. So
σ(T +N) \ σBW (T +N) = Π(T +N), σ(T ) \ σBW (T ) = Π(T ). Hence σBW (T +
N) = σBW (T ). On the other hand, as both T and T +N possess property (gab),
then σ(T + N) \ σBW (T + N) = Πa(T + N), σ(T ) \ σBW (T ) = Πa(T ). Hence
Πa(T +N) = Πa(T ). �

In the next theorem we consider an operator T possessing property (gab) and
a nilpotent operator N commuting with T , and we give necessary and sufficient
conditions for T +N to possess property (gab).

Theorem 3.4. Let X be a Banach space and let T ∈ L(X) and N ∈ L(X)
be a nilpotent operator commuting with T . If T possesses property (gab), then the
following statements are equivalent.

(i) T +N possesses property (gab),
(ii) Π(T ) = Πa(T +N),

(iii) Πa(T ) = Πa(T +N).

Proof. (i) ⇐⇒ (ii) If T + N possesses property (gab), then from [12, Corol-
lary 2.7] we have Π(T +N) = Πa(T +N). So Π(T ) = Πa(T +N). Conversely, if
Π(T ) = Πa(T+N), since T possesses property (gab), then from [12, Corollary 2.6],
T satisfies generalized Browder’s theorem. From [13, Theorem 2.3], T+N satisfies
generalized Browder’s theorem, that is σ(T +N) \ σBW (T +N) = Π(T +N). As
by hypothesis Π(T ) = Πa(T + N), then σ(T + N) \ σBW (T + N) = Πa(T + N)
and T +N possesses property (gab).

Since T possesses property (gab), then Π(T )=Πa(T ). This makes (ii)⇐⇒ (iii).
�
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Theorem 3.5. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a
nilpotent operator commuting with T , then T possesses property (aw) if and only
if T +N possesses property (aw).

Proof. We already have that σ(T +N) = σ(T ) and σW (T +N) = σW (T ). We
prove that E0

a(T + N) = E0
a(T ). Let λ ∈ Ea(T ) be arbitrary. We may assume

that λ = 0. As σa(T + N) = σa(T ), then 0 ∈ isoσa(T + N). Let m ∈ N be such
that Nm = 0. If x ∈ N(T ), then (T + N)m(x) =

∑m
k=0 C k

mT kN m−k (x ) = 0. So
N(T ) ⊂ N(T + N)m. As α(T ) > 0, it follows that α((T + N)m) > 0 and this
implies that α(T +N) > 0. Hence 0 ∈ Ea(T +N). Therefore Ea(T ) ⊂ Ea(T +N).
By symmetry, we have Ea(T ) ⊃ Ea(T+N). Hence Ea(T+N) = Ea(T ). It remains
only to show that α(T ) <∞ if and only if α(T +N) <∞. If α(T +N) <∞, then
from [26, Lemma 3.3, (a)] we have α((T+N)m) <∞. AsN(T ) ⊂ N(T+N)m, then
α(T ) <∞. By symmetry, we prove the reverse implication. Hence ∆(T ) = E0

a(T )
if and only if ∆(T +N) = E0

a(T +N), as desired. �

In the next theorem, we prove a similar perturbation result for property (gaw).

Theorem 3.6. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a
nilpotent operator commuting with T , then T possesses property (gaw) if and only
if T +N possesses property (gaw).

Proof. If T possesses property (gaw), then from Theorem 2.2, Π(T ) = Ea(T ).
Let λ ∈ σ(T + N) \ σBW (T + N). We may assume that λ = 0. Then T + N is
B-Weyl. Therefore there exists an ε > 0 such that T+N−µI is Weyl for any µ such
that 0 < |µ| < ε. From classical Fredholm theory we know that T − µI is Weyl.
Let |µ| < ε and µ 6∈ σ(T ) = σ(T +N). Then a(T +N −µI) = δ(T +N −µI) = 0.
In the second case µ ∈ σ(T ), then µ ∈ σ(T ) \ σW (T ) = E0

a(T ) since T possesses
property (aw). Hence µ ∈ Π0(T ) which implies that µ ∈ isoσ(T ) = isoσ(T +N).
By [1, Theorem 3.77], it then follows that a(T +N−µI) = δ(T +N−µI) <∞. In
the two cases, we have a(T+N−µI) = δ(T+N−µI) <∞. By [18, Corollary 4.8]
we then deduce that a(T + N) = δ(T + N) < ∞. As 0 ∈ σ(T + N), then 0 is a
pole of the resolvent of T +N , in particular an isolated point of the approximate
point spectrum of T +N . Clearly, α(T +N) > 0, since T +N is B-Weyl, so that
0 ∈ Ea(T + N). To prove the opposite inclusion, let us consider λ ∈ Ea(T + N).
Then λ ∈ Ea(T ) = Π(T ) = Π(T + N). Hence T + N − λI is B-Weyl, so that
λ ∈ σ(T+N)\σBW (T+N). Finally, we have σ(T+N)\σBW (T+N) = Ea(T+N)
and T+N possesses property (gaw). Conversely, if T+N possesses property (gaw),
then by symmetry we have T = (T +N)−N possesses property (gaw). �

Remark 3.7. (1) The following example shows that Theorem 3.5 and Theorem
3.6 do not hold if we do not assume that the nilpotent operator N commutes with
T . Let X = `2(N), and let T and N be defined by

T (x1, x2, x3, . . .) = (0, x1/2, x2/3, . . .) , N(x1, x2, x3, . . .) = (0,−x1/2, 0, 0, . . .).

Clearly N is a nilpotent operator which does not commute with T . Moreover, we
have σ(T ) = {0}, σBW (T ) = {0} and Ea(T ) = ∅. So σ(T ) \σBW (T ) = Ea(T ) and
T possesses property (gaw). Hence T possesses also property (aw). On the other
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hand, σ(T +N) = {0}, σW (T +N) = {0}, σBW (T +N) = {0}, Ea(T +N) = {0}
and E0

a(T + N) = {0}. Consequently, σ(T + N) \ σW (T + N) 6= E0
a(T + N) and

σ(T +N) \ σBW (T +N) 6= Ea(T +N). So T +N does not possess property (aw)
and property (gaw).

(2) Generally, Theorem 3.5 and Theorem 3.6 do not extend to commuting
quasinilpotent perturbations. Indeed, on the Hilbert space `2(N) let T and the
quasinilpotent operator Q be defined by

T = 0 and Q(x1, x2, x3, . . .) = (x2/2, x3/3, x4/4, . . .).

Then TQ = QT = 0, σ(T ) = {0}, σW (T ) = {0}, σBW (T ) = ∅ and E0
a(T ) = ∅.

Moreover, we have Ea(T ) = {0}. Thus σ(T ) \ σW (T ) = E0
a(T ) and σ(T ) \

σBW (T ) = Ea(T ). So T possesses property (gaw) and property (aw). But, since
σ(T + Q) = {0}, σBW (T + Q) = {0}, Ea(T + Q) = {0}, E0

a(T +Q) = {0} and
σW (T + Q) = {0}, then σ(T + Q) \ σW (T + Q) 6= E0

a(T + Q) and σ(T + Q) \
σBW (T+Q) 6= Ea(T+Q). So T+Q does not possess property (gaw) and property
(aw).

Recall that an operator T ∈ L(X) is said to possess property (gw) [3, Def-
inition 2.1] if ∆g

a(T ) = E(T ). In the next theorem we consider an operator T
possessing property (gw) and a nilpotent operator N commuting with T , and we
give necessary and sufficient conditions for T +N to possess property (gw).

Theorem 3.8. Let X be a Banach space and let T ∈ L(X) and N ∈ L(X) be
a nilpotent operators commuting with T . If T possesses property (gw), then the
following statements are equivalent.

(i) T +N possesses property (gw);
(ii) σSBF−+

(T ) = σSBF−+
(T +N);

(iii) E(T ) = Πa(T +N).

Proof. (i) ⇐⇒ (iii) If T + N possesses property (gw), then from [3, Theorem
2.6], we have E(T +N) = Πa(T +N). As we know that E(T ) = E(T +N), then
E(T ) = Πa(T + N). Conversely, assume that E(T ) = Πa(T + N), since T pos-
sesses property (gw), again by [3, Theorem 2.6], T satisfies generalized a-Browder’s
theorem. As we know that generalized a-Browder’s theorem is equivalent to a-
Browder’s theorem, then T satisfies a-Browder’s theorem. So σSF−+ (T ) = σub(T ).
As N is nilpotent and commutes with T , we know from [1, Theorem 3.65] that
σub(T ) = σub(T + N) and as it had already been mentioned we have σSF−+ (T ) =
σSF−+

(T + N). Therefore σSF−+
(T + N) = σub(T + N). Hence T + N satis-

fies a-Browder’s theorem, so it satisfies generalized a-Browder’s theorem, that is
σa(T + N) \ σSBF−+ (T + N) = Πa(T + N). Since E(T ) = Πa(T + N), then
σa(T + N) \ σSBF−+ (T + N) = E(T ) = E(T + N) and T + N possesses prop-
erty (gw).
(i)⇐⇒ (ii) If T +N possesses property (gw), then σa(T +N) \ σSBF−+ (T +N) =
E(T + N). Since T possesses property (gw), σa(T ) \ σSBF−+ (T ) = E(T ). As
σa(T ) = σa(T + N) and E(T ) = E(T + N), it then follows that σSBF−+ (T ) =
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σSBF−+
(T + N). Conversely, if σSBF−+ (T ) = σSBF−+

(T + N), then σa(T + N) \
σSBF−+

(T + N) = σa(T ) \ σSBF−+ (T ) = E(T ) = E(T + N) and T + N possesses
property (gw). �

Remark 3.9. The hypothesis of commutativity in the previous theorem is
crucial. The following example shows that if we do not assume that N commutes
with T , then the result may fail. Let X = `2(N) and let T and N be as in part
(1) of Remark 3.7. Clearly, σa(T ) = {0}, σSBF−+ (T ) = {0} and E(T ) = ∅. So
σa(T ) \ σSBF−+ (T ) = E(T ) and T possesses property (gw). On the other hand,
we have σa(T + N) = {0}, σSBF−+ (T + N) = {0} and E(T + N) = {0}. So
σa(T + N) \ σSBF−+ (T + N) 6= E(T + N) and T + N does not possess property
(gw). Though we have E(T ) = Πa(T +N) = ∅.

We finish this section by posing the following two questions.
Open questions: The proof of Corollary 3.3 suggests the following questions:
1. Let T ∈ L(X), and let N ∈ L(X) be a nilpotent operator commuting with

T . Do we always have σBW (T +N) = σBW (T )?
2. Let T ∈ L(X), and let N ∈ L(X) be a nilpotent operator commuting with

T . Under which conditions σBF (T +N) = σBF (T )?

4. Finite rank and compact perturbations

Theorem 4.1. Let X be a Banach space and let T ∈ L(X). If K ∈ L(X) is a
compact operator commuting with T and if T possesses property (ab), then T +K
possesses property (ab) if and only if Π0(T +K) = Π0

a(T +K).

Proof. Assume that T + K possesses property (ab), then from [12, Corol-
lary 2.6], we have Π0(T +K) = Π0

a(T +K). Conversely, assume that Π0(T +K) =
Π0
a(T +K). Since T possesses property (ab), then from [12, Theorem 2.4], T satis-

fies Browder’s theorem. So σb(T ) = σW (T ). Since K commutes with T , then from
[1, Corollary 3.49], we have σb(T ) = σb(T + K), and by [1, Corollary 3.41], we
have σW (T ) = σW (T +K). Therefore σb(T +K) = σW (T +K) which implies that
T +K satisfies Browder’s theorem, that is σ(T +K) \ σW (T +K) = Π0(T +K).
Since Π0(T +K) = Π0

a(T +K), then ∆(T +K) = Π0
a(T +K) and T +K possesses

property (ab). �

Theorem 4.2. Let X be a Banach space and let T ∈ L(X). If K ∈ L(X) is a
compact operator commuting with T and if T possesses property (gab), then T +K
possesses property (gab) if and only if Π(T +K) = Πa(T +K).

Proof. If T + K possesses property (gab), then from [12, Corollary 2.7], we
have Π(T + K) = Πa(T + K). Conversely, if Π(T + K) = Πa(T + K), as T
possesses property (gab), by virtue of [12, Corollary 2.6], T satisfies generalized
Browder’s theorem. Since we know that Browder’s theorem is equivalent to gen-
eralized Browder’s theorem, it follows that σ(T +K) \ σBW (T +K) = Π(T +K).
As Π(T +K) = Πa(T +K), then σ(T +K)\σBW (T +K) = Πa(T +K) and T +K
possesses property (gab). �
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Theorem 4.3. Let X be a Banach space and let T ∈ L(X) and K ∈ L(X)
be a compact operator commuting with T . If T possesses property (ab), and if
Π0
a(T +K) ⊂ σa(T ), then T +K possesses property (ab).

Proof. We only have to show, by Theorem 4.1, that Π0
a(T +K) = Π0(T +K).

Let λ ∈ Π0
a(T + K), then λ 6∈ σub(T + K). Since K commutes with T , then

from [1, Corollary 3.45], we have σub(T +K) = σub(T ). So λ 6∈ σub(T ), and since
by hypothesis λ ∈ σa(T ), then λ ∈ σa(T ) \ σub(T ) = Π0

a(T ). Since T possesses
property (ab), then λ 6∈ σW (T ). As σW (T + K) = σW (T ), then λ 6∈ σW (T + K)
and ind(T +K −λI) = 0. Since T +K −λI has ascent a(T +K −λI) finite, then
δ(T + K − λI) < ∞ and T + K − λI is Drazin invertible. Since λ ∈ σ(T + K),
then λ is a pole of the resolvent of T + K. Therefore λ ∈ Π0(T + K). Hence
Π0
a(T +K) ⊂ Π0(T +K) and since the opposite inclusion holds for every operator,

it then follows that Π0
a(T +K) = Π0(T +K), as desired. �

Corollary 4.4. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X)
be a finite rank operator commuting with T . If iso σa(T ) = ∅, then T possesses
property (ab) if and only if T + F possesses property (ab).

Proof. Assume that T possesses property (ab). Since F is a finite rank operator
commuting with T , and since isoσa(T ) = ∅, then from [2, Lemma 2.6], we have
σa(T ) = σa(T+F ). Hence Π0

a(T+F ) ⊂ σa(T ). As T possesses property (ab), then
from Theorem 4.3, T +F possesses property (ab). Conversely, assume that T +F
possesses property (ab). As isoσa(T +F ) = ∅, then by symmetry, T = (T +F )−F
possesses property (ab). �

Theorem 4.5. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X) be
a finite rank operator commuting with T . If T possesses property (gab), and if
Πa(T + F ) ⊂ σa(T ), then T + F possesses property (gab).

Proof. We only have to show, by Theorem 4.2, that Π(T + F ) = Πa(T + F ).
If λ ∈ Πa(T + F ), then λ 6∈ σLD(T + F ). Since F commutes with T , then from
[14, Theorem 2.1], we have σLD(T + F ) = σLD(T ), and so λ 6∈ σLD(T ). Since by
the assumption λ ∈ σa(T ), then λ ∈ σa(T ) \ σLD(T ) = Πa(T ). Since T possesses
property (gab), then T − λI is a B-Weyl operator. As F is a finite rank operator,
then from [7, Theorem 4.3] it follows that T+F−λI is also a B-Fredholm operator
and ind(T +F −λI) = 0. As a(T +F −λI) is finite and λ ∈ σ(T +F ), then λ is a
pole of the resolvent of T + F and λ ∈ Π(T + F ). Hence Πa(T + F ) ⊂ Π(T + F ).
As we always have Πa(T + F ) ⊃ Π(T + F ), then Π(T + F ) = Πa(T + F ). Hence
T + F possesses property (gab). �

Corollary 4.6. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X)
be a finite rank operator commuting with T . If iso σa(T ) = ∅, then T possesses
property (gab) if and only if T + F possesses property (gab).

Proof. Since F is a finite rank operator commuting with T and since
isoσa(T )=∅, then from [2, Lemma 2.6], we have isoσa(T + F ) = ∅. Hence
Πa(T + F ) = Π(T + F ) = ∅. As T possesses property (gab), then from Theo-
rem 4.2, T +F possesses property (gab). Conversely, assume that T +F possesses
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property (gab). Since isoσa(T + F ) = ∅, then by symmetry we have T possesses
property (gab). �

Theorem 4.7. Let T ∈ L(X) and let K ∈ L(X) be a compact operator com-
muting with T . If T possesses property (aw), then T +K possesses property (aw)
if and only if Π0(T +K) = E0

a(T +K).

Proof. If T +K possesses property (aw), then from [12, Theorem 3.6], T +K
possesses property (ab). So σ(T +K) \ σW (T +K) = E0

a(T +K) and σ(T +K) \
σW (T+K) = Π0

a(T+K). Thus Π0
a(T+K) = E0

a(T+K). On the other hand, since
T +K possesses property (ab), by Theorem 4.1 we have Π0(T +K) = Π0

a(T +K).
Hence Π0(T+K) = E0

a(T+K). Conversely, assume that Π0(T+K) = E0
a(T+K).

Since T possesses property (aw), then T satisfies Browder’s theorem. Hence T+K
satisfies Browder’s theorem, that is σ(T + K) \ σW (T + K) = Π0(T + K). As
Π0(T +K) = E0

a(T +K), then σ(T +K) \ σW (T +K) = E0
a(T +K) and T +K

possesses property (aw). �

Theorem 4.8. Let T ∈ L(X) and let K ∈ L(X) be a compact operator com-
muting with T . If T possesses property (gaw), then T + K possesses property
(gaw) if and only if Π(T +K) = Ea(T +K).

Proof. If T + K possesses property (gaw), then from Theorem 2.2, we have
Π(T +K) = Ea(T +K). Conversely, assume that Π(T +K) = Ea(T +K). Since
T possesses property (gaw), then from [12, Theorem 3.5], T possesses property
(gab). Therefore T satisfies generalized Browder’s theorem. Hence T +K satisfies
generalized Browder’s theorem, that is σ(T +K) \ σBW (T +K) = Π(T +K). As
Π(T +K) = Ea(T +K), then σ(T +K) \ σBW (T +K) = Ea(T +K) and T +K
possesses property (gaw). �

There exist quasinilpotent operators which do not possess property (gaw). For
example, if we consider the operator T defined on `2(N) by T (x1, x2, x3, . . .) =
(x3/3, x4/4, x5/5 . . .), then T is quasinilpotent, but property (gaw) fails for T ,
since σ(T ) = σBW (T ) = {0} and Ea(T ) = {0}. But if a quasinilpotent operator
possesses property (gaw), then the following perturbation result holds.

Theorem 4.9. Let T ∈ L(X) be a quasinilpotent operator and let F ∈ L(X)
be a finite rank operator commuting with T . If T possesses property (gaw), then
T + F possesses property (gaw).

Proof. As isoσ(T ) = σ(T ) = {0}, then accσ(T ) = ∅. By [20, Lemma 2.1] it
then follows that accσ(T + F ) = ∅.

If 0 is an eigenvalue of T , then T is isoloid. If λ ∈ Ea(T + F ), then λ ∈
isoσ(T + F ). Thus λ ∈ E(T + F ). As T possesses property (gaw), then from
Theorem 2.3, T satisfies generalized Weyl’s theorem and since T is isoloid, it then
follows from [8, Theorem 2.6] that T+F satisfies generalized Weyl’s theorem. From
[9, Theorem 3.2], we conclude that E(T + F ) = Π(T + F ). Hence Ea(T + F ) ⊂
Π(T +F ) and since the opposite inclusion holds for every operator, it then follows
that Ea(T + F ) = Π(T + F ). By Theorem 4.8, T + F possesses property (gaw).
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If 0 is not an eigenvalue of T , this means that T is injective. Since F commutes
with a quasinilpotent operator T , TF is a finite rank quasinilpotent operator.
Hence TF is nilpotent. As T is injective, then F is nilpotent. From Theorem 3.6,
T + F possesses property (gaw). �

Remark 4.10. The hypothesis of commutativity in Theorem 4.9 is crucial.
Indeed, if we consider the Hilbert space H = `2(N), and the operators T and F
defined on H by:

T (x1, x2, x3, . . .) = (0, x1/2, x2/3, . . .), F (x1, x2, x3, . . .) = (0,−x1/2, 0, 0, . . .).

Then T is quasinilpotent, F is a finite rank operator which does not commute
with T. Moreover, we have σ(T ) = σBW (T ) = {0} and Ea(T ) = ∅. Hence T
possesses property (gaw). But T + F does not possess property (gaw) because
σ(T + F ) = σBW (T + F ) = {0} and Ea(T + F ) = {0}.

We conclude this section by some examples:

Examples 4.11. 1. Let R be the unilateral right shift operator defined on the
Hilbert space `2(N). It is well known from [23, Theorem 3.1] that σ(R) = D(0, 1)
is the closed unit disc in C, σa(R) = C(0, 1) is the unit circle of C and R has an
empty eigenvalues set. Moreover, σW (R) = D(0, 1) and Π0

a(R) = ∅. Define T on
the Banach space X = `2(N)⊕`2(N) by T = 0⊕R. Then σ(T ) = D(0, 1), N(T ) =
`2(N)⊕{0}, σa(T ) = {0}∪C(0, 1), σW (T ) = D(0, 1), σBW (T ) = D(0, 1), Πa(T ) =
{0} and Π0

a(T ) = ∅. Hence σ(T ) \ σW (T ) = Π0
a(T ) and σ(T ) \ σBW (T ) 6= Πa(T ).

Consequently, T possesses property (ab), but it does not possess property (gab).
2. Let T be the operator defined on the Banach space X = `2(N) ⊕ `2(N) by
T (x1, x2, x3, ...) = 0 ⊕ (0, x1/2, x2/3, x3/4, ...). Then σ(T ) = {0}, σW (T ) = {0},
σBW (T ) = {0}, E0

a(T ) = ∅ and Ea(T ) = {0}. Therefore σ(T ) \ σW (T ) = E0
a(T )

and σ(T ) \ σBW (T ) 6= Ea(T ). So T possesses property (aw), but it does not
possess property (gaw).
3. Let R the unilateral right shift operator defined on the Hilbert space `2(N), then
σ(R) = D(0, 1), σBW (R) = D(0, 1) and Ea(R) = ∅. Therefore σ(R) \ σBW (R) =
Ea(R) and R possesses property (gaw). Moreover, we have isoσa(R) = ∅. Hence
if F ∈ L(X) is a finite rank operator commuting with R, then R + F possesses
property (gaw).
4. Let T ∈L(X) be an injective quasinilpotent operator. Then σ(T )=σBW (T )={0}
and Ea(T ) = Πa(T ) = ∅. Hence T possesses property (gaw). If F ∈ L(X) is a
finite rank operator commuting with T , then TF is a finite rank quasinilpotent op-
erator, therefore TF is a nilpotent operator. As T is injective, then F is nilpotent.
Hence T + F possesses property (gaw).
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