PERTURBATION RESULTS FOR WEYL TYPE THEOREMS

M. BERKANI and H. ZARIOUH

Abstract

In [12] we introduced and studied properties ($g a b$) and ($g a w$), which are extensions to the context of B-Fredholm theory, of properties (ab) and (aw) respectively, introduced also in [12]. In this paper we continue the study of these properties and we consider their stability under commuting finite rank, compact and nilpotent perturbations. Among other results, we prove that if T is a bounded linear operator acting on a Banach space X, then T possesses property ($g a w$) if and only if T satisfies generalized Weyl's theorem and $E(T)=E_{a}(T)$.

We also prove that if T possesses property (ab) or property (aw) or property (gaw), respectively, and N is a nilpotent operator commuting with T, then $T+N$ possesses property ($a b$) or property ($a w$) or property ($g a w$) respectively. The same result holds for property $(g a b)$ in the case of a-polaroid operators.

1. Introduction

Throughout this paper, let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators acting on an infinite-dimensional complex Banach space X. For $T \in$ $\mathcal{L}(X)$, let $N(T), R(T), \sigma(T)$ and $\sigma_{a}(T)$ denote the null space, the range, the spectrum and the approximate point spectrum of T, respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dim} N(T)$ and $\beta(T)=$ $\operatorname{codim} R(T)$. Recall that an operator $T \in \mathcal{L}(X)$ is called an upper semi-Fredholm if $\alpha(T)<\infty$ and $R(T)$ is closed, while $T \in \mathcal{L}(X)$ is called a lower semi-Fredholm if $\beta(T)<\infty$. Let $S F_{+}(X)$ denote the class of all upper semi-Fredholm operators. If $T \in \mathcal{L}(X)$ is an upper or lower semi-Fredholm operator, then T is called a semiFredholm operator, and the index of T is defined by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator. An operator $T \in \mathcal{L}(X)$ is called a Weyl operator if it is a Fredholm operator of index 0. Define

$$
S F_{+}^{-}(X)=\left\{T \in S F_{+}(X): \operatorname{ind}(T) \leq 0\right\} .
$$

The classes of operators defined above generate the following spectra: the Weyl spectrum $\sigma_{W}(T)$ of $T \in \mathcal{L}(X)$ is defined by

$$
\sigma_{W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a Weyl operator }\}
$$

[^0]while the Weyl essential approximate spectrum $\sigma_{S F_{+}^{-}}(T)$ of T is defined by
$$
\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S F_{+}^{-}(X)\right\}
$$

For $T \in \mathcal{L}(X)$, let $\Delta(T)=\sigma(T) \backslash \sigma_{W}(T)$ and $\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Following Coburn [16], we say that Weyl's theorem holds for $T \in \mathcal{L}(X)$ if $\Delta(T)=E^{0}(T)$, where $E^{0}(T)=\{\lambda \in$ iso $\sigma(T): 0<\alpha(T-\lambda I)<\infty\}$. Here and elsewhere in this paper, for $A \subset \mathbb{C}$, iso A is the set of all isolated points of A, and $\operatorname{acc} A$ denote the set of all points of accumulation of A.

According to Rakočević [25], an operator $T \in \mathcal{L}(X)$ is said to satisfy a-Weyl's theorem if $\Delta_{a}(T)=E_{a}^{0}(T)$, where $E_{a}^{0}(T)=\left\{\lambda \in\right.$ iso $\left.\sigma_{a}(T): 0<\alpha(T-\lambda I)<\infty\right\}$. It is known [25] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

Recall that the ascent $a(T)$, of an operator T, is defined by

$$
a(T)=\inf \left\{n \in \mathbb{N}: N\left(T^{n}\right)=N\left(T^{n+1}\right)\right\}
$$

and the descent $\delta(T)$ of T is defined by

$$
\delta(T)=\inf \left\{n \in \mathbb{N}: R\left(T^{n}\right)=R\left(T^{n+1}\right)\right\}
$$

with $\inf \emptyset=\infty$. An operator $T \in \mathcal{L}(X)$ is called Drazin invertible if it has a finite ascent and descent. The Drazin spectrum $\sigma_{D}(T)$ of an operator T is defined by

$$
\sigma_{D}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Drazin invertible }\}
$$

An operator $T \in \mathcal{L}(X)$ is called Browder if it is Fredholm of finite ascent and descent and is called upper semi-Browder if it is upper semi-Fredholm of finite ascent. The Browder spectrum $\sigma_{b}(T)$ of T is defined by

$$
\sigma_{b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Browder }\}
$$

and the upper semi-Browder spectrum $\sigma_{u b}(T)$ of T is defined by

$$
\sigma_{u b}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not upper semi-Browder }\}
$$

(see [15] and [24]).
Define also the set $L D(X)$ by

$$
L D(X)=\left\{T \in \mathcal{L}(X): a(T)<\infty \text { and } R\left(T^{a(T)+1}\right) \text { is closed }\right\}
$$

and

$$
\sigma_{L D}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \notin L D(X)\}
$$

Following [10], an operator $T \in \mathcal{L}(X)$ is said to be left Drazin invertible if $T \in$ $L D(X)$. We say that $\lambda \in \sigma_{a}(T)$ is a left pole of T if $T-\lambda I \in L D(X)$, and that $\lambda \in \sigma_{a}(T)$ is a left pole of T of finite rank if λ is a left pole of T and $\alpha(T-\lambda I)<\infty$. Let $\Pi_{a}(T)$ denote the set of all left poles of T and let $\Pi_{a}^{0}(T)$ denotes the set of all left poles of T of finite rank.

Let $\Pi(T)$ be the set of all poles of the resolvent of T and let $\Pi^{0}(T)$ be the set of all poles of the resolvent of T of finite rank, that is $\Pi^{0}(T)=\{\lambda \in \Pi(T)$: $\alpha(T-\lambda I)<\infty\}$. According to [19], a complex number λ is a pole of the resolvent of T if and only if $0<\max (a(T-\lambda I), \delta(T-\lambda I))<\infty$. Moreover, if this is true then $a(T-\lambda I)=\delta(T-\lambda I)$. According also to [19], the space $R\left((T-\lambda I)^{a(T-\lambda I)+1}\right)$
is closed for each $\lambda \in \Pi(T)$. Hence we have always $\Pi(T) \subset \Pi_{a}(T)$ and $\Pi^{0}(T) \subset$ $\Pi_{a}^{0}(T)$.

For $T \in \mathcal{L}(X)$ and a nonnegative integer n define $T_{[n]}$ to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$ (in particular $T_{[0]}=T$). If for some integer n the range space $R\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm operator. In this case the index of T is defined as the index of the semi-Fredholm operator $T_{[n]}$, see [11]. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator, see [5]. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. An operator T is said to be a B-Weyl operator [6, Definition 1.1] if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(T)$ of T is defined by

$$
\sigma_{B W}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a B-Weyl operator }\}
$$

and the B-Fredholm spectrum $\sigma_{B F}(T)$ of T is defined by

$$
\sigma_{B F}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is not a B-Fredholm operator }\}
$$

For $T \in \mathcal{L}(X)$, let $\Delta^{g}(T)=\sigma(T) \backslash \sigma_{B W}(T)$. According to [10], an operator $T \in$ $\mathcal{L}(X)$ is said to satisfy generalized Weyl's theorem if $\Delta^{g}(T)=E(T)$, where $E(T)=$ $\{\lambda \in$ iso $\sigma(T): \alpha(T-\lambda I)>0\}$. According also to [10] we say that generalized Browder's theorem holds for $T \in \mathcal{L}(X)$ if $\Delta^{g}(T)=\Pi(T)$, and that Browder's theorem holds for $T \in \mathcal{L}(X)$ if $\Delta(T)=\Pi^{0}(T)$. It is proved in [4, Theorem 2.1] that generalized Browder's theorem is equivalent to Browder's theorem.

Let $S B F_{+}(X)$ be the class of all upper semi-B-Fredholm operators,

$$
S B F_{+}^{-}(X)=\left\{T \in S B F_{+}(X): \operatorname{ind}(T) \leq 0\right\}
$$

The upper B-Weyl spectrum $\sigma_{S B F_{+}^{-}}(T)$ of T is defined by

$$
\sigma_{S B F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin S B F_{+}^{-}(X)\right\}
$$

Let $\Delta_{a}^{g}(T)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)$. We say that a-Browder's theorem holds for $T \in \mathcal{L}(X)$ if $\Delta_{a}(T)=\Pi_{a}^{0}(T)$, and that generalized a-Browder's theorem holds for $T \in \mathcal{L}(X)$ if $\Delta_{a}^{g}(T)=\Pi_{a}(T)$. It is proved in [4, Theorem 2.2] that generalized a-Browder's theorem is equivalent to a-Browder's theorem. According to [10], an operator $T \in \mathcal{L}(X)$ is said to satisfy generalized a-Weyl's theorem if $\Delta_{a}^{g}(T)=$ $E_{a}(T)$, where $E_{a}(T)=\left\{\lambda \in\right.$ iso $\left.\sigma_{a}(T): \alpha(T-\lambda I)>0\right\}$. It is known [10] that an operator obeying generalized a-Weyl's theorem obeys generalized Weyl's theorem, but the converse is not true in general.

Definition 1.1. An operator $T \in \mathcal{L}(X)$ is called a-polaroid (resp. isoloid) if all isolated points of the approximate point spectrum are left poles of T, i.e. iso $\sigma_{a}(T)=\Pi_{a}(T)$ (resp. all isolated points of the spectrum are eigenvalues of T, i.e. iso $\sigma(T)=E(T))$.

In [12], we introduced and studied the new properties $(g a b),(a b),(g a w)$ and (aw) (see Definition 2.1). Properties (gab) and (gaw) extend properties (ab) and $(a w)$ respectively to the context of B-Fredholm theory. In this paper we study the
preservation of these properties under perturbations by finite rank, compact and nilpotent operators. In the second section in a first step we give an equivalence condition for properties $(g a w)$ and $(a w)$ and we prove that under the assumption $\Pi(T)=E_{a}(T)$, the two properties are equivalent. We show in Theorem 2.3 that if $T \in \mathcal{L}(X)$ possesses property ($g a w$), then T obeys generalized Weyl's theorem, but the converse does not hold in general as shown by Example 2.4.

In the third section, in Theorem 3.1 we prove that if $T \in \mathcal{L}(X)$ possesses property (ab) and $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then $T+N$ possesses property ($a b$), and in Theorem 3.2 we prove a similar result for property $(g a b)$ in the case of a-polaroid operators. We also prove in Theorem 3.6 that if $T \in \mathcal{L}(X)$ possesses property (gaw) and $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then $T+N$ possesses property (gaw), and in Theorem 3.5 we prove a similar result for property ($a w$).

In the last part, we provide certain conditions under which the new properties are preserved under commuting compact and finite rank perturbations. Thus, we prove in Theorem 4.5 that if $T \in \mathcal{L}(X)$ is an operator possessing property (gab) and $F \in \mathcal{L}(X)$ is a finite rank operator commuting with T such that $\Pi_{a}(T+F) \subset$ $\sigma_{a}(T)$, then $T+F$ possesses property ($g a b$). Similarly, we prove in Theorem 4.3 that if $T \in \mathcal{L}(X)$ is an operator possessing property $(a b)$ and $K \in \mathcal{L}(X)$ is a compact operator commuting with T such that $\Pi_{a}^{0}(T+K) \subset \sigma_{a}(T)$, then $T+K$ possesses property $(a b)$. We end this section by some illustrating examples.

2. Property ($g a w$) and generalized Weyl's theorem

Definition 2.1. $[\mathbf{1 2}]$ Let $T \in \mathcal{L}(X)$. We will say that:
(i) T possesses property $(a b)$ if $\Delta(T)=\Pi_{a}^{0}(T)$.
(ii) T possesses property $(g a b)$ if $\Delta^{g}(T)=\Pi_{a}(T)$.
(iii) T possesses property $(a w)$ if $\Delta(T)=E_{a}^{0}(T)$.
(iv) T possesses property (gaw) if $\Delta^{g}(T)=E_{a}(T)$.

In a first step we give an equivalence condition for properties (gaw) and (aw). In [12, Theorem 3.3], it is proved that if $T \in \mathcal{L}(X)$ possesses property (gaw) then T possesses property (aw) and the converse is not true in general. But under the assumption $\Pi(T)=E_{a}(T)$, the following result proves that the two properties are equivalent.

Theorem 2.2. Let X be a Banach space and let $T \in \mathcal{L}(X)$. Then T possesses property (gaw) if and only if T possesses property (aw) and $\Pi(T)=E_{a}(T)$.

Proof. Assume that T possesses property (gaw), then $\sigma(T) \backslash \sigma_{B W}(T)=E_{a}(T)$. From [12, Theorem 3.3], T possesses property (aw). By Theorem 3.5 and Corollary 2.6 of [12], T satisfies generalized Browder's theorem, that is $\sigma(T) \backslash \sigma_{B W}(T)=$ $\Pi(T)$. Hence $\Pi(T)=E_{a}(T)$.
Conversely, assume that T possesses property $(a w)$ and $\Pi(T)=E_{a}(T)$. If $\lambda \in \Delta^{g}(T)$, we can assume without loss of generality that $\lambda=0$. Then T is a B-Weyl operator. In particular T is an operator of topological uniform descent [11].

We show that 0 is a pole of the resolvent of T. Since T is B -Weyl, from [11, Corollary 3.2], there exists $\varepsilon>0$ such that $T-\mu I$ is Weyl for every μ such that $0<|\mu|<\varepsilon$. Let $|\mu|<\varepsilon$ and $\mu \notin \sigma(T)$, then $a(T-\mu I)=\delta(T-\mu I)=0$. In the second case $\mu \in \sigma(T)$, then $\mu \in \sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ since T possesses property (aw). Therefore $\mu \in \Pi^{0}(T)$ and $a(T-\mu I)=\delta(T-\mu I)<\infty$. From
[18, Corollary 4.8] we conclude that $a(T)=\delta(T)<\infty$. As $0 \in \sigma(T)$, then $0 \in \Pi(T)=E_{a}(T)$.

On the other hand, if $\lambda \in E_{a}(T)$, then $\lambda \in \Pi(T)$. Therefore $T-\lambda I$ is a B-Fredholm operator of index 0 . Thus $\lambda \in \Delta^{g}(T)$. Hence $\Delta^{g}(T)=E_{a}(T)$ and T possesses property (gaw).

Theorem 2.3. Let X be a Banach space and let $T \in \mathcal{L}(X)$. Then T possesses property (gaw) if and only if T satisfies generalized Weyl's theorem and $E(T)=$ $E_{a}(T)$.

Proof. Assume that T possesses property (gaw), then $\sigma(T) \backslash \sigma_{B W}(T)=E_{a}(T)$. If $\lambda \in \sigma(T) \backslash \sigma_{B W}(T)$, then $\lambda \in E_{a}(T)$. Since T possesses property (gaw), it follows that $E_{a}(T)=\Pi(T)$. Therefore $\lambda \in \Pi(T)$. As $\Pi(T) \subset E(T)$ is always true, then $\sigma(T) \backslash \sigma_{B W}(T) \subset E(T)$. Now if $\lambda \in E(T)$, as we have always $E(T) \subset E_{a}(T)$, then $\lambda \in E_{a}(T)=\sigma(T) \backslash \sigma_{B W}(T)$. Hence $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$, i.e. T satisfies generalized Weyl's theorem and $E(T)=E_{a}(T)$.
Conversely, assume that T satisfies generalized Weyl's theorem and $E(T)=E_{a}(T)$. Then $\sigma(T) \backslash \sigma_{B W}(T)=E(T)$ and $E(T)=E_{a}(T)$. So $\sigma(T) \backslash \sigma_{B W}(T)=E_{a}(T)$ and T possesses property (gaw).

The following example shows that there is an operator obeying generalized a-Weyl's theorem and generalized Weyl's theorem but not the property (gaw).

Example 2.4. Let $R \in \mathcal{L}\left(\ell^{2}(\mathbb{N})\right)$ be the unilateral right shift and $S \in \mathcal{L}\left(\ell^{2}(\mathbb{N})\right)$ the operator defined by $S\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{2}, x_{3}, x_{4}, \ldots\right)$.

Consider the operator T defined on the Banach space $X=\ell^{2}(\mathbb{N}) \oplus \ell^{2}(\mathbb{N})$ by $T=R \oplus S$, then $\sigma(T)=D(0,1)$ is the closed unit disc in \mathbb{C}, iso $\sigma(T)=\emptyset$ and $\sigma_{a}(T)=C(0,1) \cup\{0\}$, where $C(0,1)$ is the unit circle of \mathbb{C}. Moreover, we have $\sigma_{S B F_{+}^{-}}(T)=C(0,1)$ and $E_{a}(T)=\{0\}$. Hence $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E_{a}(T)$, i.e. T obeys generalized a-Weyl's theorem and so T obeys generalized Weyl's theorem. On the other hand, $\sigma_{B W}(T)=D(0,1)$. Then $\sigma(T) \backslash \sigma_{B W}(T) \neq E_{a}(T)$ and T does not possess property (gaw).

Similarly to Theorem 2.3, we have the following result in the case of property (aw).

Theorem 2.5. Let X be a Banach space and let $T \in \mathcal{L}(X)$. Then T possesses property (aw) if and only if T satisfies Weyl's theorem and $E^{0}(T)=E_{a}^{0}(T)$.

Proof. Suppose that T possesses property $(a w)$, then $\sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$. From Theorem 3.6 and Theorem 2.4 of [12], T satisfies Browder's theorem, that is $\sigma(T) \backslash \sigma_{W}(T)=\Pi^{0}(T)$. Since we have always $\Pi^{0}(T) \subset E^{0}(T)$, then $\sigma(T) \backslash$ $\sigma_{W}(T) \subset E^{0}(T)$. Now let us consider $\lambda \in E^{0}(T)$, then $\lambda \in E_{a}^{0}(T)=\sigma(T) \backslash \sigma_{W}(T)$.

Hence $\sigma(T) \backslash \sigma_{W}(T)=E^{0}(T)$, i.e. T satisfies Weyl's theorem and $E^{0}(T)=E_{a}^{0}(T)$. Conversely, assume that Weyl's theorem holds for T and $E^{0}(T)=E_{a}^{0}(T)$. Then $\sigma(T) \backslash \sigma_{W}(T)=E^{0}(T)$ and $E^{0}(T)=E_{a}^{0}(T)$. So $\sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ and T possesses property (aw).

Generally, a-Weyl's theorem and Weyl's theorem do not imply property (aw). Indeed, if we consider the operator T as in Example 2.4, then $\sigma_{S F_{+}^{-}}(T)=C(0,1)$ and $E_{a}^{0}(T)=\{0\}$. Hence $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$, i.e. T obeys a-Weyl's theorem. So T obeys Weyl's theorem. On the other hand, $\sigma_{W}(T)=D(0,1)$. Consequently, $\sigma(T) \backslash \sigma_{W}(T) \neq E_{a}^{0}(T)$ and T does not possess property $(a w)$.

3. Nilpotent perturbations

Theorem 3.1. Let X be a Banach space and let $T \in \mathcal{L}(X)$. If $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then T possesses property (ab) if and only if $T+N$ possesses property $(a b)$.

Proof. As N is nilpotent and commutes with T, we know that $\sigma_{a}(T)=$ $\sigma_{a}(T+N)$, and $\sigma(T)=\sigma(T+N)$. Moreover, from [22, Lemma 2], we know that $\sigma_{W}(T)=\sigma_{W}(T+N)$. If $\lambda \in \sigma(T+N) \backslash \sigma_{W}(T+N)$, then $\lambda \in \sigma(T) \backslash \sigma_{W}(T)=$ $\Pi_{a}^{0}(T)$, since T possesses property $(a b)$. Therefore $\lambda \in$ iso $\sigma_{a}(T+N)$. As $T+N-\lambda I$ is an upper semi-Fredholm with $\operatorname{ind}(T+N-\lambda I) \leq 0$, by [10, Theorem 2.8] we have $\lambda \in \Pi_{a}^{0}(T+N)$. Hence $\sigma(T+N) \backslash \sigma_{W}(T+N) \subset \Pi_{a}^{0}(T+N)$. On the other hand, if $\lambda \in \Pi_{a}^{0}(T+N)$, then $T+N-\lambda I$ is an upper semi-Fredholm such that $\operatorname{ind}(T+N-\lambda I) \leq 0$. From [17, Theorem 2.13], $T-\lambda I$ is an upper semi-Fredholm of index less or equal than zero. As $\lambda \in$ iso $\sigma_{a}(T)$, then $\lambda \in \Pi_{a}^{0}(T)$ which implies that $\lambda \in \sigma(T+N) \backslash \sigma_{W}(T+N)$. Finally, we have $\sigma(T+N) \backslash \sigma_{W}(T+N)=\Pi_{a}^{0}(T+N)$ and $T+N$ possesses property (ab). Conversely, assume that $T+N$ possesses property (ab). By symmetry, we have $T=(T+N)-N$ possesses property (ab).

Theorem 3.2. Let X be a Banach space and let $T \in \mathcal{L}(X)$ be an a-polaroid operator. If T possesses property (gab) and $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then $T+N$ possesses property (gab).

Proof. It is well known that $\sigma(T)=\sigma(T+N)$. By virtue of [12, Corollary 2.7], we know that if T possesses property $(g a b)$, then $\sigma_{B W}(T)=\sigma_{D}(T)$ and $\Pi(T)=$ $\Pi_{a}(T)$. Let $\lambda \in \sigma(T+N) \backslash \sigma_{B W}(T+N)$. There is no loss of generality if we assume that $\lambda=0$. Then $T+N$ is a B-Weyl operator. We show that $T+N$ has ascent $a(T+N)$ finite. Since $T+N$ is B-Weyl, there exists $\varepsilon>0$ such that $T+N-\mu I$ is Weyl for every μ such that $0<|\mu|<\varepsilon$. Therefore $T-\mu I$ is Weyl. Let $|\mu|<\varepsilon$ and $\mu \notin \sigma(T)=\sigma(T+N)$, then $a(T+N-\mu I)=0$. The second possibility is that $\mu \in \sigma(T)$, then $\mu \in \sigma(T) \backslash \sigma_{W}(T)$. Since T possesses property ($g a b$), then from [12, Theorem 2.2], T possesses property (ab). So $\mu \in \sigma(T) \backslash \sigma_{W}(T)=\Pi_{a}^{0}(T)$. Thus $\mu \in$ iso $\sigma_{a}(T)=$ iso $\sigma_{a}(T+N)$. As $T+N-\mu I$ is an upper semi-Fredholm operator, then by Theorem 3.23 and Theorem 3.16 of [$\mathbf{1}$], we deduce that the ascent $a(T+N-\mu I)<\infty$. From [18, Corollary 4.8] we conclude that $a(T+N)<\infty$. Since $T+N$ is B-Weyl, it is also an operator of topological uniform descent, and
for n large enough, $R\left((T+N)^{n}\right)$ is closed. By [21, Lemma 12], we then deduce that $R\left((T+N)^{a(T+N)+1}\right)$ is closed. Clearly, $0 \in \sigma_{a}(T+N)$, since $T+N$ is B-Weyl. Hence $0 \in \Pi_{a}(T+N)$.

To show the opposite inclusion, let us consider $\lambda \in \Pi_{a}(T+N)$. Then $\lambda \in$ $\operatorname{iso} \sigma_{a}(T+N)=\operatorname{iso} \sigma_{a}(T)$. Since T is a-polaroid, then $\lambda \in \Pi_{a}(T)=\Pi(T)$. From [13, Lemma 2.2] we know that $\Pi(T)=\Pi(T+N)$. Thus $T+N-\lambda I$ is Drazin invertible, hence B-Weyl, so that $\lambda \in \sigma(T+N) \backslash \sigma_{B W}(T+N)$. Hence $\sigma(T+N) \backslash$ $\sigma_{B W}(T+N)=\Pi_{a}(T+N)$ and $T+N$ possesses property (gab).

In [14] the authors asked the following question: let $T \in \mathcal{L}(X)$ and let $N \in \mathcal{L}(X)$ be a nilpotent operator commuting with T. Under which conditions $\Pi_{a}(T+N)=$ $\Pi_{a}(T)$? The next corollary answers positively this question, in the case of a-polaroid operators possessing property ($g a b$).

Corollary 3.3. Let X be a Banach space and let $T \in \mathcal{L}(X)$ be an a-polaroid operator possessing property (gab). If $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then $\Pi_{a}(T+N)=\Pi_{a}(T)$.

Proof. We already have that $\sigma(T+N)=\sigma(T), \Pi(T)=\Pi(T+N)$. Since T possesses property ($g a b$), T satisfies generalized Browder's theorem which implies by [13, Theorem 2.3] that $T+N$ satisfies generalized Browder's theorem. So $\sigma(T+N) \backslash \sigma_{B W}(T+N)=\Pi(T+N), \sigma(T) \backslash \sigma_{B W}(T)=\Pi(T)$. Hence $\sigma_{B W}(T+$ $N)=\sigma_{B W}(T)$. On the other hand, as both T and $T+N$ possess property (gab), then $\sigma(T+N) \backslash \sigma_{B W}(T+N)=\Pi_{a}(T+N), \sigma(T) \backslash \sigma_{B W}(T)=\Pi_{a}(T)$. Hence $\Pi_{a}(T+N)=\Pi_{a}(T)$.

In the next theorem we consider an operator T possessing property ($g a b$) and a nilpotent operator N commuting with T, and we give necessary and sufficient conditions for $T+N$ to possess property ($g a b$).

Theorem 3.4. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $N \in \mathcal{L}(X)$ be a nilpotent operator commuting with T. If T possesses property (gab), then the following statements are equivalent.
(i) $T+N$ possesses property (gab),
(ii) $\Pi(T)=\Pi_{a}(T+N)$,
(iii) $\Pi_{a}(T)=\Pi_{a}(T+N)$.

Proof. (i) $\Longleftrightarrow($ ii $)$ If $T+N$ possesses property $(g a b)$, then from [12, Corollary 2.7] we have $\Pi(T+N)=\Pi_{a}(T+N)$. So $\Pi(T)=\Pi_{a}(T+N)$. Conversely, if $\Pi(T)=\Pi_{a}(T+N)$, since T possesses property (gab), then from [12, Corollary 2.6], T satisfies generalized Browder's theorem. From [13, Theorem 2.3], $T+N$ satisfies generalized Browder's theorem, that is $\sigma(T+N) \backslash \sigma_{B W}(T+N)=\Pi(T+N)$. As by hypothesis $\Pi(T)=\Pi_{a}(T+N)$, then $\sigma(T+N) \backslash \sigma_{B W}(T+N)=\Pi_{a}(T+N)$ and $T+N$ possesses property ($g a b$).

Since T possesses property $(g a b)$, then $\Pi(T)=\Pi_{a}(T)$. This makes $(i i) \Longleftrightarrow(i i i)$.

Theorem 3.5. Let X be a Banach space and let $T \in \mathcal{L}(X)$. If $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then T possesses property (aw) if and only if $T+N$ possesses property (aw).

Proof. We already have that $\sigma(T+N)=\sigma(T)$ and $\sigma_{W}(T+N)=\sigma_{W}(T)$. We prove that $E_{a}^{0}(T+N)=E_{a}^{0}(T)$. Let $\lambda \in E_{a}(T)$ be arbitrary. We may assume that $\lambda=0$. As $\sigma_{a}(T+N)=\sigma_{a}(T)$, then $0 \in$ iso $\sigma_{a}(T+N)$. Let $m \in \mathbb{N}$ be such that $N^{m}=0$. If $x \in N(T)$, then $(T+N)^{m}(x)=\sum_{k=0}^{m} C_{m}^{k} T^{k} N^{m-k}(x)=0$. So $N(T) \subset N(T+N)^{m}$. As $\alpha(T)>0$, it follows that $\alpha\left((T+N)^{m}\right)>0$ and this implies that $\alpha(T+N)>0$. Hence $0 \in E_{a}(T+N)$. Therefore $E_{a}(T) \subset E_{a}(T+N)$. By symmetry, we have $E_{a}(T) \supset E_{a}(T+N)$. Hence $E_{a}(T+N)=E_{a}(T)$. It remains only to show that $\alpha(T)<\infty$ if and only if $\alpha(T+N)<\infty$. If $\alpha(T+N)<\infty$, then from [26, Lemma 3.3, (a)] we have $\alpha\left((T+N)^{m}\right)<\infty$. As $N(T) \subset N(T+N)^{m}$, then $\alpha(T)<\infty$. By symmetry, we prove the reverse implication. Hence $\Delta(T)=E_{a}^{0}(T)$ if and only if $\Delta(T+N)=E_{a}^{0}(T+N)$, as desired.

In the next theorem, we prove a similar perturbation result for property (gaw).
Theorem 3.6. Let X be a Banach space and let $T \in \mathcal{L}(X)$. If $N \in \mathcal{L}(X)$ is a nilpotent operator commuting with T, then T possesses property (gaw) if and only if $T+N$ possesses property (gaw).

Proof. If T possesses property (gaw), then from Theorem 2.2, $\Pi(T)=E_{a}(T)$. Let $\lambda \in \sigma(T+N) \backslash \sigma_{B W}(T+N)$. We may assume that $\lambda=0$. Then $T+N$ is B-Weyl. Therefore there exists an $\varepsilon>0$ such that $T+N-\mu I$ is Weyl for any μ such that $0<|\mu|<\varepsilon$. From classical Fredholm theory we know that $T-\mu I$ is Weyl. Let $|\mu|<\varepsilon$ and $\mu \notin \sigma(T)=\sigma(T+N)$. Then $a(T+N-\mu I)=\delta(T+N-\mu I)=0$. In the second case $\mu \in \sigma(T)$, then $\mu \in \sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ since T possesses property (aw). Hence $\mu \in \Pi^{0}(T)$ which implies that $\mu \in$ iso $\sigma(T)=$ iso $\sigma(T+N)$. By [1, Theorem 3.77], it then follows that $a(T+N-\mu I)=\delta(T+N-\mu I)<\infty$. In the two cases, we have $a(T+N-\mu I)=\delta(T+N-\mu I)<\infty$. By [18, Corollary 4.8] we then deduce that $a(T+N)=\delta(T+N)<\infty$. As $0 \in \sigma(T+N)$, then 0 is a pole of the resolvent of $T+N$, in particular an isolated point of the approximate point spectrum of $T+N$. Clearly, $\alpha(T+N)>0$, since $T+N$ is B-Weyl, so that $0 \in E_{a}(T+N)$. To prove the opposite inclusion, let us consider $\lambda \in E_{a}(T+N)$. Then $\lambda \in E_{a}(T)=\Pi(T)=\Pi(T+N)$. Hence $T+N-\lambda I$ is B-Weyl, so that $\lambda \in \sigma(T+N) \backslash \sigma_{B W}(T+N)$. Finally, we have $\sigma(T+N) \backslash \sigma_{B W}(T+N)=E_{a}(T+N)$ and $T+N$ possesses property (gaw). Conversely, if $T+N$ possesses property (gaw), then by symmetry we have $T=(T+N)-N$ possesses property (gaw).

Remark 3.7. (1) The following example shows that Theorem 3.5 and Theorem 3.6 do not hold if we do not assume that the nilpotent operator N commutes with T. Let $X=\ell^{2}(\mathbb{N})$, and let T and N be defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1} / 2, x_{2} / 3, \ldots\right), N\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,-x_{1} / 2,0,0, \ldots\right)
$$

Clearly N is a nilpotent operator which does not commute with T. Moreover, we have $\sigma(T)=\{0\}, \sigma_{B W}(T)=\{0\}$ and $E_{a}(T)=\emptyset$. So $\sigma(T) \backslash \sigma_{B W}(T)=E_{a}(T)$ and T possesses property (gaw). Hence T possesses also property (aw). On the other
hand, $\sigma(T+N)=\{0\}, \sigma_{W}(T+N)=\{0\}, \sigma_{B W}(T+N)=\{0\}, E_{a}(T+N)=\{0\}$ and $E_{a}^{0}(T+N)=\{0\}$. Consequently, $\sigma(T+N) \backslash \sigma_{W}(T+N) \neq E_{a}^{0}(T+N)$ and $\sigma(T+N) \backslash \sigma_{B W}(T+N) \neq E_{a}(T+N)$. So $T+N$ does not possess property (aw) and property (gaw).
(2) Generally, Theorem 3.5 and Theorem 3.6 do not extend to commuting quasinilpotent perturbations. Indeed, on the Hilbert space $\ell^{2}(\mathbb{N})$ let T and the quasinilpotent operator Q be defined by

$$
T=0 \quad \text { and } \quad Q\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2} / 2, x_{3} / 3, x_{4} / 4, \ldots\right)
$$

Then $T Q=Q T=0, \sigma(T)=\{0\}, \sigma_{W}(T)=\{0\}, \sigma_{B W}(T)=\emptyset$ and $E_{a}^{0}(T)=\emptyset$. Moreover, we have $E_{a}(T)=\{0\}$. Thus $\sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ and $\sigma(T) \backslash$ $\sigma_{B W}(T)=E_{a}(T)$. So T possesses property (gaw) and property (aw). But, since $\sigma(T+Q)=\{0\}, \sigma_{B W}(T+Q)=\{0\}, E_{a}(T+Q)=\{0\}, E_{a}^{0}(T+Q)=\{0\}$ and $\sigma_{W}(T+Q)=\{0\}$, then $\sigma(T+Q) \backslash \sigma_{W}(T+Q) \neq E_{a}^{0}(T+Q)$ and $\sigma(T+Q) \backslash$ $\sigma_{B W}(T+Q) \neq E_{a}(T+Q)$. So $T+Q$ does not possess property (gaw) and property (aw).

Recall that an operator $T \in \mathcal{L}(X)$ is said to possess property $(g w)$ [3, Definition 2.1] if $\Delta_{a}^{g}(T)=E(T)$. In the next theorem we consider an operator T possessing property $(g w)$ and a nilpotent operator N commuting with T, and we give necessary and sufficient conditions for $T+N$ to possess property $(g w)$.

Theorem 3.8. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $N \in \mathcal{L}(X)$ be a nilpotent operators commuting with T. If T possesses property $(g w)$, then the following statements are equivalent.
(i) $T+N$ possesses property $(g w)$;
(ii) $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+N)$;
(iii) $E(T)=\Pi_{a}(T+N)$

Proof. $(i) \Longleftrightarrow($ iii $)$ If $T+N$ possesses property $(g w)$, then from [3, Theorem 2.6], we have $E(T+N)=\Pi_{a}(T+N)$. As we know that $E(T)=E(T+N)$, then $E(T)=\Pi_{a}(T+N)$. Conversely, assume that $E(T)=\Pi_{a}(T+N)$, since T possesses property $(g w)$, again by [3, Theorem 2.6], T satisfies generalized a-Browder's theorem. As we know that generalized a-Browder's theorem is equivalent to aBrowder's theorem, then T satisfies a-Browder's theorem. So $\sigma_{S F_{+}^{-}}(T)=\sigma_{u b}(T)$. As N is nilpotent and commutes with T, we know from [$\mathbf{1}$, Theorem 3.65] that $\sigma_{u b}(T)=\sigma_{u b}(T+N)$ and as it had already been mentioned we have $\sigma_{S F_{+}^{-}}(T)=$ $\sigma_{S F_{+}^{-}}(T+N)$. Therefore $\sigma_{S F_{+}^{-}}(T+N)=\sigma_{u b}(T+N)$. Hence $T+N$ satisfies a-Browder's theorem, so it satisfies generalized a-Browder's theorem, that is $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=\Pi_{a}(T+N)$. Since $E(T)=\Pi_{a}(T+N)$, then $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=E(T)=E(T+N)$ and $T+N$ possesses property ($g w$).
$(i) \Longleftrightarrow(i i)$ If $T+N$ possesses property $(g w)$, then $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N)=$ $E(T+N)$. Since T possesses property $(g w), \sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$. As $\sigma_{a}(T)=\sigma_{a}(T+N)$ and $E(T)=E(T+N)$, it then follows that $\sigma_{S B F_{+}^{-}}(T)=$
$\sigma_{S B F_{+}^{-}}(T+N)$. Conversely, if $\sigma_{S B F_{+}^{-}}(T)=\sigma_{S B F_{+}^{-}}(T+N)$, then $\sigma_{a}(T+N) \backslash$ $\sigma_{S B F_{+}^{-}}(T+N)=\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)^{+}=E(T)=E(T+N)$ and $T+N$ possesses property ($g w$).

Remark 3.9. The hypothesis of commutativity in the previous theorem is crucial. The following example shows that if we do not assume that N commutes with T, then the result may fail. Let $X=\ell^{2}(\mathbb{N})$ and let T and N be as in part (1) of Remark 3.7. Clearly, $\sigma_{a}(T)=\{0\}, \sigma_{S B F_{+}^{-}}(T)=\{0\}$ and $E(T)=\emptyset$. So $\sigma_{a}(T) \backslash \sigma_{S B F_{+}^{-}}(T)=E(T)$ and T possesses property $(g w)$. On the other hand, we have $\sigma_{a}(T+N)=\{0\}, \sigma_{S B F_{+}^{-}}(T+N)=\{0\}$ and $E(T+N)=\{0\}$. So $\sigma_{a}(T+N) \backslash \sigma_{S B F_{+}^{-}}(T+N) \neq E(T+N)$ and $T+N$ does not possess property $(g w)$. Though we have $E(T)=\Pi_{a}(T+N)=\emptyset$.

We finish this section by posing the following two questions.
Open questions: The proof of Corollary 3.3 suggests the following questions:

1. Let $T \in \mathcal{L}(X)$, and let $N \in \mathcal{L}(X)$ be a nilpotent operator commuting with T. Do we always have $\sigma_{B W}(T+N)=\sigma_{B W}(T)$?
2. Let $T \in \mathcal{L}(X)$, and let $N \in \mathcal{L}(X)$ be a nilpotent operator commuting with T. Under which conditions $\sigma_{B F}(T+N)=\sigma_{B F}(T)$?

4. Finite rank and compact perturbations

Theorem 4.1. Let X be a Banach space and let $T \in \mathcal{L}(X)$. If $K \in \mathcal{L}(X)$ is a compact operator commuting with T and if T possesses property (ab), then $T+K$ possesses property (ab) if and only if $\Pi^{0}(T+K)=\Pi_{a}^{0}(T+K)$.

Proof. Assume that $T+K$ possesses property ($a b$), then from [12, Corollary 2.6], we have $\Pi^{0}(T+K)=\Pi_{a}^{0}(T+K)$. Conversely, assume that $\Pi^{0}(T+K)=$ $\Pi_{a}^{0}(T+K)$. Since T possesses property ($a b$), then from [12, Theorem 2.4], T satisfies Browder's theorem. So $\sigma_{b}(T)=\sigma_{W}(T)$. Since K commutes with T, then from [1, Corollary 3.49], we have $\sigma_{b}(T)=\sigma_{b}(T+K)$, and by [1, Corollary 3.41], we have $\sigma_{W}(T)=\sigma_{W}(T+K)$. Therefore $\sigma_{b}(T+K)=\sigma_{W}(T+K)$ which implies that $T+K$ satisfies Browder's theorem, that is $\sigma(T+K) \backslash \sigma_{W}(T+K)=\Pi^{0}(T+K)$. Since $\Pi^{0}(T+K)=\Pi_{a}^{0}(T+K)$, then $\Delta(T+K)=\Pi_{a}^{0}(T+K)$ and $T+K$ possesses property ($a b$).

Theorem 4.2. Let X be a Banach space and let $T \in \mathcal{L}(X)$. If $K \in \mathcal{L}(X)$ is a compact operator commuting with T and if T possesses property (gab), then $T+K$ possesses property (gab) if and only if $\Pi(T+K)=\Pi_{a}(T+K)$.

Proof. If $T+K$ possesses property ($g a b$), then from [12, Corollary 2.7], we have $\Pi(T+K)=\Pi_{a}(T+K)$. Conversely, if $\Pi(T+K)=\Pi_{a}(T+K)$, as T possesses property ($g a b$), by virtue of [12, Corollary 2.6], T satisfies generalized Browder's theorem. Since we know that Browder's theorem is equivalent to generalized Browder's theorem, it follows that $\sigma(T+K) \backslash \sigma_{B W}(T+K)=\Pi(T+K)$. As $\Pi(T+K)=\Pi_{a}(T+K)$, then $\sigma(T+K) \backslash \sigma_{B W}(T+K)=\Pi_{a}(T+K)$ and $T+K$ possesses property ($g a b$).

Theorem 4.3. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $K \in \mathcal{L}(X)$ be a compact operator commuting with T. If T possesses property (ab), and if $\Pi_{a}^{0}(T+K) \subset \sigma_{a}(T)$, then $T+K$ possesses property $(a b)$.

Proof. We only have to show, by Theorem 4.1, that $\Pi_{a}^{0}(T+K)=\Pi^{0}(T+K)$. Let $\lambda \in \Pi_{a}^{0}(T+K)$, then $\lambda \notin \sigma_{u b}(T+K)$. Since K commutes with T, then from [1, Corollary 3.45], we have $\sigma_{u b}(T+K)=\sigma_{u b}(T)$. So $\lambda \notin \sigma_{u b}(T)$, and since by hypothesis $\lambda \in \sigma_{a}(T)$, then $\lambda \in \sigma_{a}(T) \backslash \sigma_{u b}(T)=\Pi_{a}^{0}(T)$. Since T possesses property $(a b)$, then $\lambda \notin \sigma_{W}(T)$. As $\sigma_{W}(T+K)=\sigma_{W}(T)$, then $\lambda \notin \sigma_{W}(T+K)$ and $\operatorname{ind}(T+K-\lambda I)=0$. Since $T+K-\lambda I$ has ascent $a(T+K-\lambda I)$ finite, then $\delta(T+K-\lambda I)<\infty$ and $T+K-\lambda I$ is Drazin invertible. Since $\lambda \in \sigma(T+K)$, then λ is a pole of the resolvent of $T+K$. Therefore $\lambda \in \Pi^{0}(T+K)$. Hence $\Pi_{a}^{0}(T+K) \subset \Pi^{0}(T+K)$ and since the opposite inclusion holds for every operator, it then follows that $\Pi_{a}^{0}(T+K)=\Pi^{0}(T+K)$, as desired.

Corollary 4.4. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $F \in \mathcal{L}(X)$ be a finite rank operator commuting with T. If $i \operatorname{so} \sigma_{a}(T)=\emptyset$, then T possesses property $(a b)$ if and only if $T+F$ possesses property $(a b)$.

Proof. Assume that T possesses property $(a b)$. Since F is a finite rank operator commuting with T, and since iso $\sigma_{a}(T)=\emptyset$, then from [2, Lemma 2.6], we have $\sigma_{a}(T)=\sigma_{a}(T+F)$. Hence $\Pi_{a}^{0}(T+F) \subset \sigma_{a}(T)$. As T possesses property $(a b)$, then from Theorem 4.3, $T+F$ possesses property ($a b$). Conversely, assume that $T+F$ possesses property $(a b)$. As iso $\sigma_{a}(T+F)=\emptyset$, then by symmetry, $T=(T+F)-F$ possesses property $(a b)$.

Theorem 4.5. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $F \in \mathcal{L}(X)$ be a finite rank operator commuting with T. If T possesses property ($g a b$), and if $\Pi_{a}(T+F) \subset \sigma_{a}(T)$, then $T+F$ possesses property $(g a b)$.

Proof. We only have to show, by Theorem 4.2, that $\Pi(T+F)=\Pi_{a}(T+F)$. If $\lambda \in \Pi_{a}(T+F)$, then $\lambda \notin \sigma_{L D}(T+F)$. Since F commutes with T, then from [14, Theorem 2.1], we have $\sigma_{L D}(T+F)=\sigma_{L D}(T)$, and so $\lambda \notin \sigma_{L D}(T)$. Since by the assumption $\lambda \in \sigma_{a}(T)$, then $\lambda \in \sigma_{a}(T) \backslash \sigma_{L D}(T)=\Pi_{a}(T)$. Since T possesses property ($g a b$), then $T-\lambda I$ is a B-Weyl operator. As F is a finite rank operator, then from [7, Theorem 4.3] it follows that $T+F-\lambda I$ is also a B-Fredholm operator and $\operatorname{ind}(T+F-\lambda I)=0$. As $a(T+F-\lambda I)$ is finite and $\lambda \in \sigma(T+F)$, then λ is a pole of the resolvent of $T+F$ and $\lambda \in \Pi(T+F)$. Hence $\Pi_{a}(T+F) \subset \Pi(T+F)$. As we always have $\Pi_{a}(T+F) \supset \Pi(T+F)$, then $\Pi(T+F)=\Pi_{a}(T+F)$. Hence $T+F$ possesses property ($g a b$).

Corollary 4.6. Let X be a Banach space and let $T \in \mathcal{L}(X)$ and $F \in \mathcal{L}(X)$ be a finite rank operator commuting with T. Ifiso $\sigma_{a}(T)=\emptyset$, then T possesses property (gab) if and only if $T+F$ possesses property (gab).

Proof. Since F is a finite rank operator commuting with T and since iso $\sigma_{a}(T)=\emptyset$, then from [2, Lemma 2.6], we have $\operatorname{iso} \sigma_{a}(T+F)=\emptyset$. Hence $\Pi_{a}(T+F)=\Pi(T+F)=\emptyset$. As T possesses property ($g a b$), then from Theorem 4.2, $T+F$ possesses property $(g a b)$. Conversely, assume that $T+F$ possesses
property $(g a b)$. Since iso $\sigma_{a}(T+F)=\emptyset$, then by symmetry we have T possesses property ($g a b$).

Theorem 4.7. Let $T \in \mathcal{L}(X)$ and let $K \in \mathcal{L}(X)$ be a compact operator commuting with T. If T possesses property (aw), then $T+K$ possesses property (aw) if and only if $\Pi^{0}(T+K)=E_{a}^{0}(T+K)$.

Proof. If $T+K$ possesses property (aw), then from [12, Theorem 3.6], $T+K$ possesses property $(a b)$. So $\sigma(T+K) \backslash \sigma_{W}(T+K)=E_{a}^{0}(T+K)$ and $\sigma(T+K) \backslash$ $\sigma_{W}(T+K)=\Pi_{a}^{0}(T+K)$. Thus $\Pi_{a}^{0}(T+K)=E_{a}^{0}(T+K)$. On the other hand, since $T+K$ possesses property $(a b)$, by Theorem 4.1 we have $\Pi^{0}(T+K)=\Pi_{a}^{0}(T+K)$. Hence $\Pi^{0}(T+K)=E_{a}^{0}(T+K)$. Conversely, assume that $\Pi^{0}(T+K)=E_{a}^{0}(T+K)$. Since T possesses property $(a w)$, then T satisfies Browder's theorem. Hence $T+K$ satisfies Browder's theorem, that is $\sigma(T+K) \backslash \sigma_{W}(T+K)=\Pi^{0}(T+K)$. As $\Pi^{0}(T+K)=E_{a}^{0}(T+K)$, then $\sigma(T+K) \backslash \sigma_{W}(T+K)=E_{a}^{0}(T+K)$ and $T+K$ possesses property (aw).

Theorem 4.8. Let $T \in \mathcal{L}(X)$ and let $K \in \mathcal{L}(X)$ be a compact operator commuting with T. If T possesses property (gaw), then $T+K$ possesses property (gaw) if and only if $\Pi(T+K)=E_{a}(T+K)$.

Proof. If $T+K$ possesses property (gaw), then from Theorem 2.2, we have $\Pi(T+K)=E_{a}(T+K)$. Conversely, assume that $\Pi(T+K)=E_{a}(T+K)$. Since T possesses property (gaw), then from [12, Theorem 3.5], T possesses property (gab). Therefore T satisfies generalized Browder's theorem. Hence $T+K$ satisfies generalized Browder's theorem, that is $\sigma(T+K) \backslash \sigma_{B W}(T+K)=\Pi(T+K)$. As $\Pi(T+K)=E_{a}(T+K)$, then $\sigma(T+K) \backslash \sigma_{B W}(T+K)=E_{a}(T+K)$ and $T+K$ possesses property ($g a w$).

There exist quasinilpotent operators which do not possess property (gaw). For example, if we consider the operator T defined on $\ell^{2}(\mathbb{N})$ by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=$ $\left(x_{3} / 3, x_{4} / 4, x_{5} / 5 \ldots\right)$, then T is quasinilpotent, but property ($g a w$) fails for T, since $\sigma(T)=\sigma_{B W}(T)=\{0\}$ and $E_{a}(T)=\{0\}$. But if a quasinilpotent operator possesses property $(g a w)$, then the following perturbation result holds.

Theorem 4.9. Let $T \in \mathcal{L}(X)$ be a quasinilpotent operator and let $F \in \mathcal{L}(X)$ be a finite rank operator commuting with T. If T possesses property (gaw), then $T+F$ possesses property (gaw).

Proof. As iso $\sigma(T)=\sigma(T)=\{0\}$, then $\operatorname{acc} \sigma(T)=\emptyset$. By [20, Lemma 2.1] it then follows that acc $\sigma(T+F)=\emptyset$.

If 0 is an eigenvalue of T, then T is isoloid. If $\lambda \in E_{a}(T+F)$, then $\lambda \in$ iso $\sigma(T+F)$. Thus $\lambda \in E(T+F)$. As T possesses property (gaw), then from Theorem 2.3, T satisfies generalized Weyl's theorem and since T is isoloid, it then follows from [8, Theorem 2.6] that $T+F$ satisfies generalized Weyl's theorem. From $\left[9\right.$, Theorem 3.2], we conclude that $E(T+F)=\Pi(T+F)$. Hence $E_{a}(T+F) \subset$ $\Pi(T+F)$ and since the opposite inclusion holds for every operator, it then follows that $E_{a}(T+F)=\Pi(T+F)$. By Theorem 4.8, $T+F$ possesses property $(g a w)$.

If 0 is not an eigenvalue of T, this means that T is injective. Since F commutes with a quasinilpotent operator $T, T F$ is a finite rank quasinilpotent operator. Hence $T F$ is nilpotent. As T is injective, then F is nilpotent. From Theorem 3.6, $T+F$ possesses property (gaw).

Remark 4.10. The hypothesis of commutativity in Theorem 4.9 is crucial. Indeed, if we consider the Hilbert space $H=\ell^{2}(\mathbb{N})$, and the operators T and F defined on H by:

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1} / 2, x_{2} / 3, \ldots\right), \quad F\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,-x_{1} / 2,0,0, \ldots\right)
$$

Then T is quasinilpotent, F is a finite rank operator which does not commute with T. Moreover, we have $\sigma(T)=\sigma_{B W}(T)=\{0\}$ and $E_{a}(T)=\emptyset$. Hence T possesses property (gaw). But $T+F$ does not possess property (gaw) because $\sigma(T+F)=\sigma_{B W}(T+F)=\{0\}$ and $E_{a}(T+F)=\{0\}$.

We conclude this section by some examples:
Examples 4.11. 1. Let R be the unilateral right shift operator defined on the Hilbert space $\ell^{2}(\mathbb{N})$. It is well known from [23, Theorem 3.1] that $\sigma(R)=D(0,1)$ is the closed unit disc in $\mathbb{C}, \sigma_{a}(R)=C(0,1)$ is the unit circle of \mathbb{C} and R has an empty eigenvalues set. Moreover, $\sigma_{W}(R)=D(0,1)$ and $\Pi_{a}^{0}(R)=\emptyset$. Define T on the Banach space $X=\ell^{2}(\mathbb{N}) \oplus \ell^{2}(\mathbb{N})$ by $T=0 \oplus R$. Then $\sigma(T)=D(0,1), N(T)=$ $\ell^{2}(\mathbb{N}) \oplus\{0\}, \sigma_{a}(T)=\{0\} \cup C(0,1), \sigma_{W}(T)=D(0,1), \sigma_{B W}(T)=D(0,1), \Pi_{a}(T)=$ $\{0\}$ and $\Pi_{a}^{0}(T)=\emptyset$. Hence $\sigma(T) \backslash \sigma_{W}(T)=\Pi_{a}^{0}(T)$ and $\sigma(T) \backslash \sigma_{B W}(T) \neq \Pi_{a}(T)$. Consequently, T possesses property ($a b$), but it does not possess property ($g a b$).
2. Let T be the operator defined on the Banach space $X=\ell^{2}(\mathbb{N}) \oplus \ell^{2}(\mathbb{N})$ by $T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=0 \oplus\left(0, x_{1} / 2, x_{2} / 3, x_{3} / 4, \ldots\right)$. Then $\sigma(T)=\{0\}, \sigma_{W}(T)=\{0\}$, $\sigma_{B W}(T)=\{0\}, E_{a}^{0}(T)=\emptyset$ and $E_{a}(T)=\{0\}$. Therefore $\sigma(T) \backslash \sigma_{W}(T)=E_{a}^{0}(T)$ and $\sigma(T) \backslash \sigma_{B W}(T) \neq E_{a}(T)$. So T possesses property (aw), but it does not possess property (gaw).
3. Let R the unilateral right shift operator defined on the Hilbert space $\ell^{2}(\mathbb{N})$, then $\sigma(R)=D(0,1), \sigma_{B W}(R)=D(0,1)$ and $E_{a}(R)=\emptyset$. Therefore $\sigma(R) \backslash \sigma_{B W}(R)=$ $E_{a}(R)$ and R possesses property (gaw). Moreover, we have iso $\sigma_{a}(R)=\emptyset$. Hence if $F \in \mathcal{L}(X)$ is a finite rank operator commuting with R, then $R+F$ possesses property ($g a w$).
4. Let $T \in \mathcal{L}(X)$ be an injective quasinilpotent operator. Then $\sigma(T)=\sigma_{B W}(T)=\{0\}$ and $E_{a}(T)=\Pi_{a}(T)=\emptyset$. Hence T possesses property ($g a w$). If $F \in \mathcal{L}(X)$ is a finite rank operator commuting with T, then $T F$ is a finite rank quasinilpotent operator, therefore $T F$ is a nilpotent operator. As T is injective, then F is nilpotent. Hence $T+F$ possesses property (gaw).

References

1. Aiena P., Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Academic, 2004.
2. _ Property (w) and perturbations II, J. Math. Anal. Appl. 342 (2008), 830-837.
3. Amouch M. and Berkani M., On the property ($g w$), Mediterr. J. Math. 5(3) (2008), 371-378.
4. Amouch M. and Zguitti H., On the equivalence of Browder's and generalized Browder's theorem, Glasgow Math. J., 48 (2006), 179-185.
5. Berkani M., On a class of quasi-Fredholm operators. Integr. Equ. and Oper. Theory 34(2) (1999), 244-249
6. \qquad - , B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Applications, 272(2) (2002), 596-603.
7. \qquad , Index of B-Fredholm operators and generalization of a-Weyl's theorem, Proc. Amer. Math. Soc., 130 (2002), 1717-1723.
8. Berkani M. and Amouch M., Preservation of property ($g w$) under perturbations, Acta. Sci. Math. (Szeged), 74 (2008), 767-779.
9. Berkani M. and Arroud A., Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291-302.
10. Berkani M. and Koliha J. J., Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359-376.
11. Berkani M. and Sarih M., On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
12. Berkani M. and Zariouh H., New extended Weyl type theorems, Matematički Vesnik, 62(2) (2010), 145-154.
13. , Extended Weyl type theorems and perturbations, Mathematical Proceedings of the Royal Irish Academy, 110 (2010), 73-82.
14. \qquad , Generalized a-Weyl's theorem and perturbations, Journal Functional Analysis, Approximation and Computation, to appear.
15. Barnes B. A., Riesz points and Weyl's theorem, Integral Equations and Operator Theory, 34 (1999), 187-196.
16. Coburn L. A., Weyl's theorem for nonnormal operators, Michigan Math. J., 13 (1966), 285-288.
17. Djordjević, D. S. and Djordjević, S. V., On a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 44 (1999), 361-369.
18. Grabiner S., Uniform ascent and descent of bounded operators, J. Math. Soc. Japan, 34 (1982), 317-337.
19. Heuser H., Functional Analysis, John Wiley \& Sons Inc, New York, 1982.
20. Lee S. H. and Lee W. Y., On Weyl's theorem II, Math. Japon., 43 (1996), 549-553.
21. Mbekhta M. and Müller V., On the axiomatic theory of the spectrum, II, Studia Math., 119 (1996), 129-147.
22. Oberai K. K., On the Weyl spectrum II, Illinois J. Math., 21 (1977), 84-90.
23. Radjavi H. and Rosenthal P., Invariant subspaces, Springer Verlag, Berlin, 1973.
24. Rakočević. V, Semi-Fredholm operators with finite ascent or descent and perturbations, Proc. Amer. Math. Soc., 123(12) (1995), 3823-3825.
25. Operators obeying a-Weyl's theorem, Roumaine Math. Pures Appl. 34 (1989), 915-919.
26. Taylor A. E., Theorems on ascent, descent, nullity and defect of linear operators, Math Ann. 163 (1966), 18-49.
M. Berkani, Department of mathematics, Science faculty of Oujda, University Mohammed I, Operator Theory Team, Maroc, e-mail: berkanimo@aim.com
H. Zariouh, Department of mathematics, Science faculty of Meknes, University Moulay Ismail, Maroc, e-mail: h.zariouh@yahoo.fr

[^0]: Received June 17, 2010.
 2001 Mathematics Subject Classification. Primary 47A53, 47A10, 47A11.
 Key words and phrases. property ($a b$), property ($g a b$), property ($a w$), property ($g a w$), B-Weyl operators.

 Supported by Protars D11/16 and PGR- UMP.

