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ESTIMATES FOR DERIVATIVES OF THE GREEN FUNCTIONS
ON HOMOGENEOUS MANIFOLDS OF NEGATIVE CURVATURE

R. URBAN

Abstract. We consider the Green functions G for second-order coercive differential operators on homogeneous manifolds

of negative curvature, being a semi-direct product of a nilpotent Lie group N and A = R+.
Estimates for derivatives of the Green functions G with respect to the N and A-variables are obtained. This paper

completes a previous work of the author (see [12, 13]) where estimates for derivatives of the Green functions for the
noncoercive operators has been obtained. Here we show how to use the previous methods and results from [12] in order
to get analogous estimates for coercive operators.

1. Introduction.

Let M be a connected, simply connected homogeneous manifolds of negative curvature. Such a manifold is a
solvable Lie group S = NA, a semi-direct product of a nilpotent Lie group N and an Abelian group A = R+.
Moreover, for an H belonging to the Lie algebra a of A, the real parts of the eigenvalues of Adexp H |n, where n is
the Lie algebra of N, are all greater than 0. Conversely, every such a group equipped with a suitable left-invariant
metric becomes a homogeneous Riemannian manifold with negative curvature (see [7]).
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On S we consider a second order left-invariant operator

L =
m∑

j=0

Y 2
j + Y.

We assume that Y0, Y1, . . . , Ym generate the Lie algebra s of S. We can always make Y0, . . . , Ym linearly indepen-
dent and moreover, we can choose Y0, Y1, . . . , Ym so that Y1(e), . . . , Ym(e) belong to n. Let π : S → A = S/N be
the canonical homomorphism. Then the image of L under π is a second order left-invariant operator on R+,

(a∂a)2 − γa∂a,

where γ = γL ∈ R.
Finally, L can be written as

L = Lγ =
∑

j

Φa(Xj)2 + Φa(X) + a2∂2
a + (1− γ)∂a,(1.1)

where γ 6= 0, X, X1, . . . , Xm are left-invariant vector fields on N , moreover, X1, . . . , Xm linearly independent
and generate n, Φa = Adexp(log a)Y0 = e(log a) adY0 = e(log a)D. D = adY0 is a derivation of the Lie algebra n of the
Lie group N such that the real parts dj of the eigenvalues λj of D are positive. By multiplying Lγ by a constant,
i.e., changing Y0, we can make dj arbitrarily large (see [5]).

Let Gγ(xa, yb) be the Green function for Lγ . Gγ is (uniquely) defined by two conditions:

i) LγGγ(·, yb) = −δyb as distributions
(functions are identified with distributions via the right Haar measure),

ii) for every yb ∈ S, Gγ(·, yb) is a potential for Lγ .

Let

Gγ(x, a) := Gγ(e, xa),(1.2)
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where e is the identity element of the group S. Since Lγ is left-invariant it is easily seen that

Gγ(xa, yb) = Gγ(e, yb(xa)−1) = Gγ(yb(xa)−1).

In this paper we call Gγ(x, a) defined in (1.2) the Green function for Lγ .
The main goal of this paper is to give estimates for derivatives of the Green function (1.2) for Lγ when γ 6= 0,

i.e., when Lγ is coercive (L is coercive if there is an ε > 0 such that L + εI admits the Green function), with
respect to x-variables (Theorem 3.1) and a-variable (Theorem 3.2). The case γ = 0 (i.e., noncoercive case) has
been studied by the author in [12] and [13].

It is worth noting that our definition of coercivity is a little bit different than that used e.g. in [1]. Namely,
for us, L is coercive if it is weakly coercive in Ancona’s terminology. There is a relation between the notion of
coercivity property in the sense used in the theory of partial differential eqns (i.e., that an appropriate bilinear
form is coercive, [8]) and weak coercivity. For this the reader is referred to [1].

In this paper we are going to prove the following estimates. Let γ > 0. For every neighborhood U of the
identity e of NA there is a constant C = C(γ) such that we have

|X IG−γ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γ

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ U)c,
C for (x, a) ∈ Q \ U

(1.3)

and

|X IGγ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γaγ

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ U)c,
Caγ for (x, a) ∈ Q \ U ,

(1.4)

where | · | stands for a “homogeneous norm” on N , Q = {|x| ≤ 1, a ≤ 1}, ‖I‖ is a suitably defined length of
the multi-index I and ‖I‖0 is a certain number depending on I and the nilpotent part of the derivation D. In
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particular, ‖I‖0 is equal to 0 if the action of A = R+ on N, given by Φa, is diagonal or, if I = 0. X1, . . . ,Xn is an
appropriately chosen basis of n. For the precise definitions of all the notions that have appeared here see Sect. 2.

For ∂k
aGγ(x, a), k ≥ 0 and γ 6= 0 we have what follows. Let γ > 0.

|∂k
aG−γ(x, a)| ≤

{
Ca−k(|x|+ a)−Q−γ for (x, a) ∈ (Q∪ U)c,
Ca−k for (x, a) ∈ Q \ U

(1.5)

and

|∂k
aGγ(x, a)| ≤

{
Caγ−k(|x|+ a)−Q−γ for (x, a) ∈ (Q∪ U)c,
Caγ−k for (x, a) ∈ Q \ U ,

(1.6)

It should be said that the estimate for the Green function itself (i.e., I=0) with γ > 0, also from below, was
proved by E. Damek in [3] and then by the author for γ = 0 in [16] but at that time it was impossible to prove
analogous estimate for derivatives with respect to x. The reason was that we did not have sufficient estimates
for the derivatives of the transition probabilities of the evolution on N generated by an appropriate operator
which appears as the “horizontal” component of the diffusion on N × R+ generated by a−2L−γ (cf. [4]). These
estimates have been obtained by the author in [17] and eventually led up to the estimate (1.3), (1.4), (1.5) and
(1.6) for γ = 0 (see [12] and [13] for mixed derivatives which required a little bit different approach). Here we
are going to present how to use results from [12] in order to get estimates in the coercive case.

The proofs of (1.3), (1.4), (1.5) and (1.6) require both analytic and probabilistic techniques. Some of them
have been introduced in [5], [4] and [16]. This paper also heavily depend on some results from [12].

The structure of the paper is as follows. In Sect. 2 we state precisely notation and all necessary definitions. In
particular, we recall a definition of the Bessel process which appears as the “vertical” component of the diffusion
generated by a−2L−γ on N×R+ as well as the notion of the evolution on N generated by an appropriate operator
which appears as the “horizontal” component of the diffusion on N × R+ mentioned in the Introduction above
(cf. [4, 12]).
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Finally, in Section 3 we state precisely the estimates (1.3), (1.4) (see Theorem 3.1) and (1.5), (1.6) (see Theorem
3.2) and we give their proofs.

Acknowledgement. The author wishes to thank Ewa Damek for a number of helpful conversations.

2. Preliminaries

2.1. NA groups

The best reference for this Sect. is [5] and [6]. Let N be a connected and simply connected nilpotent Lie group.
Let D be a derivation of the Lie algebra n of N. For every a ∈ R+ we define an automorphism Φa of n by the
formula

Φa = e(log a)D.

Witing x = expX we put

Φa(x) := expΦa(X).

Let nC be the complexification of n. Define

nC
λ = {X ∈ nC : ∃k > 0 such that (D − λI)k = 0}.

Then

n =
⊕

Imλ≥0

Vλ,(2.1)

where

Vλ =

{
Vλ̄ = (nC ⊕ nC

λ̄
) ∩ n if Imλ 6= 0,

nC
λ ∩ n if Imλ = 0.
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We assume that the real parts dj of the eigenvalues λj of the matrix D are strictly greater than 0. We define the
number

Q =
∑

j

Re λj =
∑

j

dj(2.2)

and we refer to this as a “homogeneous dimension” of N. In this paper D = adY0 (see Introduction). Under the
assumption on positivity of dj , (2.1) is a gradation of n.

We consider a group S which is a semi-direct product of N and the multiplicative group A = R+ = {exp tY0 :
t ∈ R} :

S = NA = {xa : x ∈ N, a ∈ A}
with multiplication given by the formula

(xa)(yb) = (xΦa(y) ab).

In N we define a “homogeneous norm”, | · | (cf. [5, 4]) as follows. Let (·, ·) be a fixed inner product in n. We
define a new inner product

〈X, Y 〉 =
∫ 1

0

(
Φa(X),Φa(Y )

)
da

a
(2.3)

and the corresponding norm

‖X‖ = 〈X, X〉1/2.

We put

|X| = (inf{a > 0 : ‖Φa(X)‖ ≥ 1})−1
.

One can easily show that for every Y 6= 0 there exists precisely one a > 0 such that Y = Φa(X) with |X| = 1.
Then we have |Y | = a.
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Finally, we define the homogeneous norm on N. For x = expX we put

|x| = |X|.

Notice that if the action of A = R+ on N (given by Φa) is diagonal the norm we have just defined is the usual
homogeneous norm on N and the number Q in (2.2) is simply the homogeneous dimension of N (see [6]).

Having all that in mind we define appropriate derivatives (see also [5]). We fix an inner product (2.3) in n so that
Vλj

, j = 1, . . . , k are mutually orthogonal and an orthonormal basis X1, . . . ,Xn of n. The enveloping algebra U(n)
of n is identified with the polynomials in X1, . . . ,Xn. In U(n) we define 〈X1⊗. . .⊗Xr,Y1⊗. . .⊗Yr〉 =

∏r
j=1〈Xj ,Yj〉.

Let V r
j be the symmetric tensor product of r copies of Vλj

. For I = (i1, . . . , ik) ∈ (N ∪ {0})k let

X I = X (i1)
1 . . .X (ik)

k , where X (ij)
j ∈ V

ij

j .

Then for X ∈ Vλj

‖Φa(X )‖ ≤ c exp(dj log a + Dj log(1 + | log a|)),

where dj = Reλj and Dj = dim Vλj − 1, and so

‖Φa(X I)‖ ≤ exp

 k∑
j=1

ij(dj log a + Dj log(1 + | log a|))

 k∏
j=1

‖X (ij)
j ‖.(2.4)

2.2. Bessel process

Let bt denotes the Bessel process with a parameter α ≥ 0 (cf. [10]), i.e., a continuous Markov process with the
state space [0,+∞) generated by ∂2

a + 2α+1
a ∂a. The transition function with respect to the measure y2α+1dy is
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given, e.g. in [2, 10], by:

pt(x, y) =


1
2t exp

(
−x2−y2

4t

)
Iα

(
xy
2t

)
1

(xy)α for x, y > 0,

1
2α(2t)α+1Γ(α+1) exp

(
−y2

4t

)
for x = 0, y > 0,

where

Iα(x) =
∞∑

k=0

(x/2)2k+α

k!Γ(k + α + 1)

is the Bessel function (see [9]). Therefore for x ≥ 0 and a measurable set B ⊂ (0,∞):

Px(bt ∈ B) =
∫

B

pt(x, y)y2α+1dy.

If bt is the Bessel process with a parameter α starting from x, i.e. b0 = x, then we will write that bt ∈ BESSx(α)
or simply bt ∈ BESS(α) if the starting point is not important or is clear from the context.

Properties of the Bessel process are very well known and their proofs are rather standard. They can be found
e.g. in [10, 4, 15, 14]. However, in our paper we will not explicitly make use of any particular property of
the Bessel process. What we only need is the possibility to generalize some lemmas from Section 5 in [12] (see
Proposition 3.3 in Section 3 below).

2.3. Evolutions

Let X, X1, . . . , Xm be as in (1.1). Let σ : [0,∞) −→ [0,∞) be a continuous function such that σ(t) > 0 for every
t > 0. We consider the family of evolutions operators Lσ(t) − ∂t, where

Lσ(t) = σ(t)−2

( ∑
j

Φσ(t)(Xj)2 + Φσ(t)(X)
)

.(2.5)
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Since we may assume that X1, . . . , Xm are linearly independent we select Xm+1, . . . , Xn so that X1, . . . , Xn

form a basis of n. For a multi-index I = (i1, . . . , in), ij ∈ Z+ and the basis X1, . . . , Xn of the Lie algebra n of N

we write: XI = Xi1
1 . . . Xin

n and |I| = i1 + . . . + in. For k = 0, 1, . . . ,∞ we define:

Ck = {f : XIf ∈ C(N), for |I| < k + 1}
and

Ck
∞ = {f ∈ Ck : lim

x→∞
XIf(x) exists for |I| < k + 1}.

For k < ∞ the space Ck
∞ is a Banach space with the norm

‖f‖Ck
∞

=
∑
|I|≤k

‖XIf‖C(N).

Let {Uσ(s, t) : 0 ≤ s ≤ t} be the unique family of bounded operators on C∞ = C0
∞ which satisfy

i) Uσ(s, s) = I,
ii) Uσ(s, r)Uσ(r, t) = Uσ(s, t), s < r < t,
iii) ∂sU

σ(s, t)f = −Lσ(s)U
σ(s, t)f for every f ∈ C∞,

iv) ∂tU
σ(s, t)f = Uσ(s, t)Lσ(t)f for every f ∈ C∞,

v) Uσ(s, t) : C2
∞ −→ C2

∞.

Uσ(s, t) is a convolution operator. Namely, Uσ(s, t)f = f ∗ pσ(t, s), where pσ(t, s) is a smooth density of a
probability measure. By ii) we have pσ(t, r) ∗ pσ(r, s) = pσ(t, s) for t > r > s. Existence of the family Uσ(s, t)
follows from [11].

3. The main results and their proofs

In this section we obtain pointwise estimates for derivatives of the Green function (1.2) in the coercive case (i.e.
γ 6= 0).
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For a positive δ < 1/2 define

Tδ ={(x, a) ∈ N × R+ : 1− δ < a < 1 + δ, |x| < δ},
Q ={(x, a) ∈ N × R+ : |x| ≤ 1, a ≤ 1}.

Theorem 3.1. For a multi-index I = (i1, . . . , ik), γ > 0 and all operators X I = X (i1)
1 . . .X (ik)

k , where X (ij)
j ∈

V
ij

j , with ‖X I‖ ≤ 1, there are constants C such that

|X IG−γ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γ

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ Tδ)c,
C for (x, a) ∈ Q \ Tδ

and

|X IGγ(x, a)| ≤


C(|x|+ a)−‖I‖−Q−γaγ

×(1 + | log(|x|+ a)−1|)‖I‖0 for (x, a) ∈ (Q∪ Tδ)c,
Caγ for (x, a) ∈ Q \ Tδ

where ‖I‖ =
∑k

j=1 ijdj , dj = Reλj , and ‖I‖0 =
∑k

j=1 ijDj , Dj = dimVλj − 1.

Theorem 3.2. For every nonnegative integer k and γ > 0 there is a constant C such that

|∂k
aG−γ(x, a)| ≤

{
Ca−k(|x|+ a)−Q−γ for (x, a) ∈ (Q∪ Tδ)c,
Ca−k for (x, a) ∈ Q \ Tδ

and

|∂k
aGγ(x, a)| ≤

{
Caγ−k(|x|+ a)−Q−γ for (x, a) ∈ (Q∪ Tδ)c,
Caγ−k for (x, a) ∈ Q \ Tδ.
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Let α ≥ 0 and γ > 0. Along with the operator L−γ defined in (1.1) we consider the corresponding operator
Lα,

Lα = a−2
∑

j

Φa(Xj)2 + a−2Φa(X) + ∂2
a +

2α + 1
a

∂a = a−2L−γ ,(3.1)

where α = γ/2. The Green function Gα for Lα is given by

Gα(x, a; y, b) =
∫ ∞

0

pt(x, a; y, b)dt,

where Ttf(x, a) =
∫

f(y, b)pt(x, a; y, b)dyb2α+1db is the heat semigroup on L2(N × R+, dyb2α+1db) with the
infinitesimal generator Lα.

On N × R+ we define dilations:

Dt(x, a) = (Φt(x), ta), t > 0.

It is not difficult to check that although the operator Lα is not left-invariant it has some homogeneity with respect
to the family of dilations introduced above:

Lα(f ◦Dt) = t2Lαf ◦Dt.

This implies that

Gα(x, a; y, b) = t−Q−2αGα(Dt−1(x, a);Dt−1(y, b)).(3.2)

It turns out (see (1.17) in [4]) that

G−γ(x, a) = Gγ/2(e, 1;x, a) = G∗γ/2(x, a; e, 1),(3.3)

where G∗α is the Green function for the operator

L∗α = a−2
∑

Φa(Xj)2 − a−2Φa(X) + ∂2
a +

2α + 1
a

∂a
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conjugate to Lα with respect to the measure a2α+1dadx. Moreover,

G∗α(x, a; e, 1) = lim
η→0

∫ ∞

0

E1p
σ(t, 0)(x)mα(Ia,η)−11Ia,η

(σt)dt,(3.4)

where

mα(I) =
∫

I

a2α+1da(3.5)

and the expectation is taken with respect to the distribution of the Bessel process with the parameter α starting
from 1, i.e., BESS1(α) on the space C((0,∞),(0,∞)), pσ(t, 0) is the transition function of the evolution generated
by the operator (2.5) and Ia,η = [a− η, a + η].

Since L−γ(·) = a−γLγ(aγ ·) it follows that

Gγ(xa, yb) = aγG−γ(xa, yb)b−γ(3.6)

and therefore, by (3.3) and (3.6),

Gγ(x, a) = G∗γ/2(x, a; e, 1)aγ .(3.7)

Before we go the proofs we note the following important proposition which gives estimates on the set Q \ Tδ

of some functional of the evolution pσ.

Proposition 3.3. For every 1 > δ > 1/2, for every 0 < χ0 ≤ 1, 0 < r0 ≤ 1 and for every multi-index I such
that |I| > 0 there exists a constant C such that for every (x, a) ∈ Q \ Tδ,

sup
0<η<δ/2

|
∫ ∞

0

EχXIpσ(t, 0)(x)mα(Ia,η)−11Ia,η
(σt)dt| ≤ C.

Sketch of the proof. It is enough to notice that Lemmas 5.1–5.5 in [12] remain valid if we replace BESS1(0) by
BESS1(α), α > 0 and m = m0 by mα defined in (3.5). �
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After this preparatory facts we are ready to give

Proof of Theorem 3.1. For r ≥ 0, define

Vr = {(x, a) ∈ N × R+ : |(x, a)| = r},

where |(x, a)| = |x|+ a.
Let 0 < δ < 1/2 and a multi-index I be fixed.

Case 1. We consider the set

S1 = Q \ Tδ.

By Proposition 3.3 it follows that there exists a positive constant C such that

|X IG∗γ/2(x, a; e, 1)| ≤ C(3.8)

for every (x, a) ∈ S̃1 := S1 ∩ {(x, a) ∈ N × R+ : a ≤ 1 − δ}. But S1 \ IntS̃1 is a compact set and G∗γ/2 is a
continuous function so we get (3.8) on S1. Therefore on S1 we have that

|X IG−γ(x, a)| = |X IG∗γ/2(x, a; e, 1)| ≤ C

and

|X IGγ(x, a)| = |X IG∗γ/2(x, a; e, 1)aγ | ≤ Caγ .

Case 2. We consider the set

S2 = {(x, a) ∈ N × R+ : |x| ≥ 1, |x| ≥ a}.

(Of course, S2 ∩ Tδ = ∅.) Every element (x, a) ∈ N × R+ can be written as

(x, a) = Dt(y, b), where (y, b) ∈ V1 and t = |(x, a)| = |x|+ a.
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By homogeneity of Gα (see (3.2)) and (2.4) we get

|X IG∗γ/2(x, a; e, 1)| =|X IG∗γ/2(Dt(y, b), Dt(e, t−1))|

=|Φt−1(X I)(G∗γ/2 ◦Dt)(y, b; e, t−1)|

≤t−‖I‖(1 + | log t−1|)‖I‖0

× sup
‖Y‖≤1

|YI(G∗γ/2 ◦Dt)(y, b; e, t−1)|

≤(|x|+ a)−‖I‖−Q−γ(1 + | log |(x, a)|−1|)‖I‖0

× sup
‖Y‖≤1

|YIG∗γ/2(y, b; e, |(x, a)|−1)|.

(3.9)

Virtually the same argument as in the proof of Theorem 6.1 in [12] together with Proposition 3.3 give us

|X IG∗γ/2(x, a; e, 1)| ≤ C(|x|+ a)−‖I‖−Q−γ(1 + | log |(x, a)|−1|)‖I‖0 .

Thus by (3.3) and (3.7) we get

|X IG−γ(x, a)| ≤ C(|x|+ a)−‖I‖−Q−γ(1 + | log |(x, a)|−1|)‖I‖0(3.10)

and

|X IGγ(x, a)| ≤ Caγ(|x|+ a)−‖I‖−Q−γ(1 + | log |(x, a)|−1|)‖I‖0(3.11)

Case 3. Finally we consider the set

S3 = {(x, a) 6∈ Tδ : a ≥ |x|, a ≥ 1}.

Because V1 ∩ Tδ 6= ∅ we write every element (x, a) ∈ N × R+ as a dilation of some element from V1/2 :

(x, a) = Dt(y, b), where (y, b) ∈ V1/2 and t = 2|(x, a)| = 2|x|+ 2a.
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By homogeneity, we can write analogously to (3.9),

(3.12) |X IG∗γ/2(x, a; e, 1)| ≤ 2−‖I‖−Q−γ(|x|+ a)−‖I‖−Q−γ

× (1 + | log |(x, a)|−1|)‖I‖0 sup
‖Y‖≤1

|YIG∗γ/2(y, b; e, β̃)|.

where β̃ = 2−1(|x| + a)−1. Now using Proposition 3.3 we proceed exactly in the same way as in the proof of
Theorem 6.1 in [12] and we get that there exists a constant C such that sup‖Y‖≤1 |YIG∗(y, b; e, β̃)| in (3.12) is
less than or equal to C. Hence we get (3.10) and (3.11) on S3 and the proof is done. �

Proof of Theorem 3.2. Estimates for ∂k
aG±γ follows easily from estimates for G±γ (given in the previous

theorem) and the Harnack inequality, exactly in the same way as it was shown in [12] for G0. However, for the
sake of completeness we repeat the argument here since it is very short.

We may assume that k > 0 since for k = 0 the result follows from the previous Theorem.
It can be easily proved by induction that for every integer k ≥ 1 we have

(a∂a)k = ak∂k
a +

k−1∑
j=1

cja
j∂j

a,

where cj ∈ Z. Therefore

ak∂k
a = (a∂a)k −

k−1∑
j=1

cja
j∂j

a.

Applying the above formula recursively to the terms aj∂j
a we get that

ak∂k
a = (a∂a)k +

k−1∑
j=1

αj(a∂a)j ,(3.13)
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where αj ∈ Z. Note that the operator a∂a is left-invariant. Thus, by (3.13) and the Harnack inequality (cf. [18])
we have for every (x, a) /∈ Tδ,

|ak∂k
aG±γ (x, a)| ≤|(a∂a)kG±γ(x, a)|+

k−1∑
j=1

|αj ||(a∂a)jG±γ(x, a)|

≤C0G±γ(x, a) +
k−1∑
j=1

|αj |CjG±γ(x, a) ≤ CG±γ(x, a).

This inequality together with the estimate for G±γ complete the proof. �

1. Ancona A., Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495–536.
2. Borodin A. N. and Salminen P, Handbook of Brownian motion – facts and formulae, Birkhäuser Verlag 1996.
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