MAXIMAL OPERATORS OF THE FEJÉR MEANS OF THE TWO DIMENSIONAL CHARACTER SYSTEM OF THE p-SERIES FIELD IN THE KACZMARZ REARRANGEMENT

U. GOGINAVA

Abstract

The main aim of this paper is to prove that the maximal operator σ^{*} of the Fejér means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy space H_{α} to the space L_{α} for $\alpha>1 / 2$, provided that the supremum in the maximal operator is taken over a positive cone. We also prove that the maximal operator σ_{0}^{*} of Fejér means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement is not bounded from the Hardy space $H_{1 / 2}$ to the space weak- $L_{1 / 2}$.

1. Introduction

The first result with respect to the a.e. convergence of the Walsh-Fejér means $\sigma_{n} f$ is due to Fine [1]. Later, Schipp [9] showed that the maximal operator $\sigma^{*} f$ is of weak type $(1,1)$, from which the a. e. convergence follows on standard argument. Schipp result implies also the boundedness of $\sigma^{*}: L_{\alpha} \rightarrow L_{\alpha}(1<\alpha \leq \infty)$ by interpolation. This fails to hold for $\alpha=1$ but Fujii [2] proved that σ^{*} is bounded from the dyadic Hardy space H_{1} to the space L_{1} (see also Simon [13]). Fujii's theorem was extened by Weisz [15]. Namely, he proved that the maximal operator of the Fejér

[^0]44 4 | \bullet •
Go back

Full Screen

Close
means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space H_{α} to the space L_{α} for $\alpha>1 / 2$. Simon [11] gave a counterexample, which shows that this boundedness does not hold for $0<\alpha<1 / 2$. In the endpoint case $\alpha=1 / 2$ Weisz [17] proved that σ^{*} is bounded from the Hardy space $H_{1 / 2}\left(G_{2}\right)$ to the space weak- $L_{1 / 2}\left(G_{2}\right)$. The author [6] proved that σ^{*} is not bounded from the Hardy space $H_{1 / 2}\left(G_{2}\right)$ to the space $L_{1 / 2}\left(G_{2}\right)$.

If the Walsh system is taken in the Kaczmarz ordening, the analogous to the statement of Schipp [9] is due to Gát [3]. Moreover he proved an (H_{1}, L_{1})-type estimation. Gát result was extended to the Hardy space by Simon [12], who proved that σ^{*} is of type $\left(H_{\alpha}, L_{\alpha}\right)$ for $\alpha>1 / 2$. Weisz [17] showed that in endpoint case $\alpha=1 / 2$ the maximal operator is of weak type ($H_{1 / 2}, L_{1 / 2}$).

Gát and Nagy [4] proved the a.e. convergence $\sigma_{n} f \rightarrow f(n \rightarrow \infty)$ for an integrable function $f \in L_{1}\left(G_{p}\right)$, where $\sigma_{n} f$ is the Fejér means of the function f with respect to the character system in the Kaczmarz rearrangement. This result was generalized by the author [7] and it is proved that the maximal operator σ^{*} of the Fejér means of the one dimensional character system of the p series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space weak- $L_{1 / 2}\left(G_{p}\right)$. By interpolation it follows that σ^{*} is of type $\left(H_{\alpha}, L_{\alpha}\right)$ for $\alpha>1 / 2$. We also prove that the assumption $\alpha>1 / 2$ is essentiall, in particular, it is proved that the maximal operator σ^{*} is not bounded from the Hardy space $H_{1 / 2}\left(G_{p}\right)$ to the space $L_{1 / 2}\left(G_{p}\right)$. By interpolation it follows that σ^{*} is not of type $\left(H_{\alpha}\right.$, weak- L_{α}) for $0<\alpha<1 / 2$.

The aim of this paper is to prove that the maximal operator of Fejér means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement is bounded from the Hardy space $H_{\alpha}\left(G_{p} \times G_{p}\right)$ to the space $L_{\alpha}\left(G_{p} \times G_{p}\right)$ for $\alpha>1 / 2$ and is of weak type $(1,1)$ provided that the supremum in the maximal operator is taken over a positive cone. So we obtain that the Fejer means of a function $f \in L_{1}\left(G_{p} \times G_{p}\right)$ converge a. e. to the function in the question, provided again that the limit is taken over a positive cone. We also proved that the maximal operator σ_{0}^{*} of Fejér means of the two dimensional character system of the p-series field in the Kaczmarz rearrangement

44| 4 |

Go back

Full Screen

Close
is not bounded from the Hardy space $H_{1 / 2}\left(G_{p} \times G_{p}\right)$ to the space weak- $L_{1 / 2}\left(G_{p} \times G_{p}\right)$. Thus, in the question of boundedness of the maximal operator σ_{0}^{*} the case of two dimensional character system of the p-series field in the Kaczmarz rearrangement differs from that one-dimensional character system of the p-series field in the Kaczmarz rearrangement. By Theorem 2 and interpolation it follows that σ_{0}^{*} is not bounded from $H_{\alpha}\left(G_{p} \times G_{p}\right)$ to the space weak- $L_{\alpha}\left(G_{p} \times G_{p}\right)$ for $0<\alpha \leq 1 / 2$. In particular, from Theorem 2 we have that in Theorem 1 the assumption $\alpha>1 / 2$ is essential.

2. Definitions and Notation

Let \mathbf{P} denote the set of positive integers, $\mathbf{N}:=\mathbf{P} \cup\{0\}$. Let $2 \leq p \in \mathbf{N}$ and denote by \mathbf{Z}_{p} the pth cyclic group, that is, \mathbf{Z}_{p} can be represented by the set $\{0,1, \ldots, p-1\}$, where the group operation is the $\bmod \mathrm{p}$ addition and every subset is open. The Haar measure on \mathbf{Z}_{p} is given in the way that

$$
\mu_{k}(\{j\}):=\frac{1}{j} \quad(j \in \mathbf{Z})
$$

The group operation on G_{p} is the coordinate-wise addition, the normalized Haar measure μ is the product measure. The topology on G_{p} is the product topology, a base for the neighborhoods of G_{p} can be given in the following way:

$$
\begin{aligned}
& I_{0}(x):=G_{p}, \\
& I_{n}(x):=\left\{y \in G_{p}: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}, \quad\left(x \in G_{p}, n \in \mathbf{N}\right) .
\end{aligned}
$$

Let $0=(0: i \in \mathbf{N}) \in G_{p}$ denote the null element of $G_{p}, I_{n}:=I_{n}(0)(n \in \mathbf{N}), \bar{I}_{n}:=G_{p} \backslash I_{n}$. Let

$$
\Delta:=\left\{I_{n}(x): x \in G_{p}, n \in \mathbf{N}\right\}
$$

The elements of Δ are intervals of G_{p}. Set $e_{i}:=(0, \ldots, 0,1,0, \ldots) \in G_{p}$ whose i-th coordinate is 1 , the rest are zeros.

The norm (or quasinorm) of the space $L_{\alpha}\left(G_{p} \times G_{p}\right)$ is defined by

$$
\|f\|_{\alpha}:=\left(\int_{G_{p} \times G_{p}}\left|f\left(x^{1}, x^{2}\right)\right|^{\alpha} \mathrm{d} \mu\left(x^{1}, x^{2}\right)\right)^{1 / \alpha}, \quad(0<\alpha<+\infty) .
$$

Let $\Gamma(p)$ denote the character group of G_{p}. We arrange the elements of $\Gamma(p)$ as follows. For $k \in \mathbf{N}$ and $x \in G_{p}$ denote by r_{k} the k-th generalized Rademacher function

$$
r_{k}(x):=\exp \left(\frac{2 \pi \mathrm{i} x_{k}}{p}\right) \quad\left(\mathrm{i}:=\sqrt{-1}, \quad x \in G_{p}, \quad k \in \mathbf{N}\right) .
$$

Let $n \in \mathbf{N}$. Then

$$
n=\sum_{i=0}^{\infty} n_{i} p^{i}, \quad \text { where } 0 \leq n_{i}<p \quad\left(n_{i}, i \in \mathbf{N}\right)
$$

n is expressed in the number system with base p. Denote by

$$
|n|:=\max \left(j \in \mathbf{N}: n_{j} \neq 0\right) \quad \text { i. e., } p^{|n|} \leq n<p^{|n|+1} .
$$

Now, we define the sequence of functions $\psi:=\left(\psi_{n}: n \in \mathbf{N}\right)$ by

$$
\psi_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}} \quad\left(x \in G_{p}, n \in \mathbf{N}\right)
$$

We remark that $\Gamma(p)=\left\{\psi_{n}: n \in \mathbf{N}\right\}$ is a complete orthogonal system with respect to the nor-

The character group $\Gamma(p)$ can be given in the Kaczmarz rearrangement as follows: $\Gamma(p)=$ $\left\{\chi_{n}: n \in \mathbf{N}\right\}$, where

$$
\begin{aligned}
& \chi_{n}(x):=r_{|n|}^{n_{|n|}}(x) \prod_{k=0}^{|n|-1}\left(r_{|n|-1-k}(x)\right)^{n_{k}} \quad\left(x \in G_{p}, n \in \mathbf{P}\right), \\
& \chi_{0}(x)=1 \quad\left(x \in G_{p}\right) .
\end{aligned}
$$

Let the transformation $\tau_{A}: G_{p} \rightarrow G_{p}$ be defined as follows:

$$
\tau_{A}(x):=\left(x_{A-1}, x_{A-2}, \ldots, x_{0}, x_{A}, x_{A+1}, \ldots\right) .
$$

The transformation is measure-preservingand and $\tau_{A}\left(\tau_{A}(x)\right)=x$. By the definition of τ_{A}, we have

$$
\chi_{n}(x)=r_{|n|}^{n_{|n|}}(x) \psi_{n-n_{|n|} p^{n}}\left(\tau_{|n|}(x)\right) \quad\left(n \in \mathbf{N}, x \in G_{p}\right) .
$$

The rectangular partial sums of the double Fourier series are defined as follows:

$$
S_{M, N}\left(f ; x^{1}, x^{2}\right):=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \widehat{f}(i, j) \chi_{i}\left(x^{1}\right) \chi_{j}\left(x^{2}\right),
$$

where the number

$$
\widehat{f}(i, j)=\int_{G_{p} \times G_{p}} f\left(x^{1}, x^{2}\right) \bar{\chi}_{i}\left(x^{1}\right) \bar{\chi}_{j}\left(x^{2}\right) \mathrm{d} \mu\left(x^{1}, x^{2}\right)
$$

is said to be the (i, j)-th Fourier coefficient of the function f. Let

$$
I_{n, n}\left(x^{1}, x^{2}\right):=I_{n}\left(x^{1}\right) \times I_{n}\left(x^{2}\right) .
$$

The σ-algebra generated by the dyadic rectangles

$$
\left\{I_{n, n}\left(x^{1}, x^{2}\right):\left(x^{1}, x^{2}\right) \in G_{p} \times G_{p}\right\}
$$

will be denoted by $F_{n, n}(n \in \mathbf{N})$.
Denote by $f=\left(f^{(n, n)}, n \in \mathbf{N}\right)$ martingale with respect to ($F_{n, n}, n \in \mathbf{N}$) (for details see, e. g. [14, 16]

The diagonal maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n \in \mathbf{N}}\left|f^{(n, n)}\right|
$$

In case $f \in L_{1}\left(G_{p} \times G_{p}\right)$, diagonal maximal function can also be given by

$$
\begin{array}{r}
f^{*}\left(x^{1}, x^{2}\right)=\sup _{n \in \mathbf{N}} \frac{1}{\mu\left(I_{n, n}\left(x^{1}, x^{2}\right)\right)}\left|\int_{I_{n, n}\left(x^{1}, x^{2}\right)} f\left(u^{1}, u^{2}\right) \mathrm{d} \mu\left(u^{1}, u^{2}\right)\right|, \\
\left(x^{1}, x^{2}\right) \in G_{p} \times G_{p} .
\end{array}
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}\left(G_{p} \times G_{p}\right)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty .
$$

If $f \in L_{1}\left(G_{p} \times G_{p}\right)$ then it is easy to show that the sequence $\left(S_{p^{n}, p^{n}}(f): n \in \mathbf{N}\right)$ is a martingale. If f is a martingale, that is $f=\left(f^{(n, n)}: n \in \mathbf{N}\right)$, then the Fourier coefficients must be defined in a little bit different way:

$$
\widehat{f}(i, j)=\lim _{k \rightarrow \infty} \int_{G \times G} f^{(k, k)}\left(x^{1}, x^{2}\right) \bar{\chi}_{i}\left(x^{1}\right) \bar{\chi}_{j}\left(x^{2}\right) \mathrm{d} \mu\left(x^{1}, x^{2}\right) .
$$

Go back

Full Screen

$$
D_{p^{n}}^{\psi}(x)=D_{p^{n}}^{\chi}(x)=\left\{\begin{array}{ll}
p^{n} & \text { if } x \in I_{n}, \tag{1}\\
0 & \text { if } x \notin I_{n},
\end{array} \quad \text { where } x \in G_{p}\right. \text {. }
$$

The Fourier coefficients of $f \in L_{1}\left(G_{p} \times G_{p}\right)$ are the same as the ones of the martingale $\left(S_{p^{n}, p^{n}}(f): n \in \mathbf{N}\right.$) obtained from f.

For $n, m \in \mathbf{P}$ and a martingale f the Fejér means of order (n, m) of the two-dimensional character system of the p-series field in the Kaczmarz rearrangement of the martingale f is given by

$$
\sigma_{n, m}\left(f ; x^{1}, x^{2}\right)=\frac{1}{n m} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} S_{i, j}\left(f ; x^{1}, x^{2}\right) .
$$

For the martingale f, the restricted maximal operator of the Fejér means is defined by

$$
\sigma_{\lambda}^{*} f\left(x^{1}, x^{2}\right)=\sup _{p^{-\lambda} \leq n / m \leq p^{\lambda}}\left|\sigma_{n, m}\left(f ; x^{1}, x^{2}\right)\right|, \quad \lambda>0 .
$$

The Dirichlet kernels and Fejér kernels are defined as follows

$$
D_{n}^{\gamma}(x):=\sum_{j=0}^{n-1} \gamma_{j}(x), \quad K_{n}^{\gamma}(x):=\sum_{j=0}^{n-1} D_{j}^{\gamma}(x),
$$

where γ is either ψ or χ.
The p^{n} th Dirichlet kernels have a closed form:

3. Formulation of Main Results

Theorem 1. Let $\alpha>1 / 2$. Then the maximal operator σ_{λ}^{*} is bounded from the Hardy space $H_{\alpha}\left(G_{p} \times G_{p}\right)$ to the space $L_{\alpha}\left(G_{p} \times G_{p}\right)$. Especialy, if $f \in L_{1}\left(G_{p} \times G_{p}\right)$ then

$$
\mu\left(\sigma_{\lambda}^{*}>y\right) \leq \frac{c}{y}\|f\|_{1} .
$$

Corollary 1. If $f \in L_{1}\left(G_{p} \times G_{p}\right)$, then

$$
\sigma_{n, m} f\left(x^{1}, x^{2}\right) \rightarrow f\left(x^{1}, x^{2}\right) \quad \text { a.e. }
$$

as $\min (n, m) \rightarrow \infty$ and $p^{-\lambda} \leq n / m \leq p^{\lambda}(\lambda>0)$.

Theorem 2. The maximal operator σ_{0}^{*} is not bounded from the Hardy space $H_{1 / 2}\left(G_{p} \times G_{p}\right)$ to the space weak- $L_{1 / 2}\left(G_{p} \times G_{p}\right)$.

4. Auxiliary Propositions

We shall need the following lemmas

Lemma 1 (Gát, Nagy [4]). Let $A \in \mathbf{N}$ and $n:=n_{A} p^{A}+n_{A-1} p^{A-1}+\cdots+n_{0} p^{0}$. Then

$$
\begin{aligned}
n K_{n}^{\chi}(x)=1 & +\sum_{j=0}^{A-1} \sum_{i=1}^{p-1} r_{j}^{i}(x) p^{j} K_{p^{j}}^{\psi}\left(\tau_{j}(x)\right)+\sum_{j=0}^{A-1} p^{j} D_{p^{j}}^{\psi}(x) \sum_{l=1}^{p-1} \sum_{i=0}^{l-1} r_{j}^{i}(x) \\
& +p^{A} \sum_{l=1}^{n_{A}-1} r_{A}^{l}(x) K_{p^{A}}^{\psi}\left(\tau_{A}(x)\right)+r_{A}^{n_{A}}(x)\left(n-n_{A} p^{A}\right) K_{n-n_{A} p^{A}}^{\psi}\left(\tau_{A}(x)\right) \\
& +\left(n-n_{A} p^{A}\right) \sum_{i=0}^{n_{A}-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x)++p^{A} \sum_{j=1}^{n_{A}-1} \sum_{i=0}^{j-1} r_{A}^{i}(x) D_{p^{A}}^{\psi}(x) .
\end{aligned}
$$

Lemma 2 (Gát, Nagy [4]). Let $A, l \in \mathbf{N}, A>l$ and $x \in I_{l} \backslash I_{l+1}$. Then

$$
K_{p^{A}}^{\psi}(x)= \begin{cases}0, & \text { if } x-x_{l} e_{l} \notin I_{A}, \\ \frac{p^{l}}{1-r_{l}(x)} & \text { if } x-x_{l} e_{l} \in I_{A} .\end{cases}
$$

Lemma 3 ([7]). Let $n<p^{A+1}, A>N$ and $x \in I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0\right.$, $\left.0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) m=-1,0, \ldots, l-1, l=0, \ldots, N$. Then

$$
\int_{I_{N}} n\left|K_{n}^{\psi}\left(\tau_{A}(x-t)\right)\right| \mathrm{d} \mu(t) \leq \frac{c p^{A}}{p^{m+l}}
$$

where

$$
\begin{aligned}
& I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \\
& :=I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \quad \text { for } m=-1,
\end{aligned}
$$

and

$$
\begin{aligned}
& I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right) \\
& :=I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0\right), \quad \text { for } l=N .
\end{aligned}
$$

Lemma 4 ([5]). Let $A \in \mathbf{N}$ and $n_{A}:=p^{2 A}+p^{2 A-2}+\ldots+p^{2}+p^{0}$. Then

$$
n_{A-1}\left|K_{n_{A-1}}(x)\right| \geq c p^{2 k+2 s}
$$

for $x \in I_{2 A}\left(0, \ldots, 0, x_{2 k} \neq 0,0, \ldots, 0, x_{2 s} \neq 0, x_{2 s+1}, \ldots, x_{2 A-1}\right), k=0,1, \ldots, A-3, \quad s=k+2$, $k+3, \ldots, A-1$.

Lemma 5. Let $x \in \bar{I}_{N}$ and $n \geq p^{N}$. Then

$$
\begin{aligned}
& \int_{I_{N}}\left|K_{n}^{\chi}(x-t)\right| \mathrm{d} \mu(t) \\
& \leq c\left\{\sum_{l=0}^{N} \sum_{m=-1}^{l-1} \frac{1}{p^{m+l}} \mathbf{1}_{I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x)\right. \\
&\left.+\frac{1}{p^{2 N}} \sum_{j=1}^{N} p^{2 j} \sum_{l=0}^{j-1} \frac{1}{p^{l}} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0, x_{j}, \ldots, x_{N-1}\right)}(x)\right\}
\end{aligned}
$$

Proof. From Lemma 1 we write
(2)

$$
\begin{aligned}
n\left|K_{n}^{\chi}(x)\right| \leq & c\left\{1+\sum_{j=0}^{A} p^{j}\left|K_{p^{j}}^{\psi}\left(\tau_{j}(x)\right)\right|\right. \\
& \left.+\sum_{j=0}^{A} p^{j}\left|D_{p^{j}}^{\psi}(x)\right|+\left(n-n_{A} p^{A}\right)\left|K_{n-n_{A} p^{A}}^{\psi}\left(\tau_{A}(x)\right)\right|\right\} .
\end{aligned}
$$

Using Lemma 3 we obtain

$$
\begin{align*}
& \frac{1}{n} \int_{I_{N}}\left(n-n_{A} p^{A}\right)\left|K_{n-n_{A} p^{A}}^{\psi}\left(\tau_{A}(x-t)\right)\right| \mathrm{d} \mu(t) \\
& \quad \leq c\left\{\sum_{l=0}^{N} \sum_{m=-1}^{l-1} \frac{1}{p^{m+l}} \mathbf{1}_{I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x)\right\} \tag{3}
\end{align*}
$$

Let $x \in I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)$ for some $m=-1, \ldots, l-1$, $l=0, \ldots, N$. Then using Lemma $2 K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right) \neq 0 \quad(j>N)$ implies

$$
t \in I_{j}\left(0, \ldots, 0, x_{N}, \ldots, x_{j-1}\right), \quad m=-1
$$

Consequently, we can write

$$
\begin{align*}
\int_{I_{N}} p^{j}\left|K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right)\right| \mathrm{d} \mu(t) & \leq \frac{c p^{j}}{p^{j}} p^{j-l} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x) \tag{4}\\
& =\frac{c p^{j}}{p^{l}} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x) .
\end{align*}
$$

Let $j<N$. Then using Lemma $2 K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right) \neq 0$ implies

$$
x \in I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0, x_{j}, \ldots, x_{N-1}\right), l=-1,0, \ldots, j-1 .
$$

Hence we have

$$
\begin{align*}
\int_{I_{N}} p^{j}\left|K_{p^{j}}^{\psi}\left(\tau_{j}(x-t)\right)\right| \mathrm{d} \mu(t) & \leq \frac{c p^{j}}{p^{N}} \sum_{l=0}^{j-1} p^{j-l} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0, x_{j}, \ldots, x_{N-1}\right)}(x) \\
& =\frac{c p^{2 j}}{p^{N}} \sum_{l=0}^{j-1} p^{-l} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0, x_{j}, \ldots, x_{N-1}\right)}(x) . \tag{5}
\end{align*}
$$

From (1) we can write

Go back

$$
\begin{aligned}
\sum_{j=0}^{A} p^{j} \int_{I_{N}}\left|D_{p^{j}}^{\psi}(x-t)\right| \mathrm{d} \mu(t) & \leq \frac{c}{p^{N}} \sum_{j=0}^{N-1} p^{j}\left|D_{p^{j}}^{\psi}(x)\right| \\
& \leq \frac{c}{p^{N}} \sum_{j=0}^{N-1} p^{2 j} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{j}, \ldots, x_{N-1}\right)}(x) .
\end{aligned}
$$

Combining (2)-(6) we complete the proof of Lemma 5.

5. Proofs of Main results

Proof of Theorem 1. In order to prove Theorem 1 it is enough to show that (see Simon [11], Theorem 1)

$$
\int_{\bar{I}_{N}}\left(\sup _{n \geq 2^{N}} \int_{I_{N}}\left|K_{n}^{\chi}(x-t)\right| \mathrm{d} \mu(t)\right)^{\alpha} \mathrm{d} \mu(x) \leq c_{\alpha} p^{-N}, \quad \text { for } 1 / 2<\alpha \leq 1 .
$$

Applying the inequality

$$
\left(\sum_{k=0}^{\infty} a_{k}\right)^{\alpha} \leq \sum_{k=0}^{\infty} a_{k}^{\alpha} \quad\left(a_{k} \geq 0, \quad 0<\alpha \leq 1\right),
$$

from Lemma 5 we can write

$$
\begin{aligned}
& \int_{\bar{I}_{N}}\left(\sup _{n \geq 2^{N}} \int_{I_{N}}\left|K_{n}^{\chi}(x-t)\right| \mathrm{d} \mu(t)\right)^{\alpha} \mathrm{d} \mu(t) \\
& \leq c_{\alpha}\left\{\sum_{l=0}^{N} \sum_{m=-1}^{l-1} \frac{1}{p^{\alpha(m+l)}} \int_{G} \mathbf{1}_{I_{N}\left(x_{0}, \ldots, x_{m-1}, x_{m} \neq 0,0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0\right)}(x) \mathrm{d} \mu(x)\right. \\
& \left.\quad+\frac{1}{p^{2 \alpha N}} \sum_{j=1}^{N} p^{2 j \alpha} \sum_{l=0}^{j-1} \frac{1}{p^{l \alpha}} \int_{G} \mathbf{1}_{I_{N}\left(0, \ldots, 0, x_{l} \neq 0,0, \ldots, 0,, x_{j}, \ldots, x_{N-1}\right)}(x) \mathrm{d} \mu(x)\right\}
\end{aligned}
$$

The proof of Theorem 1 is complete.
Proof of Theorem 2. Let $A \in \mathbf{P}$ and

$$
f_{A}\left(x^{1}, x^{2}\right):=\left(D_{p^{2 A+1}}\left(x^{1}\right)-D_{p^{2 A}}\left(x^{1}\right)\right)\left(D_{p^{2 A+1}}\left(x^{2}\right)-D_{p^{2 A+1}}\left(x^{2}\right)\right) .
$$

It is simple to calculate

$$
\widehat{f}_{A}^{\psi}(i, k)= \begin{cases}1, & \text { if } i, k=p^{2 A}, \ldots, p^{2 A+1}-1 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
S_{i, j}^{\psi}\left(f_{A} ; x^{1}, x^{2}\right)= \begin{cases}\left(D_{i}^{\psi}\left(x^{1}\right)-D_{p^{2 A}}\left(x^{1}\right)\right)\left(D_{j}^{\psi}\left(x^{2}\right)-D_{p^{2 A}}\left(x^{2}\right)\right), \tag{7}\\ f_{A}\left(x^{1}, x^{2}\right), & \text { if } i, j=p^{2 A}+1, \ldots, p^{2 A+1}-1, \\ 0, & \text { if } i, j \geq p^{2 A+1}, \\ & \text { otherwise. }\end{cases}
$$

Since

$$
f_{A}^{*}\left(x^{1}, x^{2}\right)=\sup _{n \in \mathbf{N}}\left|S_{p^{n}, p^{n}}\left(f_{A} ; x^{1}, x^{2}\right)\right|=\left|f_{A}\left(x^{1}, x^{2}\right)\right|,
$$

$$
\begin{align*}
& \text { from (1) we get } \\
& \left\|f_{A}\right\|_{H_{\alpha}}=\left\|f_{A}^{*}\right\|_{\alpha}=\left\|D_{p^{2 A}}\right\|_{\alpha}^{2}=p^{4 A(1-1 / \alpha)} . \tag{8}\\
& \text { Since } \\
& D_{k+p^{2 A}}^{\chi}(x)-D_{p^{2 A}}^{\chi}(x)=r_{2 A}(x) D_{k}\left(\tau_{2 A}(x)\right), \quad k=1,2, \ldots, p^{2 A}, \\
& \text { from (7) we obtain } \\
& \sigma_{0}^{\chi *} f_{A}\left(x^{1}, x^{2}\right)=\sup _{n \in \mathbf{N}}\left|\sigma_{n, n} f_{A}\left(x^{1}, x^{2}\right)\right| \geq\left|\sigma_{n_{A}, n_{A}} f_{A}\left(x^{1}, x^{2}\right)\right| \\
& =\frac{1}{\left(n_{A}\right)^{2}}\left|\sum_{i=0}^{n_{A}-1} \sum_{j=0}^{n_{A}-1} S_{i, j}^{\chi} f_{A}\left(x^{1}, x^{2}\right)\right| \\
& =\frac{1}{\left(n_{A}\right)^{2}}\left|\sum_{i=p^{2 A}+1}^{n_{A}-1} \sum_{j=p^{2 A}+1}^{n_{A}-1}\left(D_{i}^{\chi}\left(x^{1}\right)-D_{p^{2 A}}\left(x^{1}\right)\right)\left(D_{j}^{\chi}\left(x^{2}\right)-D_{p^{2 A}}\left(x^{2}\right)\right)\right| \\
& =\frac{1}{\left(n_{A}\right)^{2}}\left|\sum_{i=1}^{n_{A-1}-1} \sum_{j=1}^{n_{A-1}-1}\left(D_{i+p^{2 A}}^{\chi}\left(x^{1}\right)-D_{p^{2 A}}\left(x^{1}\right)\right)\left(D_{j+p^{2 A}}^{\chi}\left(x^{2}\right)-D_{p^{2 A}}\left(x^{2}\right)\right)\right| \\
& =\frac{1}{\left(n_{A}\right)^{2}}\left|r_{2 A}\left(x^{1}\right) r_{2 A}\left(x^{2}\right) \sum_{i=1}^{n_{A-1}-1} \sum_{j=1}^{n_{A-1}-1} D_{i}^{\psi}\left(\tau_{2 A}\left(x^{1}\right)\right) D_{j}^{\psi}\left(\tau_{2 A}\left(x^{2}\right)\right)\right| \\
& =\frac{n_{A-1}^{2}}{n_{A}^{2}}\left|K_{n_{A-1}}^{\psi}\left(\tau_{2 A}\left(x^{1}\right)\right)\right|\left|K_{n_{A-1}}^{\psi}\left(\tau_{2 A}\left(x^{2}\right)\right)\right| \text {. }
\end{align*}
$$

Denote

$$
J_{2 A}^{m, s}(x):=I_{2 A}\left(x_{0}, x_{1}, \ldots, x_{2 A-2 s-2}, x_{2 A-2 s-1}=1,0, \ldots, x_{2 A-2 m-1}=1,0, \ldots, 0\right)
$$

and let

$$
\left(x^{1}, x^{2}\right) \in J_{2 A}^{k_{l}^{1}, k_{l}^{1}+1}\left(x^{1}\right) \times J_{2 A}^{k_{l}^{2}, k_{l}^{2}+1}\left(x^{2}\right),
$$

where

$$
k_{l}^{1}:=\left[\frac{A}{2}\right]+\left[\frac{1}{8} \log _{p} A\right]-l, \quad k_{l}^{2}:=\left[\frac{A}{2}\right]+\left[\frac{1}{8} \log _{p} A\right]+l \quad l=0,1, \ldots,\left[\frac{1}{8} \log _{p} A\right] .
$$

Then from Lemma 4 and (9) we obtain

$$
\sigma_{0}^{*} f_{A}\left(x^{1}, x^{2}\right) \geq c \frac{p^{4 k_{l}^{1}+4 k_{l}^{2}}}{p^{4 A}} \geq \frac{p^{2 A+\log _{p} \sqrt{A}-4 l} p^{2 A+\log _{p} \sqrt{A}+4 l}}{p^{4 A}} \geq c A
$$

On the other hand,

$$
\begin{aligned}
& \mu\left\{\left(x^{1}, x^{2}\right) \in G_{p} \times G_{p}:\left|\sigma_{0}^{\chi *} f_{A}\left(x^{1}, x^{2}\right)\right| \geq c A\right\} \\
& \geq c \sum_{l=1}^{\left[\frac{1}{8} \log _{q} \sqrt{A}\right]} \sum_{x_{0}^{1}=0}^{p-1} \cdots \sum_{x_{2 A-2 k_{l}^{1}-2}^{1}}^{p-1} \sum_{x_{0}^{2}=0}^{p-1} \cdots \sum_{x_{2 A-2 k_{l}^{1}-2}^{2}=0}^{p-1} \mu\left(J_{2 A}^{k_{l}^{1}, k_{l}^{1}+1}\left(x^{1}\right) \times J_{2 A}^{k_{l}^{2}, k_{l}^{2}+1}\left(x^{2}\right)\right) \\
& \geq c \sum_{l=1}^{\left[\frac{1}{8} \log _{q} \sqrt{A}\right]} \frac{p^{2 A-2 k_{l}^{1}} p^{2 A-2 k_{l}^{2}}}{p^{4 A}}=c \sum_{l=1}^{\left[\frac{1}{8} \log _{q} \sqrt{A}\right]} \frac{1}{p^{2 k_{l}^{1}} p^{2 k_{l}^{2}}} \\
& =c \sum_{l=1}^{\left[\frac{1}{8} \log _{q} \sqrt{A}\right]} \frac{1}{p^{A+\log _{p} \sqrt[4]{A}-2 l} p^{A+\log _{p} \sqrt[4]{A}+2 l}} \geq c \frac{\log _{p} A}{p^{2 A+\log _{p} \sqrt{A}}}=c \frac{\log _{p} A}{\sqrt{A} p^{2 A}} .
\end{aligned}
$$

Then from (8) we obtain

$$
\begin{aligned}
& \frac{c A\left(\mu\left\{\left(x^{1}, x^{2}\right) \in G_{p} \times G_{p}:\left|\sigma_{0}^{\chi *} f_{A}\left(x^{1}, x^{2}\right)\right| \geq c A\right\}\right)^{2}}{\left\|f_{A}\right\|_{H_{1 / 2}}} \\
& \geq \frac{c A \log _{p}^{2} A}{p^{-4 A} p^{4 A} A} \geq c \log _{p}^{2} A \rightarrow \infty \quad \text { as } \quad A \rightarrow \infty
\end{aligned}
$$

Theorem 2 is proved.
We remark that in the case $p=2$ Theorem 2 is due to Goginava and Nagy [8].

1. Fine J., Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. USA 41 (1955), 558-591.
2. Fujii N. J., Cesàro summability of Walsh-Fourier series. Proc. Amer. Math. Soc. 77 (1979), 111-116.
3. Gát G., On $(C, 1)$ summability of integrable function with respect to the Walsh-Kaczmarz system, Studia Math. 130 (1998), 135-148.
4. Gát G. and Nagy K., Cesàro summability of the character system of the p-series field in the Kaczmarz rearrangement. Analysis. Math. 28 (2002), 1-23.
5. Blahota I., Gát G. and Goginava U., Maximal operators of Fejér means of double Vilenkin- -Fourier series, Colloq. Math. 107(2) (2007), 287-296.
6. Goginava U., The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12(3) (2006), 295-302.
7. _ The maximal operator of the Fejer means of the character system of the p-series field in the Kaczmarz rearrangement, Publ. Math. Debrecen, 71(1-2) (2007), 43-55.
8. Goginava U. and Nagy K., On the Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system, Math. Period. Hungarica. 55(1) (2007), 39-45.
9. Schipp F., Certain rearrangements of series in the Walsh series, Mat. Zametki 18 (1975), 193-201.

Go back

Full Screen

Close

Quit
10. Schipp F., Wade W. R., Simon P. and Pál J., Walsh Series, an Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol, New York, 1990.
11. Simon P., Cesaro summability with respect to two-parameter Walsh system, Monatsh. Math. 131 (2000), 321-334.
12. \qquad , On the Cesàro summability with respect to the Walsh-Kaczmarz system, J. Approx. Theory, 106 (2000), 249-261.
13. \qquad , Investigation with respect to the Vilenkin system, Ann. Univ. Sci. Sect. Math. (Budapest) 27 (1985), 87-101.
14. Weisz F., Martingale Hardy spaces and their applications in Fourier analysis, Springer, Berlin - Heidelberg New York, 1994.
15. 242.
16. \qquad , Cesaro summability of one and two-dimensional Walsh-Fourier series. Anal. Math. 22 (1996), 229Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht, 2002.
17. \qquad ϑ-summability of Fourier series, Acta Math. Hungar. 103(1-2) (2004), 139-176.
U. Goginava, Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia,
e-mail: u.goginava@math.sci.tsu.ge

[^0]: Received November 12, 2007.
 2000 Mathematics Subject Classification. Primary 42C10.
 Key words and phrases. Character system, Weak type inequality.
 This research was supported by the Georgian National Foundation for Scientific Research, Grant No GNSF/ST07/3-171.

