ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXV, 1 (2006)
p. 75 - 84
Ranks and independence of solutions of the matrix equation
AXB + CYD= M
Yongge Tian
Abstract. 
Suppose AXB + CYD= M is a consistent matrix equation. In this paper, we
give some formulas for the maximal and minimal ranks of two
solutions X and Y to the equation. In addition, we investigate the
independence of solutions X and Y to this equation.
Keywords:
Generalized inverse, matrix equation, rank equality, rank formulas for
partitioned matrices, general solution, independence of solutions.
AMS Subject classification:  15A03, 15A09, 15A24.
Download:    
Adobe PDF    
Compressed Postscript      
Version to read:    
Adobe PDF
Acta Mathematica Universitatis Comenianae
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295755 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2005, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE