L^{p}-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT and M. HIEBER

Abstract. In this paper we describe two recent approaches for the L^{p}-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle.

1. InTRODUCTION

Consider a compact set $O \subset \mathbb{R}^{n}$, the obstacle, with boundary $\Gamma:=\partial O$ of class $C^{1,1}$. Set $\Omega:=\mathbb{R}^{n} \backslash O$. For $t>0$ and a real $n \times n$-matrix M we set

$$
\Omega(t):=\left\{y(t)=e^{t M} x, x \in \Omega\right\} \text { and } \Gamma(t):=\left\{y(t)=e^{t M} x, x \in \Gamma\right\} .
$$

Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes given by

$$
\begin{align*}
\partial_{t} w-\Delta w+w \cdot \nabla w+\nabla q & =0, & & \text { in } \Omega(t) \times \mathbb{R}_{+}, \\
\nabla \cdot w & =0, & & \text { in } \Omega(t) \times \mathbb{R}_{+}, \\
w(y, t) & =M y, & & \text { on } \Gamma(t) \times \mathbb{R}_{+}, \tag{1}\\
w(y, 0) & =w_{0}(y), & & \text { in } \Omega .
\end{align*}
$$

Key words and phrases. Navier-Stokes, rotating obstacle, mild and strong solutions.
Supported by the DFG-Graduiertenkolleg 853.

Here $w=w(y, t)$ and $q(y, t)$ denote the velocity and the pressure of the fluid, respectively. The boundary condition on $\Gamma(t)$ is the usual no-slip boundary condition. Quite a few articles recently dealt with the equation above, see [2], [3], [4], [5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the L^{p}-setting where $1<p<\infty$. The basic idea for both approaches is to transfer the problem given on a domain $\Omega(t)$ depending on t to a fixed domain. The first transformation described in the following Section 2 yields additional terms in the equations which are of Ornstein-Uhlenbeck type. We shortly describe the techniques used in [15] and [12] in order to construct a local mild solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6], allows to invoke maximal L^{p}-estimates for the classical Stokes operator in exterior domains and like this we obtain a unique strong solution to (1). This approach is described in section 3.

2. Mild solutions

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this we first transform the equations (1) to a fixed domain. Let $\Omega, \Omega(t)$ and $\Gamma(t)$ be as in the introduction and suppose that M is unitary. Then by the change of variables $x=\mathrm{e}^{-t M} y$ and by setting $v(x, t)=e^{-t M} w\left(\mathrm{e}^{t M} x, t\right)$ and $p(x, t)=q\left(\mathrm{e}^{t M} x, t\right)$ we obtain the following set of equations defined on the fixed domain Ω :

$$
\begin{array}{rlrl}
\partial_{t} v-\Delta v+v \cdot \nabla v-M x \cdot \nabla v+M v+\nabla p & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\nabla \cdot v & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
v(x, t) & =M x, & & \text { on } \Gamma \times \mathbb{R}_{+}, \tag{2}\\
v(x, 0) & & =w_{0}(x), & \\
\text { in } \Omega .
\end{array}
$$

Note that the coefficient of the convection term $M x \cdot \nabla u$ is unbounded, which implies that this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in $L_{\sigma}^{2}(\Omega)$ for $\Omega \subset \mathbb{R}^{3}$ and $M x=\omega \times x$ with $\omega=(0,0,1)^{T}$ in [15] and [16]. The L^{p}-theory was developed by Heck and the authors in [12] even for general M.

We will construct mild solutions for $w_{0} \in L_{\sigma}^{p}(\Omega), p \geq n$, to the problem (2) with Kato's iteration (see [18]).
The starting point is the linear problem

$$
\begin{align*}
\partial_{t} u-\Delta u-M x \cdot \nabla u+M u+b \cdot \nabla u+u \cdot \nabla b+\nabla p & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\nabla \cdot u & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
u & =0, & & \text { on } \Gamma \times \mathbb{R}_{+}, \tag{3}\\
u(x, 0) & =w_{0}(x), & & \text { in } \Omega,
\end{align*}
$$

where $b \in C_{c}^{\infty}(\bar{\Omega})$. The additional term $b \cdot \nabla u+u \cdot \nabla b$ simplifies the treatment of the Navier-Stokes problem (see (11) below). We will first show that the solution of (3) is governed by a C_{0}-semigroup on $L_{\sigma}^{p}(\Omega)$. More precisely, let $L_{\Omega, b}$ be defined by

$$
\begin{aligned}
L_{\Omega, b} u & :=P_{\Omega} \mathcal{L}_{b} u \\
D\left(L_{\Omega, b}\right) & :=\left\{u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \cap L_{\sigma}^{p}(\Omega): M x \cdot \nabla u \in L^{p}(\Omega)\right\},
\end{aligned}
$$

where $\mathcal{L}_{b} u:=\Delta u+M x \cdot \nabla u-M u+b \cdot \nabla u+u \cdot \nabla b$. Then the following theorem is proved in [12].
Theorem 2.1. Let $1<p<\infty$ and let $\Omega \subset \mathbb{R}^{n}$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\operatorname{tr} M=0$ and $b \in C_{c}^{\infty}(\bar{\Omega})$. Then the operator $L_{\Omega, b}$ generates a C_{0}-semigroup $T_{\Omega, b}$ on $L_{\sigma}^{p}(\Omega)$.

Sketch of the proof. The proof is devided into several steps. First it is shown that $L_{\Omega, b}$ is the generator of an C_{0}-semigroup $T_{\Omega, b}$ on $L_{\sigma}^{2}(\Omega)$. Then a-priori L^{p}-estimates for $T_{\Omega, b}$ are proved. Once we have shown this we can easily define a consistent family of semigroups $T_{\Omega, b}$ on $L_{\sigma}^{p}(\Omega)$ for $1<p<\infty$. In the last step the generator of $T_{\Omega, b}$ on $L_{\sigma}^{p}(\Omega)$ is identified to be $L_{\Omega, b}$.

We start by showing that $L_{\Omega, b}$ is the generator of a C_{0}-semigroup on $L_{\sigma}^{2}(\Omega)$. Choose $R>0$ such that $\operatorname{supp} b \cup \Omega^{c} \subset B_{R}(0)=\left\{x \in \mathbb{R}^{n}:|x|<R\right\}$. We then set

$$
\begin{aligned}
D & =\Omega \cap B_{R+5}(0) \\
K_{1} & =\{x \in \Omega: R<|x|<R+3\} \\
K_{2} & =\{x \in \Omega: R+2<|x|<R+5\} .
\end{aligned}
$$

Denote by B_{i} for $i \in\{1,2\}$ Bogovskii's operator (see [1], [9, Chapter III.3], [13]) associated to the domain K_{i} and choose cut-off functions $\varphi, \eta \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $0 \leq \varphi, \eta \leq 1$ and

$$
\varphi(x)=\left\{\begin{array}{ll}
0, & |x| \leq R+1, \\
1, & |x| \geq R+2,
\end{array} \quad \text { and } \quad \eta(x)= \begin{cases}1, & |x| \leq R+3 \\
0, & |x| \geq R+4\end{cases}\right.
$$

For $f \in L_{\sigma}^{p}(\Omega)$ we denote by f^{R} the extension of f by 0 to all of \mathbb{R}^{n}. Then, since $C_{c, \sigma}^{\infty}(\Omega)$ is dense in $L_{\sigma}^{p}(\Omega)$, $f^{R} \in L_{\sigma}^{p}\left(\mathbb{R}^{n}\right)$. Furthermore, we set $f^{D}=\eta f-B_{2}((\nabla \eta) f)$. Since $\int_{K_{2}}(\nabla \eta) f=0$ it follows from [9, Chapter III.3] that $f^{D} \in L_{\sigma}^{p}(D)$.

By the perturbation theorem for analytic semigroups there exists $\omega_{1} \geq 0$ such that for $\lambda>\omega_{1}$ there exist functions u_{λ}^{D} and p_{λ}^{D} satisfying the equations

$$
\begin{align*}
\left(\lambda-\mathcal{L}_{b}\right) u_{\lambda}^{D}+\nabla p_{\lambda}^{D} & =f^{D}, & & \text { in } D \times \mathbb{R}_{+}, \\
\nabla \cdot u_{\lambda}^{D} & =0, & & \text { in } D \times \mathbb{R}_{+}, \tag{4}\\
u_{\lambda}^{D} & =0, & & \text { on } \partial D \times \mathbb{R}_{+} .
\end{align*}
$$

Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists $\omega_{2} \geq 0$ such that for $\lambda>\omega_{2}$ there exists a function u_{λ}^{R} satisfying

$$
\begin{align*}
\left(\lambda-\mathcal{L}_{0}\right) u_{\lambda}^{R} & =f^{R}, & & \text { in } \mathbb{R}^{n} \times \mathbb{R}_{+}, \\
\nabla \cdot u_{\lambda}^{R} & =0, & & \text { in } \mathbb{R}^{n} \times \mathbb{R}_{+} . \tag{5}
\end{align*}
$$

For $\lambda>\max \left\{\omega_{1}, \omega_{2}\right\}$ we now define the operator $U_{\lambda}: L_{\sigma}^{p}(\Omega) \rightarrow L_{\sigma}^{p}(\Omega)$ by

$$
\begin{equation*}
U_{\lambda} f=\varphi u_{\lambda}^{R}+(1-\varphi) u_{\lambda}^{D}+B_{1}\left(\nabla \varphi\left(u_{\lambda}^{R}-u_{\lambda}^{D}\right)\right), \tag{6}
\end{equation*}
$$

where u_{λ}^{R} and u_{λ}^{D} are the functions given above, depending of course on f. By definition, we have

$$
\begin{equation*}
U_{\lambda} f \in\left\{v \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \cap L_{\sigma}^{p}(\Omega): M x \cdot \nabla v \in L_{\sigma}^{p}(\Omega)\right\} . \tag{7}
\end{equation*}
$$

Setting $P_{\lambda} f=(1-\varphi) p_{\lambda}^{D}$, we verify that $\left(U_{\lambda} f, P_{\lambda} f\right)$ satisfies

$$
\begin{aligned}
\left(\lambda-\mathcal{L}_{b}\right) U_{\lambda} f+\nabla P_{\lambda} f & =f+T_{\lambda} f, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\nabla \cdot U_{\lambda} f & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
U_{\lambda} f & =0, & & \text { on } \partial \Omega \times \mathbb{R}_{+},
\end{aligned}
$$

where T_{λ} is given by

$$
\begin{aligned}
T_{\lambda} f= & -2(\nabla \varphi) \nabla\left(u_{\lambda}^{R}-u_{\lambda}^{D}\right)-(\Delta \varphi+M x \cdot(\nabla \varphi))\left(u_{\lambda}^{R}-u_{\lambda}^{D}\right)+(\nabla \varphi) p_{\lambda}^{D} \\
& +(\lambda-\Delta-M x \cdot \nabla+M) B_{1}\left((\nabla \varphi)\left(u_{\lambda}^{R}-u_{\lambda}^{D}\right)\right) .
\end{aligned}
$$

It follows from [12, Lemma 4.4] that for $\alpha \in\left(0, \frac{1}{2 p^{\prime}}\right)$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, there exists a strongly continuous function $H:(0, \infty) \rightarrow \mathcal{L}\left(L_{\sigma}^{p}(\Omega)\right)$ satisfying

$$
\begin{equation*}
\|H(t)\|_{\mathcal{L}\left(L_{\sigma}^{p}(\Omega)\right)} \leq C t^{\alpha-1} \mathrm{e}^{\tilde{\omega} t}, \quad t>0 \tag{8}
\end{equation*}
$$

for some $\tilde{\omega} \geq 0$ and $C>0$ such that $\lambda \mapsto P_{\Omega} T_{\lambda}$ is the Laplace Transform of H. We thus easily calculate

$$
\left\|P_{\Omega} T_{\lambda}\right\|_{\mathcal{L}\left(L_{\sigma}^{p}(\Omega)\right)} \leq C \lambda^{-\alpha}, \quad \lambda>\omega .
$$

Therefore, $R_{\lambda}:=U_{\lambda} \sum_{j=0}^{\infty}\left(P_{\Omega} T_{\lambda}\right)^{j}$ exists for λ large enough and $\left(\lambda-L_{b}\right) R_{\lambda} f=f$ for $f \in L_{\sigma}^{2}(\Omega)$. Since $L_{\Omega, b}$ is dissipative in $L_{\sigma}^{2}(\Omega), L_{\Omega, b}$ generates a C_{0}-semigroup $T_{\Omega, b}$ on $L_{\sigma}^{2}(\Omega)$. Moreover, we have the representation

$$
\begin{equation*}
T_{\Omega, b}(t) f=\sum_{n=0}^{\infty} T_{n}(t) f, \quad f \in L_{\sigma}^{2}(\Omega) \tag{9}
\end{equation*}
$$

where $T_{n}(t):=\int_{0}^{t} T_{n-1}(t-s) H(s) \mathrm{d} s$ for $n \in \mathbb{N}$ and

$$
T_{0}(t)=\varphi T_{R}(t) f^{R}+(1-\varphi) T_{D, b}(t) f^{D}+B_{1}\left((\nabla \varphi)\left(T_{R}(t) f^{R}-T_{D, b}(t) f^{D}\right)\right), \quad t \geq 0
$$

Here T_{R} denotes the semigroup on $L_{\sigma}^{p}\left(\mathbb{R}^{n}\right)$ generated by $L_{\mathbb{R}^{n}, 0}$ and $T_{D, b}$ denotes the semigroup on $L_{\sigma}^{p}(D)$ generated by $L_{D, b}$. Note that $\lambda \mapsto U_{\lambda}$ is the Laplace Transform of T_{0}. Since the right hand side of the representation (9) is well defined and exponentially bounded in $L_{\sigma}^{p}(\Omega)$ by [12, Lemma 4.6], we can define a family of consistent semigroups $T_{\Omega, b}$ on $L^{p}(\Omega)$ for $1<p<\infty$. Finally, the generator of $T_{\Omega, b}$ on $L^{p}(\Omega)$ is $L_{\Omega, b}$ which can be proved by using duality arguments (cf. [12, Theorem 4.1]).

Remark 2.2. (a) The semigroup $T_{\Omega, b}$ is not expected to be analytic since, by [16, Proposition 3.7], the semigroup $T_{\mathbb{R}^{3}}$ in \mathbb{R}^{3} is not analytic.
(b) As the cut-off function φ is used for the localization argument similarly to [15] the purpose of η is to ensure that $f_{D} \in L_{\sigma}^{p}(\Omega)$. This is essential to establish a decay property in λ for the pressure P_{λ}^{D} (cf. [12, Lemma 3.5]) and T_{λ}.
(c) The crucial point for a-priori L^{p}-estimates for $T_{\Omega, b}$ on $L_{\sigma}^{2}(\Omega)$ is the existence of H satisfying (8).

Since $L^{p}-L^{q}$ smoothing estimates for T_{R} and $T_{D, b}$ follow from [14, Lemma 3.3 and Prop. 3.4] and [12, Prop. 3.2], the representation of the semigroup $T_{\Omega, b}$ given by (9) and estimates for sums of convolutions of this type (cf. [12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let $1<p<q<\infty$ and let $\Omega \subset \mathbb{R}^{n}$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\operatorname{tr} M=0$ and $b \in C_{c}^{\infty}(\bar{\Omega})$. Then there exist constants $C>0, \omega \geq 0$ such that for $f \in L_{\sigma}^{p}(\Omega)$
(a) $\left\|T_{\Omega, b}(t) f\right\|_{L_{\sigma}^{q}(\Omega)} \leq C t^{-\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} \mathrm{e}^{\omega t}\|f\|_{L_{\sigma}^{p}(\Omega)}, \quad t>0$,
(b) $\left\|\nabla T_{\Omega, b}(t) f\right\|_{L^{p}(\Omega)} \leq C t^{-\frac{1}{2}} \mathrm{e}^{\omega t}\|f\|_{L_{\sigma}^{p}(\Omega)}, \quad t>0$.

Moreover, for $f \in L_{\sigma}^{p}(\Omega)$

$$
\left\|t^{\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} T_{\Omega, b}(t) f\right\|_{L_{\sigma}^{q}(\Omega)}+\left\|t^{\frac{1}{2}} \nabla T_{\Omega, b}(t) f\right\|_{L^{p}(\Omega)} \rightarrow 0, \quad \text { for } \quad t \rightarrow 0
$$

In order to construct a mild solution to (2) choose $\zeta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $0 \leq \zeta \leq 1$ and $\zeta=1$ near Γ. Further let $K \subset \mathbb{R}^{n}$ be a domain such that supp $\nabla \zeta \subset K$. We then define $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
\begin{equation*}
b(x):=\zeta M x-B_{K}((\nabla \zeta) M x), \tag{10}
\end{equation*}
$$

where B_{K} is Bogovskii's operator associated to the domain K. Then div $b=0$ and $b(x)=M x$ on Γ. Setting $u:=v-b$, it follows that u satisfies

$$
\begin{array}{rlrl}
\partial_{t} u-\mathcal{L}_{b} u+\nabla p & =F & & \text { in } \Omega \times(0, T), \\
\nabla \cdot u & =0 & & \text { in } \Omega \times(0, T), \tag{11}\\
u & =0 & & \text { on } \Gamma \times(0, T), \\
u(x, 0) & & =u_{0}(x)-b(x), & \\
\text { in } \Omega,
\end{array}
$$

with $\nabla \cdot\left(u_{0}-b\right)=0$ in Ω and $F=-\Delta b-M x \cdot \nabla b+M b+b \cdot \nabla b$, provided u satisfies (2). Applying the Helmholtz projection P_{Ω} to (11), we may rewrite (11) as an evolution equation in $L_{\sigma}^{p}(\Omega)$:

$$
\begin{align*}
u^{\prime}-L_{\Omega, b} u+P_{\Omega}(u \cdot \nabla u) & =P_{\Omega} F, \quad 0<t<T, \tag{12}\\
u(0) & =u_{0}-b .
\end{align*}
$$

Note that we need the compatibility condition $u_{0}(x) \cdot n=M x \cdot n$ on $\partial \Omega$ to obtain $u_{0}-b \in L_{\sigma}^{p}(\Omega)$. In the following, given $0<T<\infty$, we call a function $u \in C\left([0, T) ; L_{\sigma}^{p}(\Omega)\right)$ a mild solution of (12) if u satisfies the integral equation for $0<t<T$

$$
u(t)=T_{\Omega, b}(t)\left(u_{0}-b\right)-\int_{0}^{t} T_{\Omega, b}(t-s) P_{\Omega}(u \cdot \nabla u)(s) \mathrm{d} s+\int_{0}^{t} T_{\Omega, b}(t-s) P_{\Omega} F(s) \mathrm{d} s
$$

Then the main result of [12] is the following theorem.

Theorem 2.4. Let $n \geq 2, n \leq p \leq q<\infty$ and let $\Omega \subset \mathbb{R}^{n}$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\operatorname{tr} M=0$ and $b \in C_{c}^{\infty}(\bar{\Omega})$ and $u_{0}-b \in L_{\sigma}^{p}(\Omega)$. Then there exist $T_{0}>0$ and a unique mild solution u of (12) such that

$$
\begin{array}{r}
t \mapsto t^{\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)} u(t) \in C\left(\left[0, T_{0}\right] ; L_{\sigma}^{q}(\Omega)\right), \\
t \mapsto t^{\frac{n}{2}\left(\frac{1}{p}-\frac{1}{q}\right)+\frac{1}{2}} \nabla u(t) \in C\left(\left[0, T_{0}\right] ; L^{q}(\Omega)\right) .
\end{array}
$$

3. Strong solutions

In this section we construct strong solutions to problem (1) for $\Omega \subset \mathbb{R}^{n}, n \geq 2$ and $\operatorname{tr} M=0$. The main difference to the method presented in the previous section is another change of variables. Indeed, we construct a change of variables which coincides with a simple rotation in a neighborhood of the rotating body but it equals to the identity operator far away from the rotating body. More precisely, let $X(\cdot, t): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ denote the time dependent vector field satisfying

$$
\begin{aligned}
\frac{\partial X}{\partial t}(y, t) & =-b(X(y, t)), & & y \in \mathbb{R}^{n}, t>0 \\
X(y, 0) & =y, & & y \in \mathbb{R}^{n}
\end{aligned}
$$

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field $X(\cdot, t)$ is a C^{∞}-diffeomorphism form Ω onto $\Omega(t)$ and $X \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right)$. Let us denote the inverse of $X(\cdot, t)$ by $Y(\cdot, t)$. Then, $Y \in C^{\infty}\left([0, \infty) \times \mathbb{R}^{n}\right)$. Moreover, it can be shown that for any $T>0$ and $|\alpha|+k>0$ there exists $C_{k, \alpha, T}>0$ such that

$$
\begin{equation*}
\sup _{y \in \mathbb{R}^{n}, 0 \leq t \leq T}\left|\frac{\partial^{k}}{\partial t^{k}} \frac{\partial^{\alpha}}{\partial y^{\alpha}} X(y, t)\right|+\sup _{x \in \mathbb{R}^{n}, 0 \leq t \leq T}\left|\frac{\partial^{k}}{\partial t^{k}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} Y(x, t)\right| \leq C_{k, \alpha, T_{0}} \tag{13}
\end{equation*}
$$

Setting

$$
v(x, t)=J_{X}(Y(x, t), t) w(Y(x, t), t), \quad x \in \Omega, t \geq 0
$$

where J_{X} denotes the Jacobian of $X(\cdot, t)$ and

$$
p(x, t)=q(Y(x, t), t), \quad x \in \Omega, t \geq 0
$$

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equivalent to (1).

$$
\begin{align*}
\partial_{t} v-\mathcal{L} v+\mathcal{M} v+\mathcal{N} v+\mathcal{G} p & =0, & & \text { in } \Omega \times \mathbb{R}_{+} \\
\nabla \cdot v & =0, & & \text { in } \Omega \times \mathbb{R}_{+} \\
v(x, t) & =M x, & & \text { on } \Gamma \times \mathbb{R}_{+} \tag{14}\\
v(x, 0) & =w_{0}(x), & & \text { in } \Omega
\end{align*}
$$

Here

$$
\begin{aligned}
(\mathcal{L} v)_{i}= & \sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}}\left(g^{j k} \frac{\partial v_{i}}{\partial x_{k}}\right)+2 \sum_{j, k, l=1}^{n} g^{k l} \Gamma_{j k}^{i} \frac{\partial v_{j}}{\partial x_{l}} \\
& +\sum_{j, k, l=1}^{n}\left(\frac{\partial}{\partial x_{k}}\left(g^{k l} \Gamma_{j l}^{i}\right)+\sum_{m=1}^{n} g^{k l} \Gamma_{j l}^{m} \Gamma_{k m}^{i}\right) v_{j} \\
(\mathcal{N} v)_{i}= & \sum_{j=1}^{n} v_{j} \frac{\partial v_{i}}{\partial x_{j}}+\sum_{j, k=1}^{n} \Gamma_{j k}^{i} v_{j} v_{k} \\
(\mathcal{M} v)_{i}= & \sum_{j=1}^{n} \frac{\partial X_{j}}{\partial t} \frac{\partial v_{i}}{\partial x_{j}}+\sum_{j, k=1}^{n}\left(\Gamma_{j k}^{i} \frac{\partial X_{k}}{\partial t}+\frac{\partial X_{i}}{\partial x_{k}} \frac{\partial^{2} Y_{k}}{\partial x_{j} \partial t}\right) v_{j} \\
(\mathcal{G} p)_{i}= & \sum_{j=1}^{n} g^{i j} \frac{\partial p}{\partial x_{j}}
\end{aligned}
$$

with

$$
\begin{aligned}
g^{i j} & =\sum_{k=1}^{n} \frac{\partial X_{i}}{\partial y_{k}} \frac{\partial X_{j}}{\partial y_{k}}, \quad g_{i j}=\sum_{k=1}^{n} \frac{\partial Y_{k}}{\partial x_{i}} \frac{\partial Y_{k}}{\partial x_{j}} \text { and } \\
\Gamma_{i j}^{k} & =\frac{1}{2} \sum_{l=1}^{n} g^{k l}\left(\frac{\partial g_{i l}}{\partial x_{j}}+\frac{\partial g_{j l}}{\partial x_{i}}+\frac{\partial g_{i j}}{\partial x_{l}}\right)
\end{aligned}
$$

The obvious advantage of this approach is that we do not have to deal with an unbounded drift term since all coefficients appearing in $\mathcal{L}, \mathcal{N}, \mathcal{M}$ and \mathcal{G} are smooth and bounded on finite time intervals by (13). However, we have to consider a non-autonomous problem. Setting $u=v-b$, we obtain the following problem with homogeneous boundary conditions which is equivalent to (14).

$$
\begin{align*}
\partial_{t} u-\mathcal{L} u+\mathcal{M} u+\mathcal{N} u+\mathcal{B} u+\mathcal{G} p & =F_{b}, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\nabla \cdot u & =0 & & \text { in } \Omega \times \mathbb{R}_{+}, \\
u & =0, & & \text { on } \Gamma \times \mathbb{R}_{+}, \\
u(x, 0) & =w_{0}(x)-b(x), & & \text { in } \Omega . \tag{15}
\end{align*}
$$

Here,

$$
(\mathcal{B} u)_{i}=\sum_{j=1}^{n}\left(u_{j} \frac{\partial b_{i}}{\partial x_{j}}+b_{j} \frac{\partial u_{i}}{\partial x_{j}}\right)+2 \sum_{j, k=1}^{n} \Gamma_{j k}^{i} u_{j} b_{k}, \quad F_{b}=\mathcal{L} b-\mathcal{M} b-\mathcal{N} b .
$$

Since $g^{i j}$ is smooth and $g^{i j}(\cdot, 0)=\delta_{i j}$ by definition, it follows from (13) that

$$
\begin{equation*}
\left\|g^{i j}(\cdot, t)-\delta_{i j}\right\|_{L^{\infty}(\Omega)} \rightarrow 0, \quad t \rightarrow 0 \tag{16}
\end{equation*}
$$

In other words, \mathcal{L} is a small perturbation of Δ and G is a small perturbation of ∇ for small times t. This motivates to write (15) in the following form.

$$
\begin{align*}
\partial_{t} u-\Delta u+\nabla p & =F(u, p), & & \text { in } \Omega \times \mathbb{R}_{+}, \\
\nabla \cdot u & =0, & & \text { in } \Omega \times \mathbb{R}_{+}, \\
u & =0, & & \text { on } \Gamma \times \mathbb{R}_{+}, \\
u(x, 0) & =w_{0}(x)-b(x), & & \text { in } \Omega, \tag{17}
\end{align*}
$$

where $F(u, p):=(\mathcal{L}-\Delta) u-\mathcal{M} u-\mathcal{N} u+(\nabla-\mathcal{G}) p-B u+F_{b}$. We will use maximal L^{p}-regularity of the Stokes operator and a fixed point theorem to show the existence of a unique strong solution (u, p) of (15). More precisely, let

$$
X_{T}^{p, q}:=W^{1, p}\left(0, T ; L^{q}(\Omega)\right) \cap L^{p}\left(0, T ; D\left(A_{q}\right)\right) \times L^{p}\left(0, T ; \widehat{W}^{1, p}(\Omega)\right)
$$

where $D\left(A_{q}\right):=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)$ is the domain of the Stokes operator. Then, by maximal L^{p}-regularity of the Stokes operator, Hölder's inequality and Sobolev's embedding theorems $\Phi: X_{T}^{p, q} \rightarrow X_{T}^{p, q}, \Phi((\tilde{u}, \tilde{p})):=(u, p)$ where (u, p) is the unique solution of

$$
\begin{aligned}
\partial_{t} u-\Delta u+\nabla p & =F(\tilde{u}, \tilde{p}), & & \text { in } \Omega \times(0, T) \\
\nabla \cdot u & =0, & & \text { in } \Omega \times(0, T), \\
u & =0, & & \text { on } \Gamma \times(0, T), \\
u(x, 0) & =w_{0}(x)-b(x), & & \text { in } \Omega,
\end{aligned}
$$

is well-defined for $1<p, q<\infty$ with $\frac{n}{2 q}+\frac{1}{p}<\frac{3}{2}$ and $T>0$. Here, the restriction on p and q comes from the nonlinear term \mathcal{N}.

Finally, let $X_{T, \delta}^{p, q}:=\left\{(u, p) \in X_{T}^{p, q}:\|(u, p)-(\hat{u}, \hat{p})\|_{X_{T}^{p, q}} \leq \delta, u(0)=w_{0}-b\right\}$ with $(\hat{u}, \hat{p})=\Phi(\Phi(0,0))$. Then by (16), Hölder's inequality and Sobolev's embedding theorems, it can be shown that for small enough $\delta>0$ and $T>0,\left.\Psi\right|_{X_{T, \delta}^{p, q}}$ is a contraction.

We summarize our considerations in the next theorem which is proved in [7]. Note that the cases $n=2,3$ and $p=q=2$ were already proved in [6].

Theorem 3.1. Let $1<p, q<\infty$ such that $\frac{n}{2 q}+\frac{1}{p}<\frac{3}{2}$ and let $\Omega \subset \mathbb{R}^{n}$ be an exterior domain with $C^{1,1}$-boundary. Assume that $\operatorname{tr} M=0$ and that $w_{0}-b \in\left(L_{\sigma}^{q}(\Omega), D\left(A_{q}\right)\right)_{1-\frac{1}{p}, p}$. Then there exist $T>0$ and a unique solution $(u, p) \in X_{T}^{p, q}$ of problem (15).

1. Bogovskiĭ M. E., Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979), 1037-1040.
2. Banin A. Mahalov A. and Nicolaenko B., Global regularity of $3 D$ rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48 (1999), 1133-1176.
3. \qquad , 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50 (2001), 1-35.
4. Borchers W., Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes-Gleichungen inkompressibler viskoser Flüssigkeiten, Habilitationschrift Universität Paderborn, 1992.
5. Chen Z. and Miyakawa T., Decay properties of weak solutions to a perturbed Navier-Stokes system in \mathbb{R}^{n}. Adv. Math. Sci. Appl. 7 (1997), 741-770.
6. Cumsille P. and Tucsnak M., Strong solutions for the Navier-Stokes flow in the exterior of a rotation obstacle, Preprint, l'Institut Élie Cartan, 2004.
7. Dintelmann E., Geissert M. and Hieber M., Strong solutions to the Navier-Stokes equations in the exterior of a moving or rotating obstacle, in preparation.
8. Farwig R., Hishida T. and Müller D., L'-theory of a singular 'winding' integral operator arising from fluid dynamics, Pacific J. Math. 215(2) (2004), 297-312. TU Darmstadt, 2003.
9. Galdi G. P., An Introduction to the Mathematical Theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, Vol. 38, Springer 1998.
10. \qquad , Steady flow of a Navier-Stokes fluid around a rotating obstacle, J. Elasticity 71 (1-3) (2003), 1-31.
11. Galdi G. P., and Silvestre A. L., Strong Solutions to the Navier-Stokes Equations Around a Rotating Obstacle, Arch. Ration. Mech. Anal. 1763(3) (2005), 331-350.
12. Geissert M., Heck H. and Hieber M., L ${ }^{p}$-theory of the Navier-Strokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., to appear.
13. \qquad , On the equation div $u=f$ and the Bogovskǐ̌ Operator, in: G. Sweers (ed.), Functional Analysis and PDE, Birkhäuser, to appear.
14. Hieber M. and Sawada O., The Navier-Stokes equations in \mathbb{R}^{n} with linearly growing initial data. Arch. Rational Mech. Anal., 175(2) (2005), 269-285.
15. Hishida T., An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rat. Mech. Anal., 150 (1999), 307-348.
16. \qquad , The Stokes operator with rotation effect in exterior domains. Analysis, 19 (1999), 51-67.
17. Inoue A. and Wakimoto M., On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24(2) (1977), 303-319.
18. Kato T., Strong L^{p}-solutions of Navier-Stokes equations in \mathbb{R}^{n} with applications to weak solutions. Math. Z., 187 (1984), 471-480.
M. Geissert, Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, D-64289 Darmstadt, Germany, e-mail: geissert@mathematik.tu-darmstadt.de
M. Hieber, Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, D-64289 Darmstadt, Germany, e-mail: hieber@mathematik.tu-darmstadt.de
