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Lp-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR
OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT and M. HIEBER

Abstract. In this paper we describe two recent approaches for the Lp-theory of the Navier-Stokes flow in the exterior

of a moving or rotating obstacle.

1. Introduction

Consider a compact set O ⊂ Rn, the obstacle, with boundary Γ := ∂O of class C1,1. Set Ω := Rn\O. For t > 0
and a real n× n-matrix M we set

Ω(t) := {y(t) = etMx, x ∈ Ω} and Γ(t) := {y(t) = etMx, x ∈ Γ}.

Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes given by

∂tw −∆w + w · ∇w +∇q = 0, in Ω(t)× R+,
∇ · w = 0, in Ω(t)× R+,

w(y, t) = My, on Γ(t)× R+,
w(y, 0) = w0(y), in Ω.

(1)
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Here w = w(y, t) and q(y, t) denote the velocity and the pressure of the fluid, respectively. The boundary condition
on Γ(t) is the usual no-slip boundary condition. Quite a few articles recently dealt with the equation above, see
[2], [3], [4], [5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the Lp-setting where 1 < p < ∞. The
basic idea for both approaches is to transfer the problem given on a domain Ω(t) depending on t to a fixed domain.
The first transformation described in the following Section 2 yields additional terms in the equations which are of
Ornstein-Uhlenbeck type. We shortly describe the techniques used in [15] and [12] in order to construct a local
mild solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6], allows to invoke maximal
Lp-estimates for the classical Stokes operator in exterior domains and like this we obtain a unique strong solution
to (1). This approach is described in section 3.

2. Mild solutions

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this we first transform the
equations (1) to a fixed domain. Let Ω, Ω(t) and Γ(t) be as in the introduction and suppose that M is unitary.
Then by the change of variables x = e−tMy and by setting v(x, t) = e−tMw(etMx, t) and p(x, t) = q(etMx, t) we
obtain the following set of equations defined on the fixed domain Ω:

∂tv −∆v + v · ∇v −Mx · ∇v + Mv +∇p = 0, in Ω× R+,
∇ · v = 0, in Ω× R+,

v(x, t) = Mx, on Γ× R+,
v(x, 0) = w0(x), in Ω.

(2)

Note that the coefficient of the convection term Mx · ∇u is unbounded, which implies that this term cannot be
treated as a perturbation of the Stokes operator.
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This problem was first considered by Hishida in L2
σ(Ω) for Ω ⊂ R3 and Mx = ω× x with ω = (0, 0, 1)T in [15]

and [16]. The Lp-theory was developed by Heck and the authors in [12] even for general M .
We will construct mild solutions for w0 ∈ Lp

σ(Ω), p ≥ n, to the problem (2) with Kato’s iteration (see [18]).
The starting point is the linear problem

∂tu−∆u−Mx · ∇u + Mu + b · ∇u + u · ∇b +∇p = 0, in Ω× R+,
∇ · u = 0, in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x), in Ω,

(3)

where b ∈ C∞
c (Ω). The additional term b · ∇u + u · ∇b simplifies the treatment of the Navier-Stokes problem (see

(11) below). We will first show that the solution of (3) is governed by a C0-semigroup on Lp
σ(Ω). More precisely,

let LΩ,b be defined by

LΩ,bu := PΩLbu

D(LΩ,b) := {u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇u ∈ Lp(Ω)},

where Lbu := ∆u + Mx · ∇u−Mu + b · ∇u + u · ∇b. Then the following theorem is proved in [12].

Theorem 2.1. Let 1 < p < ∞ and let Ω ⊂ Rn be an exterior domain with C1,1-boundary. Assume that
trM = 0 and b ∈ C∞

c (Ω). Then the operator LΩ,b generates a C0-semigroup TΩ,b on Lp
σ(Ω).

Sketch of the proof. The proof is devided into several steps. First it is shown that LΩ,b is the generator of an
C0-semigroup TΩ,b on L2

σ(Ω). Then a-priori Lp-estimates for TΩ,b are proved. Once we have shown this we can
easily define a consistent family of semigroups TΩ,b on Lp

σ(Ω) for 1 < p < ∞. In the last step the generator of
TΩ,b on Lp

σ(Ω) is identified to be LΩ,b.
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We start by showing that LΩ,b is the generator of a C0-semigroup on L2
σ(Ω). Choose R > 0 such that

supp b ∪ Ωc ⊂ BR(0) = {x ∈ Rn : |x| < R}. We then set

D = Ω ∩BR+5(0),
K1 = {x ∈ Ω : R < |x| < R + 3},
K2 = {x ∈ Ω : R + 2 < |x| < R + 5}.

Denote by Bi for i ∈ {1, 2} Bogovskĭı’s operator (see [1], [9, Chapter III.3], [13]) associated to the domain Ki

and choose cut-off functions ϕ, η ∈ C∞(Rn) such that 0 ≤ ϕ, η ≤ 1 and

ϕ(x) =
{

0, |x| ≤ R + 1,
1, |x| ≥ R + 2,

and η(x) =
{

1, |x| ≤ R + 3,
0, |x| ≥ R + 4.

For f ∈ Lp
σ(Ω) we denote by fR the extension of f by 0 to all of Rn. Then, since C∞

c,σ(Ω) is dense in Lp
σ(Ω),

fR ∈ Lp
σ(Rn). Furthermore, we set fD = ηf −B2((∇η)f). Since

∫
K2

(∇η)f = 0 it follows from [9, Chapter III.3]
that fD ∈ Lp

σ(D).
By the perturbation theorem for analytic semigroups there exists ω1 ≥ 0 such that for λ > ω1 there exist

functions uD
λ and pD

λ satisfying the equations

(λ− Lb)uD
λ +∇pD

λ = fD, in D × R+,

∇ · uD
λ = 0, in D × R+,

uD
λ = 0, on ∂D × R+.

(4)

Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists ω2 ≥ 0 such that for λ > ω2 there exists a function uR
λ

satisfying

(λ− L0)uR
λ = fR, in Rn × R+,

∇ · uR
λ = 0, in Rn × R+.

(5)
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For λ > max{ω1, ω2} we now define the operator Uλ : Lp
σ(Ω) → Lp

σ(Ω) by

Uλf = ϕuR
λ + (1− ϕ)uD

λ + B1(∇ϕ(uR
λ − uD

λ )),(6)

where uR
λ and uD

λ are the functions given above, depending of course on f . By definition, we have

Uλf ∈ {v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇v ∈ Lp
σ(Ω)}.(7)

Setting Pλf = (1− ϕ)pD
λ , we verify that (Uλf, Pλf) satisfies

(λ− Lb)Uλf +∇Pλf = f + Tλf, in Ω× R+,
∇ · Uλf = 0, in Ω× R+,

Uλf = 0, on ∂Ω× R+,

where Tλ is given by

Tλf = −2(∇ϕ)∇(uR
λ − uD

λ )− (∆ϕ + Mx · (∇ϕ))(uR
λ − uD

λ ) + (∇ϕ)pD
λ

+ (λ−∆−Mx · ∇+ M)B1((∇ϕ)(uR
λ − uD

λ )).

It follows from [12, Lemma 4.4] that for α ∈ (0, 1
2p′ ), where 1

p + 1
p′ = 1, there exists a strongly continuous function

H : (0,∞) → L(Lp
σ(Ω)) satisfying

‖H(t)‖L(Lp
σ(Ω)) ≤ Ctα−1eω̃t, t > 0(8)

for some ω̃ ≥ 0 and C > 0 such that λ 7→ PΩTλ is the Laplace Transform of H. We thus easily calculate

‖PΩTλ‖L(Lp
σ(Ω)) ≤ Cλ−α, λ > ω.

Therefore, Rλ := Uλ

∑∞
j=0(PΩTλ)j exists for λ large enough and (λ − Lb)Rλf = f for f ∈ L2

σ(Ω). Since LΩ,b is
dissipative in L2

σ(Ω), LΩ,b generates a C0-semigroup TΩ,b on L2
σ(Ω). Moreover, we have the representation

TΩ,b(t)f =
∞∑

n=0

Tn(t)f, f ∈ L2
σ(Ω),(9)
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where Tn(t) :=
∫ t

0
Tn−1(t− s)H(s) ds for n ∈ N and

T0(t) = ϕTR(t)fR + (1− ϕ)TD,b(t)fD + B1((∇ϕ)(TR(t)fR − TD,b(t)fD)), t ≥ 0.

Here TR denotes the semigroup on Lp
σ(Rn) generated by LRn,0 and TD,b denotes the semigroup on Lp

σ(D) generated
by LD,b. Note that λ 7→ Uλ is the Laplace Transform of T0. Since the right hand side of the representation (9)
is well defined and exponentially bounded in Lp

σ(Ω) by [12, Lemma 4.6], we can define a family of consistent
semigroups TΩ,b on Lp(Ω) for 1 < p < ∞. Finally, the generator of TΩ,b on Lp(Ω) is LΩ,b which can be proved by
using duality arguments (cf. [12, Theorem 4.1]). 2

Remark 2.2. (a) The semigroup TΩ,b is not expected to be analytic since, by [16, Proposition 3.7], the
semigroup TR3 in R3 is not analytic.

(b) As the cut-off function ϕ is used for the localization argument similarly to [15] the purpose of η is to
ensure that fD ∈ Lp

σ(Ω). This is essential to establish a decay property in λ for the pressure PD
λ (cf. [12,

Lemma 3.5]) and Tλ.
(c) The crucial point for a-priori Lp-estimates for TΩ,b on L2

σ(Ω) is the existence of H satisfying (8).

Since Lp-Lq smoothing estimates for TR and TD,b follow from [14, Lemma 3.3 and Prop. 3.4] and [12, Prop.
3.2], the representation of the semigroup TΩ,b given by (9) and estimates for sums of convolutions of this type (cf.
[12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let 1 < p < q < ∞ and let Ω ⊂ Rn be an exterior domain with C1,1-boundary. Assume
that trM = 0 and b ∈ C∞

c (Ω). Then there exist constants C > 0, ω ≥ 0 such that for f ∈ Lp
σ(Ω)

(a) ‖TΩ,b(t)f‖Lq
σ(Ω) ≤ Ct−

n
2

(
1
p−

1
q

)
eωt‖f‖Lp

σ(Ω), t > 0,

(b) ‖∇TΩ,b(t)f‖Lp(Ω) ≤ Ct−
1
2 eωt‖f‖Lp

σ(Ω), t > 0.
Moreover, for f ∈ Lp

σ(Ω)

‖t
n
2

(
1
p−

1
q

)
TΩ,b(t)f‖Lq

σ(Ω) + ‖t 1
2∇TΩ,b(t)f‖Lp(Ω) → 0, for t → 0.
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In order to construct a mild solution to (2) choose ζ ∈ C∞
c (Rn) with 0 ≤ ζ ≤ 1 and ζ = 1 near Γ. Further let

K ⊂ Rn be a domain such that supp∇ζ ⊂ K. We then define b : Rn → Rn by

b(x) := ζMx−BK((∇ζ)Mx),(10)

where BK is Bogovskĭı’s operator associated to the domain K. Then div b = 0 and b(x) = Mx on Γ. Setting
u := v − b, it follows that u satisfies

∂tu− Lbu +∇p = F in Ω× (0, T ),
∇ · u = 0 in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(x, 0) = u0(x)− b(x), in Ω,

(11)

with ∇· (u0− b) = 0 in Ω and F = −∆b−Mx ·∇b+Mb+ b ·∇b, provided u satisfies (2). Applying the Helmholtz
projection PΩ to (11), we may rewrite (11) as an evolution equation in Lp

σ(Ω):

u′ − LΩ,bu + PΩ(u · ∇u) = PΩF, 0 < t < T,
u(0) = u0 − b.

(12)

Note that we need the compatibility condition u0(x) · n = Mx · n on ∂Ω to obtain u0 − b ∈ Lp
σ(Ω). In the

following, given 0 < T < ∞, we call a function u ∈ C([0, T );Lp
σ(Ω)) a mild solution of (12) if u satisfies the

integral equation for 0 < t < T

u(t) = TΩ,b(t)(u0 − b)−
t∫

0

TΩ,b(t− s)PΩ(u · ∇u)(s) ds +

t∫
0

TΩ,b(t− s)PΩF (s) ds.

Then the main result of [12] is the following theorem.
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Theorem 2.4. Let n ≥ 2, n ≤ p ≤ q < ∞ and let Ω ⊂ Rn be an exterior domain with C1,1-boundary. Assume
that trM = 0 and b ∈ C∞

c (Ω) and u0 − b ∈ Lp
σ(Ω). Then there exist T0 > 0 and a unique mild solution u of (12)

such that

t 7→ t
n
2 ( 1

p−
1
q )u(t) ∈ C ([0, T0] ; Lq

σ(Ω)) ,

t 7→ t
n
2 ( 1

p−
1
q )+ 1

2∇u(t) ∈ C ([0, T0] ; Lq(Ω)) .

3. Strong solutions

In this section we construct strong solutions to problem (1) for Ω ⊂ Rn, n ≥ 2 and trM = 0. The main
difference to the method presented in the previous section is another change of variables. Indeed, we construct a
change of variables which coincides with a simple rotation in a neighborhood of the rotating body but it equals
to the identity operator far away from the rotating body. More precisely, let X(·, t) : Rn → Rn denote the time
dependent vector field satisfying

∂X

∂t
(y, t) = −b(X(y, t)), y ∈ Rn, t > 0,

X(y, 0) = y, y ∈ Rn,

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field X(·, t) is a C∞-diffeomorphism form Ω onto
Ω(t) and X ∈ C∞([0,∞) × Rn). Let us denote the inverse of X(·, t) by Y (·, t). Then, Y ∈ C∞([0,∞) × Rn).
Moreover, it can be shown that for any T > 0 and |α|+ k > 0 there exists Ck,α,T > 0 such that

sup
y∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂yα
X(y, t)

∣∣∣∣+ sup
x∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂xα
Y (x, t)

∣∣∣∣ ≤ Ck,α,T0 .(13)

Setting
v(x, t) = JX(Y (x, t), t)w(Y (x, t), t), x ∈ Ω, t ≥ 0,
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where JX denotes the Jacobian of X(·, t) and

p(x, t) = q(Y (x, t), t), x ∈ Ω, t ≥ 0,

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equivalent to (1).

∂tv − Lv +Mv +N v + Gp = 0, in Ω× R+,
∇ · v = 0, in Ω× R+,

v(x, t) = Mx, on Γ× R+,
v(x, 0) = w0(x), in Ω.

(14)

Here

(Lv)i =
n∑

j,k=1

∂

∂xj

(
gjk ∂vi

∂xk

)
+ 2

n∑
j,k,l=1

gklΓi
jk

∂vj

∂xl

+
n∑

j,k,l=1

(
∂

∂xk
(gklΓi

jl) +
n∑

m=1

gklΓm
jlΓ

i
km

)
vj ,

(N v)i =
n∑

j=1

vj
∂vi

∂xj
+

n∑
j,k=1

Γi
jkvjvk,

(Mv)i =
n∑

j=1

∂Xj

∂t

∂vi

∂xj
+

n∑
j,k=1

(
Γi

jk

∂Xk

∂t
+

∂Xi

∂xk

∂2Yk

∂xj∂t

)
vj ,

(Gp)i =
n∑

j=1

gij ∂p

∂xj

with
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gij =
n∑

k=1

∂Xi

∂yk

∂Xj

∂yk
, gij =

n∑
k=1

∂Yk

∂xi

∂Yk

∂xj
and

Γk
ij =

1
2

n∑
l=1

gkl

(
∂gil

∂xj
+

∂gjl

∂xi
+

∂gij

∂xl

)
.

The obvious advantage of this approach is that we do not have to deal with an unbounded drift term since all
coefficients appearing in L, N , M and G are smooth and bounded on finite time intervals by (13). However, we
have to consider a non-autonomous problem. Setting u = v−b, we obtain the following problem with homogeneous
boundary conditions which is equivalent to (14).

∂tu− Lu +Mu +Nu + Bu + Gp = Fb, in Ω× R+,
∇ · u = 0 in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x)− b(x), in Ω.

(15)

Here,

(Bu)i =
n∑

j=1

(
uj

∂bi

∂xj
+ bj

∂ui

∂xj

)
+ 2

n∑
j,k=1

Γi
jkujbk, Fb = Lb−Mb−N b.

Since gij is smooth and gij(·, 0) = δij by definition, it follows from (13) that

‖gij(·, t)− δij‖L∞(Ω) → 0, t → 0.(16)
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In other words, L is a small perturbation of ∆ and G is a small perturbation of ∇ for small times t. This motivates
to write (15) in the following form.

∂tu−∆u +∇p = F (u, p), in Ω× R+,
∇ · u = 0, in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x)− b(x), in Ω,

(17)

where F (u, p) := (L−∆)u−Mu−Nu + (∇− G)p−Bu + Fb. We will use maximal Lp-regularity of the Stokes
operator and a fixed point theorem to show the existence of a unique strong solution (u, p) of (15). More precisely,
let

Xp,q
T := W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;D(Aq))× Lp(0, T ; Ŵ 1,p(Ω)),

where D(Aq) := W 2,q(Ω)∩W 1,q
0 (Ω)∩Lq

σ(Ω) is the domain of the Stokes operator. Then, by maximal Lp-regularity
of the Stokes operator, Hölder’s inequality and Sobolev’s embedding theorems Φ : Xp,q

T → Xp,q
T , Φ((ũ, p̃)) := (u, p)

where (u, p) is the unique solution of

∂tu−∆u +∇p = F (ũ, p̃), in Ω× (0, T )
∇ · u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),
u(x, 0) = w0(x)− b(x), in Ω,

is well-defined for 1 < p, q < ∞ with n
2q + 1

p < 3
2 and T > 0. Here, the restriction on p and q comes from the

nonlinear term N .
Finally, let Xp,q

T,δ := {(u, p) ∈ Xp,q
T : ‖(u, p) − (û, p̂)‖Xp,q

T
≤ δ, u(0) = w0 − b} with (û, p̂) = Φ(Φ(0, 0)). Then

by (16), Hölder’s inequality and Sobolev’s embedding theorems, it can be shown that for small enough δ > 0 and
T > 0, Ψ|Xp,q

T,δ
is a contraction.
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We summarize our considerations in the next theorem which is proved in [7]. Note that the cases n = 2, 3 and
p = q = 2 were already proved in [6].

Theorem 3.1. Let 1 < p, q < ∞ such that n
2q + 1

p < 3
2 and let Ω ⊂ Rn be an exterior domain with

C1,1-boundary. Assume that trM = 0 and that w0 − b ∈ (Lq
σ(Ω), D(Aq))1− 1

p ,p. Then there exist T > 0 and
a unique solution (u, p) ∈ Xp,q

T of problem (15).
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13. , On the equation div u = f and the Bogovskĭı Operator, in: G. Sweers (ed.), Functional Analysis and PDE, Birkhäuser,
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